mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
782 lines
24 KiB
782 lines
24 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
#include "precomp.hpp" |
|
#include "opencv2/calib3d.hpp" |
|
|
|
namespace cv { |
|
|
|
static Mat homogeneousInverse(const Mat& T) |
|
{ |
|
CV_Assert(T.rows == 4 && T.cols == 4); |
|
|
|
Mat R = T(Rect(0, 0, 3, 3)); |
|
Mat t = T(Rect(3, 0, 1, 3)); |
|
Mat Rt = R.t(); |
|
Mat tinv = -Rt * t; |
|
Mat Tinv = Mat::eye(4, 4, T.type()); |
|
Rt.copyTo(Tinv(Rect(0, 0, 3, 3))); |
|
tinv.copyTo(Tinv(Rect(3, 0, 1, 3))); |
|
|
|
return Tinv; |
|
} |
|
|
|
// q = rot2quatMinimal(R) |
|
// |
|
// R - 3x3 rotation matrix, or 4x4 homogeneous matrix |
|
// q - 3x1 unit quaternion <qx, qy, qz> |
|
// q = sin(theta/2) * v |
|
// theta - rotation angle |
|
// v - unit rotation axis, |v| = 1 |
|
// Reference: http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/ |
|
static Mat rot2quatMinimal(const Mat& R) |
|
{ |
|
CV_Assert(R.type() == CV_64FC1 && R.rows >= 3 && R.cols >= 3); |
|
|
|
double m00 = R.at<double>(0,0), m01 = R.at<double>(0,1), m02 = R.at<double>(0,2); |
|
double m10 = R.at<double>(1,0), m11 = R.at<double>(1,1), m12 = R.at<double>(1,2); |
|
double m20 = R.at<double>(2,0), m21 = R.at<double>(2,1), m22 = R.at<double>(2,2); |
|
double trace = m00 + m11 + m22; |
|
|
|
double qx, qy, qz; |
|
if (trace > 0) { |
|
double S = sqrt(trace + 1.0) * 2; // S=4*qw |
|
qx = (m21 - m12) / S; |
|
qy = (m02 - m20) / S; |
|
qz = (m10 - m01) / S; |
|
} else if (m00 > m11 && m00 > m22) { |
|
double S = sqrt(1.0 + m00 - m11 - m22) * 2; // S=4*qx |
|
qx = 0.25 * S; |
|
qy = (m01 + m10) / S; |
|
qz = (m02 + m20) / S; |
|
} else if (m11 > m22) { |
|
double S = sqrt(1.0 + m11 - m00 - m22) * 2; // S=4*qy |
|
qx = (m01 + m10) / S; |
|
qy = 0.25 * S; |
|
qz = (m12 + m21) / S; |
|
} else { |
|
double S = sqrt(1.0 + m22 - m00 - m11) * 2; // S=4*qz |
|
qx = (m02 + m20) / S; |
|
qy = (m12 + m21) / S; |
|
qz = 0.25 * S; |
|
} |
|
|
|
return (Mat_<double>(3,1) << qx, qy, qz); |
|
} |
|
|
|
static Mat skew(const Mat& v) |
|
{ |
|
CV_Assert(v.type() == CV_64FC1 && v.rows == 3 && v.cols == 1); |
|
|
|
double vx = v.at<double>(0,0); |
|
double vy = v.at<double>(1,0); |
|
double vz = v.at<double>(2,0); |
|
return (Mat_<double>(3,3) << 0, -vz, vy, |
|
vz, 0, -vx, |
|
-vy, vx, 0); |
|
} |
|
|
|
// R = quatMinimal2rot(q) |
|
// |
|
// q - 3x1 unit quaternion <qx, qy, qz> |
|
// R - 3x3 rotation matrix |
|
// q = sin(theta/2) * v |
|
// theta - rotation angle |
|
// v - unit rotation axis, |v| = 1 |
|
static Mat quatMinimal2rot(const Mat& q) |
|
{ |
|
CV_Assert(q.type() == CV_64FC1 && q.rows == 3 && q.cols == 1); |
|
|
|
Mat p = q.t()*q; |
|
double w = sqrt(1 - p.at<double>(0,0)); |
|
|
|
Mat diag_p = Mat::eye(3,3,CV_64FC1)*p.at<double>(0,0); |
|
return 2*q*q.t() + 2*w*skew(q) + Mat::eye(3,3,CV_64FC1) - 2*diag_p; |
|
} |
|
|
|
// q = rot2quat(R) |
|
// |
|
// q - 4x1 unit quaternion <qw, qx, qy, qz> |
