mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
579 lines
21 KiB
579 lines
21 KiB
#include "test_precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
static SparseMat cvTsGetRandomSparseMat(int dims, const int* sz, int type, |
|
int nzcount, double a, double b, RNG& rng) |
|
{ |
|
SparseMat m(dims, sz, type); |
|
int i, j; |
|
CV_Assert(CV_MAT_CN(type) == 1); |
|
for( i = 0; i < nzcount; i++ ) |
|
{ |
|
int idx[CV_MAX_DIM]; |
|
for( j = 0; j < dims; j++ ) |
|
idx[j] = cvtest::randInt(rng) % sz[j]; |
|
double val = cvtest::randReal(rng)*(b - a) + a; |
|
uchar* ptr = m.ptr(idx, true, 0); |
|
if( type == CV_8U ) |
|
*(uchar*)ptr = saturate_cast<uchar>(val); |
|
else if( type == CV_8S ) |
|
*(schar*)ptr = saturate_cast<schar>(val); |
|
else if( type == CV_16U ) |
|
*(ushort*)ptr = saturate_cast<ushort>(val); |
|
else if( type == CV_16S ) |
|
*(short*)ptr = saturate_cast<short>(val); |
|
else if( type == CV_32S ) |
|
*(int*)ptr = saturate_cast<int>(val); |
|
else if( type == CV_32F ) |
|
*(float*)ptr = saturate_cast<float>(val); |
|
else |
|
*(double*)ptr = saturate_cast<double>(val); |
|
} |
|
|
|
return m; |
|
} |
|
|
|
static bool cvTsCheckSparse(const CvSparseMat* m1, const CvSparseMat* m2, double eps) |
|
{ |
|
CvSparseMatIterator it1; |
|
CvSparseNode* node1; |
|
int depth = CV_MAT_DEPTH(m1->type); |
|
|
|
if( m1->heap->active_count != m2->heap->active_count || |
|
m1->dims != m2->dims || CV_MAT_TYPE(m1->type) != CV_MAT_TYPE(m2->type) ) |
|
return false; |
|
|
|
for( node1 = cvInitSparseMatIterator( m1, &it1 ); |
|
node1 != 0; node1 = cvGetNextSparseNode( &it1 )) |
|
{ |
|
uchar* v1 = (uchar*)CV_NODE_VAL(m1,node1); |
|
uchar* v2 = cvPtrND( m2, CV_NODE_IDX(m1,node1), 0, 0, &node1->hashval ); |
|
if( !v2 ) |
|
return false; |
|
if( depth == CV_8U || depth == CV_8S ) |
|
{ |
|
if( *v1 != *v2 ) |
|
return false; |
|
} |
|
else if( depth == CV_16U || depth == CV_16S ) |
|
{ |
|
if( *(ushort*)v1 != *(ushort*)v2 ) |
|
return false; |
|
} |
|
else if( depth == CV_32S ) |
|
{ |
|
if( *(int*)v1 != *(int*)v2 ) |
|
return false; |
|
} |
|
else if( depth == CV_32F ) |
|
{ |
|
if( fabs(*(float*)v1 - *(float*)v2) > eps*(fabs(*(float*)v2) + 1) ) |
|
return false; |
|
} |
|
else if( fabs(*(double*)v1 - *(double*)v2) > eps*(fabs(*(double*)v2) + 1) ) |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
|
|
class Core_IOTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
Core_IOTest() { } |
|
protected: |
|
void run(int) |
|
{ |
|
double ranges[][2] = {{0, 256}, {-128, 128}, {0, 65536}, {-32768, 32768}, |
|
{-1000000, 1000000}, {-10, 10}, {-10, 10}}; |
|
RNG& rng = ts->get_rng(); |
|
RNG rng0; |
|
test_case_count = 4; |
|
int progress = 0; |
|
MemStorage storage(cvCreateMemStorage(0)); |
|
|
|
for( int idx = 0; idx < test_case_count; idx++ ) |
|
{ |
|
ts->update_context( this, idx, false ); |
|
progress = update_progress( progress, idx, test_case_count, 0 ); |
|
|
|
cvClearMemStorage(storage); |
|
|
|
bool mem = (idx % 4) >= 2; |
|
string filename = tempfile(idx % 2 ? ".yml" : ".xml"); |