|
// R - 3x3 rotation matrix |
|
// Reference: http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/ |
|
static Mat rot2quat(const Mat& R) |
|
{ |
|
CV_Assert(R.type() == CV_64FC1 && R.rows >= 3 && R.cols >= 3); |
|
|
|
double m00 = R.at<double>(0,0), m01 = R.at<double>(0,1), m02 = R.at<double>(0,2); |
|
double m10 = R.at<double>(1,0), m11 = R.at<double>(1,1), m12 = R.at<double>(1,2); |
|
double m20 = R.at<double>(2,0), m21 = R.at<double>(2,1), m22 = R.at<double>(2,2); |
|
double trace = m00 + m11 + m22; |
|
|
|
double qw, qx, qy, qz; |
|
if (trace > 0) { |
|
double S = sqrt(trace + 1.0) * 2; // S=4*qw |
|
qw = 0.25 * S; |
|
qx = (m21 - m12) / S; |
|
qy = (m02 - m20) / S; |
|
qz = (m10 - m01) / S; |
|
} else if (m00 > m11 && m00 > m22) { |
|
double S = sqrt(1.0 + m00 - m11 - m22) * 2; // S=4*qx |
|
qw = (m21 - m12) / S; |
|
qx = 0.25 * S; |
|
qy = (m01 + m10) / S; |
|
qz = (m02 + m20) / S; |
|
} else if (m11 > m22) { |
|
double S = sqrt(1.0 + m11 - m00 - m22) * 2; // S=4*qy |
|
qw = (m02 - m20) / S; |
|
qx = (m01 + m10) / S; |
|
qy = 0.25 * S; |
|
qz = (m12 + m21) / S; |
|
} else { |
|
double S = sqrt(1.0 + m22 - m00 - m11) * 2; // S=4*qz |
|
qw = (m10 - m01) / S; |
|
qx = (m02 + m20) / S; |
|
qy = (m12 + m21) / S; |
|
qz = 0.25 * S; |
|
} |
|
|
|
return (Mat_<double>(4,1) << qw, qx, qy, qz); |
|
} |
|
|
|
// R = quat2rot(q) |
|
// |
|
// q - 4x1 unit quaternion <qw, qx, qy, qz> |
|
// R - 3x3 rotation matrix |
|
static Mat quat2rot(const Mat& q) |
|
{ |
|
CV_Assert(q.type() == CV_64FC1 && q.rows == 4 && q.cols == 1); |
|
|
|
double qw = q.at<double>(0,0); |
|
double qx = q.at<double>(1,0); |
|
double qy = q.at<double>(2,0); |
|
double qz = q.at<double>(3,0); |
|
|
|
Mat R(3, 3, CV_64FC1); |
|
R.at<double>(0, 0) = 1 - 2*qy*qy - 2*qz*qz; |
|
R.at<double>(0, 1) = 2*qx*qy - 2*qz*qw; |
|
R.at<double>(0, 2) = 2*qx*qz + 2*qy*qw; |
|
|
|
R.at<double>(1, 0) = 2*qx*qy + 2*qz*qw; |
|
R.at<double>(1, 1) = 1 - 2*qx*qx - 2*qz*qz; |
|
R.at<double>(1, 2) = 2*qy*qz - 2*qx*qw; |
|
|
|
R.at<double>(2, 0) = 2*qx*qz - 2*qy*qw; |
|
R.at<double>(2, 1) = 2*qy*qz + 2*qx*qw; |
|
R.at<double>(2, 2) = 1 - 2*qx*qx - 2*qy*qy; |
|
|
|
return R; |
|
} |
|
|
|
// Kronecker product or tensor product |
|
// https://stackoverflow.com/a/36552682 |
|
static Mat kron(const Mat& A, const Mat& B) |
|
{ |
|
CV_Assert(A.channels() == 1 && B.channels() == 1); |
|
|
|
Mat1d Ad, Bd; |
|
A.convertTo(Ad, CV_64F); |
|
B.convertTo(Bd, CV_64F); |
|
|
|
Mat1d Kd(Ad.rows * Bd.rows, Ad.cols * Bd.cols, 0.0); |
|
for (int ra = 0; ra < Ad.rows; ra++) |
|
{ |
|
for (int ca = 0; ca < Ad.cols; ca++) |
|
{ |
|
Kd(Range(ra*Bd.rows, (ra + 1)*Bd.rows), Range(ca*Bd.cols, (ca + 1)*Bd.cols)) = Bd.mul(Ad(ra, ca)); |
|
} |
|
} |
|
|
|
Mat K; |
|
Kd.convertTo(K, A.type()); |
|
return K; |
|
} |
|
|
|
// quaternion multiplication |
|
static Mat qmult(const Mat& s, const Mat& t) |
|
{ |
|
CV_Assert(s.type() == CV_64FC1 && t.type() == CV_64FC1); |
|
CV_Assert(s.rows == 4 && s.cols == 1); |
|
CV_Assert(t.rows == 4 && t.cols == 1); |
|
|
|
double s0 = s.at<double>(0,0); |
|
double s1 = s.at<double>(1,0); |
|
double s2 = s.at<double>(2,0); |
|
double s3 = s.at<double>(3,0); |
|
|
|
double t0 = t.at<double>(0,0); |
|
double t1 = t.at<double>(1,0); |
|
double t2 = t.at<double>(2,0); |
|
double t3 = t.at<double>(3,0); |
|
|
|
Mat q(4, 1, CV_64FC1); |
|
q.at<double>(0,0) = s0*t0 - s1*t1 - s2*t2 - s3*t3; |
|
q.at<double>(1,0) = s0*t1 + s1*t0 + s2*t3 - s3*t2; |
|
q.at<double>(2,0) = s0*t2 - s1*t3 + s2*t0 + s3*t1; |
|
q.at<double>(3,0) = s0*t3 + s1*t2 - s2*t1 + s3*t0; |
|
|
|
return q; |
|
} |
|
|
|
// dq = homogeneous2dualQuaternion(H) |
|
// |
|
// H - 4x4 homogeneous transformation: [R | t; 0 0 0 | 1] |
|
// dq - 8x1 dual quaternion: <q (rotation part), qprime (translation part)> |
|
static Mat homogeneous2dualQuaternion(const Mat& H) |
|
{ |
|
CV_Assert(H.type() == CV_64FC1 && H.rows == 4 && H.cols == 4); |
|
|
|
Mat dualq(8, 1, CV_64FC1); |
|
Mat R = H(Rect(0, 0, 3, 3)); |
|
Mat t = H(Rect(3, 0, 1, 3)); |
|
|
|
Mat q = rot2quat(R); |
|
Mat qt = Mat::zeros(4, 1, CV_64FC1); |
|
t.copyTo(qt(Rect(0, 1, 1, 3))); |
|
Mat qprime = 0.5 * qmult(qt, q); |
|
|
|
q.copyTo(dualq(Rect(0, 0, 1, 4))); |
|
qprime.copyTo(dualq(Rect(0, 4, 1, 4))); |
|
|
|
return dualq; |
|
} |
|
|
|
// H = dualQuaternion2homogeneous(dq) |
|
// |
|
// H - 4x4 homogeneous transformation: [R | t; 0 0 0 | 1] |
|
// dq - 8x1 dual quaternion: <q (rotation part), qprime (translation part)> |
|
static Mat dualQuaternion2homogeneous(const Mat& dualq) |
|
{ |
|
CV_Assert(dualq.type() == CV_64FC1 && dualq.rows == 8 && dualq.cols == 1); |
|
|
|
Mat q = dualq(Rect(0, 0, 1, 4)); |
|
Mat qprime = dualq(Rect(0, 4, 1, 4)); |
|
|
|
Mat R = quat2rot(q); |
|
q.at<double>(1,0) = -q.at<double>(1,0); |
|
q.at<double>(2,0) = -q.at<double>(2,0); |
|
q.at<double>(3,0) = -q.at<double>(3,0); |
|
|
|
Mat qt = 2*qmult(qprime, q); |
|
Mat t = qt(Rect(0, 1, 1, 3)); |
|
|
|
Mat H = Mat::eye(4, 4, CV_64FC1); |
|
R.copyTo(H(Rect(0, 0, 3, 3))); |
|
t.copyTo(H(Rect(3, 0, 1, 3))); |
|
|
|
return H; |
|
} |
|
|
|
//Reference: |
|
//R. Y. Tsai and R. K. Lenz, "A new technique for fully autonomous and efficient 3D robotics hand/eye calibration." |
|
//In IEEE Transactions on Robotics and Automation, vol. 5, no. 3, pp. 345-358, June 1989. |
|
//C++ code converted from Zoran Lazarevic's Matlab code: |
|
//http://lazax.com/www.cs.columbia.edu/~laza/html/Stewart/matlab/handEye.m |
|
static void calibrateHandEyeTsai(const std::vector<Mat>& Hg, const std::vector<Mat>& Hc, |
|
Mat& R_cam2gripper, Mat& t_cam2gripper) |
|
{ |
|
//Number of unique camera position pairs |
|
int K = static_cast<int>((Hg.size()*Hg.size() - Hg.size()) / 2.0); |
|
//Will store: skew(Pgij+Pcij) |
|
Mat A(3*K, 3, CV_64FC1); |
|
//Will store: Pcij - Pgij |
|
Mat B(3*K, 1, CV_64FC1); |
|
|
|
std::vector<Mat> vec_Hgij, vec_Hcij; |