|
|
|
FileStorage fs(filename, FileStorage::WRITE + (mem ? FileStorage::MEMORY : 0)); |
|
|
|
int test_int = (int)cvtest::randInt(rng); |
|
double test_real = (cvtest::randInt(rng)%2?1:-1)*exp(cvtest::randReal(rng)*18-9); |
|
string test_string = "vw wv23424rt\"&<>&'@#$@$%$%&%IJUKYILFD@#$@%$&*&() "; |
|
|
|
int depth = cvtest::randInt(rng) % (CV_64F+1); |
|
int cn = cvtest::randInt(rng) % 4 + 1; |
|
Mat test_mat(cvtest::randInt(rng)%30+1, cvtest::randInt(rng)%30+1, CV_MAKETYPE(depth, cn)); |
|
|
|
rng0.fill(test_mat, CV_RAND_UNI, Scalar::all(ranges[depth][0]), Scalar::all(ranges[depth][1])); |
|
if( depth >= CV_32F ) |
|
{ |
|
exp(test_mat, test_mat); |
|
Mat test_mat_scale(test_mat.size(), test_mat.type()); |
|
rng0.fill(test_mat_scale, CV_RAND_UNI, Scalar::all(-1), Scalar::all(1)); |
|
multiply(test_mat, test_mat_scale, test_mat); |
|
} |
|
|
|
CvSeq* seq = cvCreateSeq(test_mat.type(), (int)sizeof(CvSeq), |
|
(int)test_mat.elemSize(), storage); |
|
cvSeqPushMulti(seq, test_mat.ptr(), test_mat.cols*test_mat.rows); |
|
|
|
CvGraph* graph = cvCreateGraph( CV_ORIENTED_GRAPH, |
|
sizeof(CvGraph), sizeof(CvGraphVtx), |
|
sizeof(CvGraphEdge), storage ); |
|
int edges[][2] = {{0,1},{1,2},{2,0},{0,3},{3,4},{4,1}}; |
|
int i, vcount = 5, ecount = 6; |
|
for( i = 0; i < vcount; i++ ) |
|
cvGraphAddVtx(graph); |
|
for( i = 0; i < ecount; i++ ) |
|
{ |
|
CvGraphEdge* edge; |
|
cvGraphAddEdge(graph, edges[i][0], edges[i][1], 0, &edge); |
|
edge->weight = (float)(i+1); |
|
} |
|
|
|
depth = cvtest::randInt(rng) % (CV_64F+1); |
|
cn = cvtest::randInt(rng) % 4 + 1; |
|
int sz[] = { |
|
static_cast<int>(cvtest::randInt(rng)%10+1), |
|
static_cast<int>(cvtest::randInt(rng)%10+1), |
|
static_cast<int>(cvtest::randInt(rng)%10+1), |
|
}; |
|
MatND test_mat_nd(3, sz, CV_MAKETYPE(depth, cn)); |
|
|
|
rng0.fill(test_mat_nd, CV_RAND_UNI, Scalar::all(ranges[depth][0]), Scalar::all(ranges[depth][1])); |
|
if( depth >= CV_32F ) |
|
{ |
|
exp(test_mat_nd, test_mat_nd); |
|
MatND test_mat_scale(test_mat_nd.dims, test_mat_nd.size, test_mat_nd.type()); |
|
rng0.fill(test_mat_scale, CV_RAND_UNI, Scalar::all(-1), Scalar::all(1)); |
|
multiply(test_mat_nd, test_mat_scale, test_mat_nd); |
|
} |
|
|
|
int ssz[] = { |
|
static_cast<int>(cvtest::randInt(rng)%10+1), |
|
static_cast<int>(cvtest::randInt(rng)%10+1), |
|
static_cast<int>(cvtest::randInt(rng)%10+1), |
|
static_cast<int>(cvtest::randInt(rng)%10+1), |
|
}; |
|
SparseMat test_sparse_mat = cvTsGetRandomSparseMat(4, ssz, cvtest::randInt(rng)%(CV_64F+1), |
|
cvtest::randInt(rng) % 10000, 0, 100, rng); |
|
|
|
fs << "test_int" << test_int << "test_real" << test_real << "test_string" << test_string; |
|
fs << "test_mat" << test_mat; |
|
fs << "test_mat_nd" << test_mat_nd; |
|
fs << "test_sparse_mat" << test_sparse_mat; |
|
|
|
fs << "test_list" << "[" << 0.0000000000001 << 2 << CV_PI << -3435345 << "2-502 2-029 3egegeg" << |
|
"{:" << "month" << 12 << "day" << 31 << "year" << 1969 << "}" << "]"; |
|
fs << "test_map" << "{" << "x" << 1 << "y" << 2 << "width" << 100 << "height" << 200 << "lbp" << "[:"; |