|
vec_Hgij.reserve(static_cast<size_t>(K)); |
|
vec_Hcij.reserve(static_cast<size_t>(K)); |
|
|
|
int idx = 0; |
|
for (size_t i = 0; i < Hg.size(); i++) |
|
{ |
|
for (size_t j = i+1; j < Hg.size(); j++, idx++) |
|
{ |
|
//Defines coordinate transformation from Gi to Gj |
|
//Hgi is from Gi (gripper) to RW (robot base) |
|
//Hgj is from Gj (gripper) to RW (robot base) |
|
Mat Hgij = homogeneousInverse(Hg[j]) * Hg[i]; //eq 6 |
|
vec_Hgij.push_back(Hgij); |
|
//Rotation axis for Rgij which is the 3D rotation from gripper coordinate frame Gi to Gj |
|
Mat Pgij = 2*rot2quatMinimal(Hgij); |
|
|
|
//Defines coordinate transformation from Ci to Cj |
|
//Hci is from CW (calibration target) to Ci (camera) |
|
//Hcj is from CW (calibration target) to Cj (camera) |
|
Mat Hcij = Hc[j] * homogeneousInverse(Hc[i]); //eq 7 |
|
vec_Hcij.push_back(Hcij); |
|
//Rotation axis for Rcij |
|
Mat Pcij = 2*rot2quatMinimal(Hcij); |
|
|
|
//Left-hand side: skew(Pgij+Pcij) |
|
skew(Pgij+Pcij).copyTo(A(Rect(0, idx*3, 3, 3))); |
|
//Right-hand side: Pcij - Pgij |
|
Mat diff = Pcij - Pgij; |
|
diff.copyTo(B(Rect(0, idx*3, 1, 3))); |
|
} |
|
} |
|
|
|
Mat Pcg_; |
|
//Rotation from camera to gripper is obtained from the set of equations: |
|
// skew(Pgij+Pcij) * Pcg_ = Pcij - Pgij (eq 12) |
|
solve(A, B, Pcg_, DECOMP_SVD); |
|
|
|
Mat Pcg_norm = Pcg_.t() * Pcg_; |
|
//Obtained non-unit quaternion is scaled back to unit value that |
|
//designates camera-gripper rotation |
|
Mat Pcg = 2 * Pcg_ / sqrt(1 + Pcg_norm.at<double>(0,0)); //eq 14 |
|
|
|
Mat Rcg = quatMinimal2rot(Pcg/2.0); |
|
|
|
idx = 0; |
|
for (size_t i = 0; i < Hg.size(); i++) |
|
{ |
|
for (size_t j = i+1; j < Hg.size(); j++, idx++) |
|
{ |
|
//Defines coordinate transformation from Gi to Gj |
|
//Hgi is from Gi (gripper) to RW (robot base) |
|
//Hgj is from Gj (gripper) to RW (robot base) |
|
Mat Hgij = vec_Hgij[static_cast<size_t>(idx)]; |
|
//Defines coordinate transformation from Ci to Cj |
|
//Hci is from CW (calibration target) to Ci (camera) |
|
//Hcj is from CW (calibration target) to Cj (camera) |
|
Mat Hcij = vec_Hcij[static_cast<size_t>(idx)]; |
|
|
|
//Left-hand side: (Rgij - I) |
|
Mat diff = Hgij(Rect(0,0,3,3)) - Mat::eye(3,3,CV_64FC1); |
|
diff.copyTo(A(Rect(0, idx*3, 3, 3))); |
|
|
|
//Right-hand side: Rcg*Tcij - Tgij |
|
diff = Rcg*Hcij(Rect(3, 0, 1, 3)) - Hgij(Rect(3, 0, 1, 3)); |
|
diff.copyTo(B(Rect(0, idx*3, 1, 3))); |
|
} |
|
} |
|
|
|
Mat Tcg; |
|
//Translation from camera to gripper is obtained from the set of equations: |
|
// (Rgij - I) * Tcg = Rcg*Tcij - Tgij (eq 15) |
|
solve(A, B, Tcg, DECOMP_SVD); |
|
|
|
R_cam2gripper = Rcg; |
|
t_cam2gripper = Tcg; |
|
} |
|
|
|
//Reference: |
|
//F. Park, B. Martin, "Robot Sensor Calibration: Solving AX = XB on the Euclidean Group." |
|
//In IEEE Transactions on Robotics and Automation, 10(5): 717-721, 1994. |
|
//Matlab code: http://math.loyola.edu/~mili/Calibration/ |
|
static void calibrateHandEyePark(const std::vector<Mat>& Hg, const std::vector<Mat>& Hc, |
|
Mat& R_cam2gripper, Mat& t_cam2gripper) |
|
{ |
|
Mat M = Mat::zeros(3, 3, CV_64FC1); |
|
|
|
for (size_t i = 0; i < Hg.size(); i++) |
|
{ |
|
for (size_t j = i+1; j < Hg.size(); j++) |
|
{ |
|
Mat Hgij = homogeneousInverse(Hg[j]) * Hg[i]; |
|
Mat Hcij = Hc[j] * homogeneousInverse(Hc[i]); |
|
|
|
Mat Rgij = Hgij(Rect(0, 0, 3, 3)); |
|
Mat Rcij = Hcij(Rect(0, 0, 3, 3)); |
|
|
|
Mat a, b; |
|
Rodrigues(Rgij, a); |
|
Rodrigues(Rcij, b); |
|
|
|
M += b * a.t(); |
|
} |
|
} |
|
|
|
Mat eigenvalues, eigenvectors; |
|
eigen(M.t()*M, eigenvalues, eigenvectors); |
|
|
|
Mat v = Mat::zeros(3, 3, CV_64FC1); |
|
for (int i = 0; i < 3; i++) { |
|
v.at<double>(i,i) = 1.0 / sqrt(eigenvalues.at<double>(i,0)); |
|
} |
|
|
|
Mat R = eigenvectors.t() * v * eigenvectors * M.t(); |
|
R_cam2gripper = R; |
|
|
|
int K = static_cast<int>((Hg.size()*Hg.size() - Hg.size()) / 2.0); |
|
Mat C(3*K, 3, CV_64FC1); |
|
Mat d(3*K, 1, CV_64FC1); |
|
Mat I3 = Mat::eye(3, 3, CV_64FC1); |
|
|
|
int idx = 0; |
|
for (size_t i = 0; i < Hg.size(); i++) |
|
{ |
|
for (size_t j = i+1; j < Hg.size(); j++, idx++) |
|
{ |
|
Mat Hgij = homogeneousInverse(Hg[j]) * Hg[i]; |
|
Mat Hcij = Hc[j] * homogeneousInverse(Hc[i]); |
|
|
|
Mat Rgij = Hgij(Rect(0, 0, 3, 3)); |
|
|
|
Mat tgij = Hgij(Rect(3, 0, 1, 3)); |
|
Mat tcij = Hcij(Rect(3, 0, 1, 3)); |
|
|
|
Mat I_tgij = I3 - Rgij; |
|
I_tgij.copyTo(C(Rect(0, 3*idx, 3, 3))); |
|
|
|
Mat A_RB = tgij - R*tcij; |
|
A_RB.copyTo(d(Rect(0, 3*idx, 1, 3))); |
|
} |
|
} |
|
|
|
Mat t; |
|
solve(C, d, t, DECOMP_SVD); |
|
t_cam2gripper = t; |
|
} |
|
|
|
//Reference: |
|
//R. Horaud, F. Dornaika, "Hand-Eye Calibration" |
|
//In International Journal of Robotics Research, 14(3): 195-210, 1995. |
|
//Matlab code: http://math.loyola.edu/~mili/Calibration/ |
|
static void calibrateHandEyeHoraud(const std::vector<Mat>& Hg, const std::vector<Mat>& Hc, |
|
Mat& R_cam2gripper, Mat& t_cam2gripper) |
|
{ |
|
Mat A = Mat::zeros(4, 4, CV_64FC1); |
|
|
|
for (size_t i = 0; i < Hg.size(); i++) |
|
{ |
|
for (size_t j = i+1; j < Hg.size(); j++) |
|
{ |
|
Mat Hgij = homogeneousInverse(Hg[j]) * Hg[i]; |
|
Mat Hcij = Hc[j] * homogeneousInverse(Hc[i]); |
|
|
|
Mat Rgij = Hgij(Rect(0, 0, 3, 3)); |
|
Mat Rcij = Hcij(Rect(0, 0, 3, 3)); |
|
|
|
Mat qgij = rot2quat(Rgij); |
|
double r0 = qgij.at<double>(0,0); |
|
double rx = qgij.at<double>(1,0); |
|
double ry = qgij.at<double>(2,0); |
|
double rz = qgij.at<double>(3,0); |
|
|
|
// Q(r) Appendix A |
|
Matx44d Qvi(r0, -rx, -ry, -rz, |
|
rx, r0, -rz, ry, |
|
ry, rz, r0, -rx, |
|
rz, -ry, rx, r0); |
|
|
|
Mat qcij = rot2quat(Rcij); |
|
r0 = qcij.at<double>(0,0); |
|
rx = qcij.at<double>(1,0); |
|
ry = qcij.at<double>(2,0); |
|
rz = qcij.at<double>(3,0); |
|
|
|
// W(r) Appendix A |
|
Matx44d Wvi(r0, -rx, -ry, -rz, |
|
rx, r0, rz, -ry, |
|
ry, -rz, r0, rx, |
|
rz, ry, -rx, r0); |