|
|
|
const uchar arr[] = {0, 1, 1, 0, 1, 1, 0, 1}; |
|
fs.writeRaw("u", arr, (int)(sizeof(arr)/sizeof(arr[0]))); |
|
|
|
fs << "]" << "}"; |
|
cvWriteComment(*fs, "test comment", 0); |
|
|
|
fs.writeObj("test_seq", seq); |
|
fs.writeObj("test_graph",graph); |
|
CvGraph* graph2 = (CvGraph*)cvClone(graph); |
|
|
|
string content = fs.releaseAndGetString(); |
|
|
|
if(!fs.open(mem ? content : filename, FileStorage::READ + (mem ? FileStorage::MEMORY : 0))) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "filename %s can not be read\n", !mem ? filename.c_str() : content.c_str()); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_MISSING_TEST_DATA ); |
|
return; |
|
} |
|
|
|
int real_int = (int)fs["test_int"]; |
|
double real_real = (double)fs["test_real"]; |
|
String real_string = (String)fs["test_string"]; |
|
|
|
if( real_int != test_int || |
|
fabs(real_real - test_real) > DBL_EPSILON*(fabs(test_real)+1) || |
|
real_string != test_string ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "the read scalars are not correct\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
|
|
CvMat* m = (CvMat*)fs["test_mat"].readObj(); |
|
CvMat _test_mat = test_mat; |
|
double max_diff = 0; |
|
CvMat stub1, _test_stub1; |
|
cvReshape(m, &stub1, 1, 0); |
|
cvReshape(&_test_mat, &_test_stub1, 1, 0); |
|
vector<int> pt; |
|
|
|
if( !m || !CV_IS_MAT(m) || m->rows != test_mat.rows || m->cols != test_mat.cols || |
|
cvtest::cmpEps( cv::cvarrToMat(&stub1), cv::cvarrToMat(&_test_stub1), &max_diff, 0, &pt, true) < 0 ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "the read matrix is not correct: (%.20g vs %.20g) at (%d,%d)\n", |
|
cvGetReal2D(&stub1, pt[0], pt[1]), cvGetReal2D(&_test_stub1, pt[0], pt[1]), |
|
pt[0], pt[1] ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
if( m && CV_IS_MAT(m)) |
|
cvReleaseMat(&m); |
|
|
|
CvMatND* m_nd = (CvMatND*)fs["test_mat_nd"].readObj(); |
|
CvMatND _test_mat_nd = test_mat_nd; |
|
|
|
if( !m_nd || !CV_IS_MATND(m_nd) ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "the read nd-matrix is not correct\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
|
|
CvMat stub, _test_stub; |
|
cvGetMat(m_nd, &stub, 0, 1); |
|
cvGetMat(&_test_mat_nd, &_test_stub, 0, 1); |
|
cvReshape(&stub, &stub1, 1, 0); |
|
cvReshape(&_test_stub, &_test_stub1, 1, 0); |
|
|
|
if( !CV_ARE_TYPES_EQ(&stub, &_test_stub) || |
|
!CV_ARE_SIZES_EQ(&stub, &_test_stub) || |
|
//cvNorm(&stub, &_test_stub, CV_L2) != 0 ) |
|
cvtest::cmpEps( cv::cvarrToMat(&stub1), cv::cvarrToMat(&_test_stub1), &max_diff, 0, &pt, true) < 0 ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "readObj method: the read nd matrix is not correct: (%.20g vs %.20g) vs at (%d,%d)\n", |
|
cvGetReal2D(&stub1, pt[0], pt[1]), cvGetReal2D(&_test_stub1, pt[0], pt[1]), |
|
pt[0], pt[1] ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
|
|
MatND mat_nd2; |
|
fs["test_mat_nd"] >> mat_nd2; |
|
CvMatND m_nd2 = mat_nd2; |
|
cvGetMat(&m_nd2, &stub, 0, 1); |
|
cvReshape(&stub, &stub1, 1, 0); |