|
|
|
// Ai = (Q(vi') - W(vi))^T (Q(vi') - W(vi)) |
|
A += (Qvi - Wvi).t() * (Qvi - Wvi); |
|
} |
|
} |
|
|
|
Mat eigenvalues, eigenvectors; |
|
eigen(A, eigenvalues, eigenvectors); |
|
|
|
Mat R = quat2rot(eigenvectors.row(3).t()); |
|
R_cam2gripper = R; |
|
|
|
int K = static_cast<int>((Hg.size()*Hg.size() - Hg.size()) / 2.0); |
|
Mat C(3*K, 3, CV_64FC1); |
|
Mat d(3*K, 1, CV_64FC1); |
|
Mat I3 = Mat::eye(3, 3, CV_64FC1); |
|
|
|
int idx = 0; |
|
for (size_t i = 0; i < Hg.size(); i++) |
|
{ |
|
for (size_t j = i+1; j < Hg.size(); j++, idx++) |
|
{ |
|
Mat Hgij = homogeneousInverse(Hg[j]) * Hg[i]; |
|
Mat Hcij = Hc[j] * homogeneousInverse(Hc[i]); |
|
|
|
Mat Rgij = Hgij(Rect(0, 0, 3, 3)); |
|
|
|
Mat tgij = Hgij(Rect(3, 0, 1, 3)); |
|
Mat tcij = Hcij(Rect(3, 0, 1, 3)); |
|
|
|
Mat I_tgij = I3 - Rgij; |
|
I_tgij.copyTo(C(Rect(0, 3*idx, 3, 3))); |
|
|
|
Mat A_RB = tgij - R*tcij; |
|
A_RB.copyTo(d(Rect(0, 3*idx, 1, 3))); |
|
} |
|
} |
|
|
|
Mat t; |
|
solve(C, d, t, DECOMP_SVD); |
|
t_cam2gripper = t; |
|
} |
|
|
|
// sign function, return -1 if negative values, +1 otherwise |
|
static int sign_double(double val) |
|
{ |
|
return (0 < val) - (val < 0); |
|
} |
|
|
|
//Reference: |
|
//N. Andreff, R. Horaud, B. Espiau, "On-line Hand-Eye Calibration." |
|
//In Second International Conference on 3-D Digital Imaging and Modeling (3DIM'99), pages 430-436, 1999. |
|
//Matlab code: http://math.loyola.edu/~mili/Calibration/ |
|
static void calibrateHandEyeAndreff(const std::vector<Mat>& Hg, const std::vector<Mat>& Hc, |
|
Mat& R_cam2gripper, Mat& t_cam2gripper) |
|
{ |
|
int K = static_cast<int>((Hg.size()*Hg.size() - Hg.size()) / 2.0); |
|
Mat A(12*K, 12, CV_64FC1); |
|
Mat B(12*K, 1, CV_64FC1); |
|
|
|
Mat I9 = Mat::eye(9, 9, CV_64FC1); |
|
Mat I3 = Mat::eye(3, 3, CV_64FC1); |
|
Mat O9x3 = Mat::zeros(9, 3, CV_64FC1); |
|
Mat O9x1 = Mat::zeros(9, 1, CV_64FC1); |
|
|
|
int idx = 0; |
|
for (size_t i = 0; i < Hg.size(); i++) |
|
{ |
|
for (size_t j = i+1; j < Hg.size(); j++, idx++) |
|
{ |
|
Mat Hgij = homogeneousInverse(Hg[j]) * Hg[i]; |
|
Mat Hcij = Hc[j] * homogeneousInverse(Hc[i]); |
|
|
|
Mat Rgij = Hgij(Rect(0, 0, 3, 3)); |
|
Mat Rcij = Hcij(Rect(0, 0, 3, 3)); |
|
|
|
Mat tgij = Hgij(Rect(3, 0, 1, 3)); |
|
Mat tcij = Hcij(Rect(3, 0, 1, 3)); |
|
|
|
//Eq 10 |
|
Mat a00 = I9 - kron(Rgij, Rcij); |
|
Mat a01 = O9x3; |
|
Mat a10 = kron(I3, tcij.t()); |
|
Mat a11 = I3 - Rgij; |
|
|
|
a00.copyTo(A(Rect(0, idx*12, 9, 9))); |
|
a01.copyTo(A(Rect(9, idx*12, 3, 9))); |
|
a10.copyTo(A(Rect(0, idx*12 + 9, 9, 3))); |
|
a11.copyTo(A(Rect(9, idx*12 + 9, 3, 3))); |
|
|
|
O9x1.copyTo(B(Rect(0, idx*12, 1, 9))); |
|
tgij.copyTo(B(Rect(0, idx*12 + 9, 1, 3))); |
|
} |
|
} |
|
|
|
Mat X; |
|
solve(A, B, X, DECOMP_SVD); |
|
|
|
Mat R = X(Rect(0, 0, 1, 9)); |
|
int newSize[] = {3, 3}; |
|
R = R.reshape(1, 2, newSize); |
|
//Eq 15 |
|
double det = determinant(R); |
|
if (std::fabs(det) < FLT_EPSILON) |
|
{ |
|
CV_Error(Error::StsNoConv, "calibrateHandEye() with CALIB_HAND_EYE_ANDREFF method: determinant(R) is null"); |
|
} |
|
R = cubeRoot(static_cast<float>(sign_double(det) / abs(det))) * R; |
|
|
|
Mat w, u, vt; |
|
SVDecomp(R, w, u, vt); |
|
R = u*vt; |
|
|
|
if (determinant(R) < 0) |
|
{ |
|
Mat diag = (Mat_<double>(3,3) << 1.0, 0.0, 0.0, |
|
0.0, 1.0, 0.0, |
|
0.0, 0.0, -1.0); |
|
R = u*diag*vt; |
|
} |
|
|
|
R_cam2gripper = R; |
|
|
|
Mat t = X(Rect(0, 9, 1, 3)); |
|
t_cam2gripper = t; |
|
} |
|
|
|
//Reference: |
|
//K. Daniilidis, "Hand-Eye Calibration Using Dual Quaternions." |
|
//In The International Journal of Robotics Research,18(3): 286-298, 1998. |
|
//Matlab code: http://math.loyola.edu/~mili/Calibration/ |
|
static void calibrateHandEyeDaniilidis(const std::vector<Mat>& Hg, const std::vector<Mat>& Hc, |
|
Mat& R_cam2gripper, Mat& t_cam2gripper) |
|
{ |
|
int K = static_cast<int>((Hg.size()*Hg.size() - Hg.size()) / 2.0); |
|
Mat T = Mat::zeros(6*K, 8, CV_64FC1); |
|
|
|
int idx = 0; |
|
for (size_t i = 0; i < Hg.size(); i++) |
|
{ |
|
for (size_t j = i+1; j < Hg.size(); j++, idx++) |
|
{ |
|
Mat Hgij = homogeneousInverse(Hg[j]) * Hg[i]; |
|
Mat Hcij = Hc[j] * homogeneousInverse(Hc[i]); |
|
|
|
Mat dualqa = homogeneous2dualQuaternion(Hgij); |
|
Mat dualqb = homogeneous2dualQuaternion(Hcij); |
|
|
|
Mat a = dualqa(Rect(0, 1, 1, 3)); |
|
Mat b = dualqb(Rect(0, 1, 1, 3)); |
|
|
|
Mat aprime = dualqa(Rect(0, 5, 1, 3)); |
|
Mat bprime = dualqb(Rect(0, 5, 1, 3)); |
|
|
|
//Eq 31 |
|
Mat s00 = a - b; |
|
Mat s01 = skew(a + b); |
|
Mat s10 = aprime - bprime; |
|
Mat s11 = skew(aprime + bprime); |
|
Mat s12 = a - b; |
|
Mat s13 = skew(a + b); |
|
|
|
s00.copyTo(T(Rect(0, idx*6, 1, 3))); |
|
s01.copyTo(T(Rect(1, idx*6, 3, 3))); |
|
s10.copyTo(T(Rect(0, idx*6 + 3, 1, 3))); |
|
s11.copyTo(T(Rect(1, idx*6 + 3, 3, 3))); |
|
s12.copyTo(T(Rect(4, idx*6 + 3, 1, 3))); |
|
s13.copyTo(T(Rect(5, idx*6 + 3, 3, 3))); |
|
} |
|
} |
|
|
|
Mat w, u, vt; |
|
SVDecomp(T, w, u, vt); |
|
Mat v = vt.t(); |
|
|
|
Mat u1 = v(Rect(6, 0, 1, 4)); |
|
Mat v1 = v(Rect(6, 4, 1, 4)); |
|
Mat u2 = v(Rect(7, 0, 1, 4)); |
|
Mat v2 = v(Rect(7, 4, 1, 4)); |
|
|
|
//Solves Eq 34, Eq 35 |
|
Mat ma = u1.t()*v1; |
|
Mat mb = u1.t()*v2 + u2.t()*v1; |
|
Mat mc = u2.t()*v2; |
|
|
|
double a = ma.at<double>(0,0); |
|
double b = mb.at<double>(0,0); |
|
double c = mc.at<double>(0,0); |
|
|
|
double s1 = (-b + sqrt(b*b - 4*a*c)) / (2*a); |
|
double s2 = (-b - sqrt(b*b - 4*a*c)) / (2*a); |
|
|
|
Mat sol1 = s1*s1*u1.t()*u1 + 2*s1*u1.t()*u2 + u2.t()*u2; |
|
Mat sol2 = s2*s2*u1.t()*u1 + 2*s2*u1.t()*u2 + u2.t()*u2; |
|
double s, val; |
|
if (sol1.at<double>(0,0) > sol2.at<double>(0,0)) |
|
{ |
|
s = s1; |
|
val = sol1.at<double>(0,0); |
|
} |
|
else |
|
{ |
|
s = s2; |
|
val = sol2.at<double>(0,0); |
|
} |
|
|
|
double lambda2 = sqrt(1.0 / val); |
|
double lambda1 = s * lambda2; |
|
|
|