|
|
|
if( !CV_ARE_TYPES_EQ(&stub, &_test_stub) || |
|
!CV_ARE_SIZES_EQ(&stub, &_test_stub) || |
|
//cvNorm(&stub, &_test_stub, CV_L2) != 0 ) |
|
cvtest::cmpEps( cv::cvarrToMat(&stub1), cv::cvarrToMat(&_test_stub1), &max_diff, 0, &pt, true) < 0 ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "C++ method: the read nd matrix is not correct: (%.20g vs %.20g) vs at (%d,%d)\n", |
|
cvGetReal2D(&stub1, pt[0], pt[1]), cvGetReal2D(&_test_stub1, pt[1], pt[0]), |
|
pt[0], pt[1] ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
|
|
cvRelease((void**)&m_nd); |
|
|
|
Ptr<CvSparseMat> m_s((CvSparseMat*)fs["test_sparse_mat"].readObj()); |
|
Ptr<CvSparseMat> _test_sparse_(cvCreateSparseMat(test_sparse_mat)); |
|
Ptr<CvSparseMat> _test_sparse((CvSparseMat*)cvClone(_test_sparse_)); |
|
SparseMat m_s2; |
|
fs["test_sparse_mat"] >> m_s2; |
|
Ptr<CvSparseMat> _m_s2(cvCreateSparseMat(m_s2)); |
|
|
|
if( !m_s || !CV_IS_SPARSE_MAT(m_s) || |
|
!cvTsCheckSparse(m_s, _test_sparse, 0) || |
|
!cvTsCheckSparse(_m_s2, _test_sparse, 0)) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "the read sparse matrix is not correct\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
|
|
FileNode tl = fs["test_list"]; |
|
if( tl.type() != FileNode::SEQ || tl.size() != 6 || |
|
fabs((double)tl[0] - 0.0000000000001) >= DBL_EPSILON || |
|
(int)tl[1] != 2 || |
|
fabs((double)tl[2] - CV_PI) >= DBL_EPSILON || |
|
(int)tl[3] != -3435345 || |
|
(String)tl[4] != "2-502 2-029 3egegeg" || |
|
tl[5].type() != FileNode::MAP || tl[5].size() != 3 || |
|
(int)tl[5]["month"] != 12 || |
|
(int)tl[5]["day"] != 31 || |
|
(int)tl[5]["year"] != 1969 ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "the test list is incorrect\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
|
|
FileNode tm = fs["test_map"]; |
|
FileNode tm_lbp = tm["lbp"]; |
|
|
|
int real_x = (int)tm["x"]; |
|
int real_y = (int)tm["y"]; |
|
int real_width = (int)tm["width"]; |
|
int real_height = (int)tm["height"]; |
|
|
|
int real_lbp_val = 0; |
|
FileNodeIterator it; |
|
it = tm_lbp.begin(); |
|
real_lbp_val |= (int)*it << 0; |
|
++it; |
|
real_lbp_val |= (int)*it << 1; |
|
it++; |
|
real_lbp_val |= (int)*it << 2; |
|
it += 1; |
|
real_lbp_val |= (int)*it << 3; |
|
FileNodeIterator it2(it); |
|
it2 += 4; |
|
real_lbp_val |= (int)*it2 << 7; |
|
--it2; |
|
real_lbp_val |= (int)*it2 << 6; |
|
it2--; |
|
real_lbp_val |= (int)*it2 << 5; |
|
it2 -= 1; |
|
real_lbp_val |= (int)*it2 << 4; |
|
it2 += -1; |
|
CV_Assert( it == it2 ); |
|
|
|
if( tm.type() != FileNode::MAP || tm.size() != 5 || |
|
real_x != 1 || |
|
real_y != 2 || |
|
real_width != 100 || |
|
real_height != 200 || |
|
tm_lbp.type() != FileNode::SEQ || |
|
tm_lbp.size() != 8 || |
|
real_lbp_val != 0xb6 ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "the test map is incorrect\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
|
|
CvGraph* graph3 = (CvGraph*)fs["test_graph"].readObj(); |
|
if(graph2->active_count != vcount || graph3->active_count != vcount || |
|