Mat dualq = lambda1 * v(Rect(6, 0, 1, 8)) + lambda2*v(Rect(7, 0, 1, 8)); |
|
Mat X = dualQuaternion2homogeneous(dualq); |
|
|
|
Mat R = X(Rect(0, 0, 3, 3)); |
|
Mat t = X(Rect(3, 0, 1, 3)); |
|
R_cam2gripper = R; |
|
t_cam2gripper = t; |
|
} |
|
|
|
void calibrateHandEye(InputArrayOfArrays R_gripper2base, InputArrayOfArrays t_gripper2base, |
|
InputArrayOfArrays R_target2cam, InputArrayOfArrays t_target2cam, |
|
OutputArray R_cam2gripper, OutputArray t_cam2gripper, |
|
HandEyeCalibrationMethod method) |
|
{ |
|
CV_Assert(R_gripper2base.isMatVector() && t_gripper2base.isMatVector() && |
|
R_target2cam.isMatVector() && t_target2cam.isMatVector()); |
|
|
|
std::vector<Mat> R_gripper2base_, t_gripper2base_; |
|
R_gripper2base.getMatVector(R_gripper2base_); |
|
t_gripper2base.getMatVector(t_gripper2base_); |
|
|
|
std::vector<Mat> R_target2cam_, t_target2cam_; |
|
R_target2cam.getMatVector(R_target2cam_); |
|
t_target2cam.getMatVector(t_target2cam_); |
|
|
|
CV_Assert(R_gripper2base_.size() == t_gripper2base_.size() && |
|
R_target2cam_.size() == t_target2cam_.size() && |
|
R_gripper2base_.size() == R_target2cam_.size()); |
|
CV_Assert(R_gripper2base_.size() >= 3); |
|
|
|
//Notation used in Tsai paper |
|
//Defines coordinate transformation from G (gripper) to RW (robot base) |
|
std::vector<Mat> Hg; |
|
Hg.reserve(R_gripper2base_.size()); |
|
for (size_t i = 0; i < R_gripper2base_.size(); i++) |
|
{ |
|
Mat m = Mat::eye(4, 4, CV_64FC1); |
|
Mat R = m(Rect(0, 0, 3, 3)); |
|
if(R_gripper2base_[i].size() == Size(3, 3)) |
|
R_gripper2base_[i].convertTo(R, CV_64F); |
|
else |
|
Rodrigues(R_gripper2base_[i], R); |
|
|
|
Mat t = m(Rect(3, 0, 1, 3)); |
|
t_gripper2base_[i].convertTo(t, CV_64F); |
|
|
|
Hg.push_back(m); |
|
} |
|
|
|
//Defines coordinate transformation from CW (calibration target) to C (camera) |
|
std::vector<Mat> Hc; |
|
Hc.reserve(R_target2cam_.size()); |
|
for (size_t i = 0; i < R_target2cam_.size(); i++) |
|
{ |
|
Mat m = Mat::eye(4, 4, CV_64FC1); |
|
Mat R = m(Rect(0, 0, 3, 3)); |
|
if(R_target2cam_[i].size() == Size(3, 3)) |
|
R_target2cam_[i].convertTo(R, CV_64F); |
|
else |
|
Rodrigues(R_target2cam_[i], R); |
|
|
|
Mat t = m(Rect(3, 0, 1, 3)); |
|
t_target2cam_[i].convertTo(t, CV_64F); |
|
|
|
Hc.push_back(m); |
|
} |
|
|
|
Mat Rcg = Mat::eye(3, 3, CV_64FC1); |
|
Mat Tcg = Mat::zeros(3, 1, CV_64FC1); |
|
|
|
switch (method) |
|
{ |
|
case CALIB_HAND_EYE_TSAI: |
|
calibrateHandEyeTsai(Hg, Hc, Rcg, Tcg); |
|
break; |
|
|
|
case CALIB_HAND_EYE_PARK: |
|
calibrateHandEyePark(Hg, Hc, Rcg, Tcg); |
|
break; |
|
|
|
case CALIB_HAND_EYE_HORAUD: |
|
calibrateHandEyeHoraud(Hg, Hc, Rcg, Tcg); |
|
break; |
|
|
|
case CALIB_HAND_EYE_ANDREFF: |
|
calibrateHandEyeAndreff(Hg, Hc, Rcg, Tcg); |
|
break; |
|
|
|
case CALIB_HAND_EYE_DANIILIDIS: |
|
calibrateHandEyeDaniilidis(Hg, Hc, Rcg, Tcg); |
|
break; |
|
|
|
default: |
|
break; |
|
} |
|
|
|
Rcg.copyTo(R_cam2gripper); |
|
Tcg.copyTo(t_cam2gripper); |
|
} |
|
}
|
|
|