graph2->edges->active_count != ecount || graph3->edges->active_count != ecount) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "the cloned or read graph have wrong number of vertices or edges\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
|
|
for( i = 0; i < ecount; i++ ) |
|
{ |
|
CvGraphEdge* edge2 = cvFindGraphEdge(graph2, edges[i][0], edges[i][1]); |
|
CvGraphEdge* edge3 = cvFindGraphEdge(graph3, edges[i][0], edges[i][1]); |
|
if( !edge2 || edge2->weight != (float)(i+1) || |
|
!edge3 || edge3->weight != (float)(i+1) ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "the cloned or read graph do not have the edge (%d, %d)\n", edges[i][0], edges[i][1] ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
} |
|
|
|
fs.release(); |
|
if( !mem ) |
|
remove(filename.c_str()); |
|
} |
|
} |
|
}; |
|
|
|
TEST(Core_InputOutput, write_read_consistency) { Core_IOTest test; test.safe_run(); } |
|
|
|
extern void testFormatter(); |
|
|
|
|
|
struct UserDefinedType |
|
{ |
|
int a; |
|
float b; |
|
}; |
|
|
|
static inline bool operator==(const UserDefinedType &x, |
|
const UserDefinedType &y) { |
|
return (x.a == y.a) && (x.b == y.b); |
|
} |
|
|
|
static inline void write(FileStorage &fs, |
|
const String&, |
|
const UserDefinedType &value) |
|
{ |
|
fs << "{:" << "a" << value.a << "b" << value.b << "}"; |
|
} |
|
|
|
static inline void read(const FileNode& node, |
|
UserDefinedType& value, |
|
const UserDefinedType& default_value |
|
= UserDefinedType()) { |
|
if(node.empty()) |
|
{ |
|
value = default_value; |
|
} |
|
else |
|
{ |
|
node["a"] >> value.a; |
|
node["b"] >> value.b; |
|
} |
|
} |
|
|
|
class CV_MiscIOTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_MiscIOTest() {} |
|
~CV_MiscIOTest() {} |
|
protected: |
|
void run(int) |
|
{ |
|
try |
|
{ |
|
string fname = cv::tempfile(".xml"); |
|
vector<int> mi, mi2, mi3, mi4; |
|
vector<Mat> mv, mv2, mv3, mv4; |
|
vector<UserDefinedType> vudt, vudt2, vudt3, vudt4; |
|
Mat m(10, 9, CV_32F); |
|
Mat empty; |
|
UserDefinedType udt = { 8, 3.3f }; |
|
randu(m, 0, 1); |
|
mi3.push_back(5); |
|
mv3.push_back(m); |
|
vudt3.push_back(udt); |
|
Point_<float> p1(1.1f, 2.2f), op1; |
|
Point3i p2(3, 4, 5), op2; |
|
Size s1(6, 7), os1; |
|
Complex<int> c1(9, 10), oc1; |
|
Rect r1(11, 12, 13, 14), or1; |
|
Vec<int, 5> v1(15, 16, 17, 18, 19), ov1; |
|
Scalar sc1(20.0, 21.1, 22.2, 23.3), osc1; |
|
Range g1(7, 8), og1; |
|
|
|
FileStorage fs(fname, FileStorage::WRITE); |
|
fs << "mi" << mi; |
|
fs << "mv" << mv; |
|
fs << "mi3" << mi3; |
|
fs << "mv3" << mv3; |
|
fs << "vudt" << vudt; |
|
fs << "vudt3" << vudt3; |
|
fs << "empty" << empty; |
|
fs << "p1" << p1; |
|
fs << "p2" << p2; |
|
fs << "s1" << s1; |
|
fs << "c1" << c1; |
|
fs << "r1" << r1; |
|
fs << "v1" << v1; |
|
fs << "sc1" << sc1; |
|
fs << "g1" << g1; |
|
fs.release(); |
|
|
|
fs.open(fname, FileStorage::READ); |
|
fs["mi"] >> mi2; |
|
fs["mv"] >> mv2; |
|
fs["mi3"] >> mi4; |
|
fs["mv3"] >> mv4; |
|
fs["vudt"] >> vudt2; |
|
fs["vudt3"] >> vudt4; |
|
fs["empty"] >> empty; |
|
fs["p1"] >> op1; |
|
fs["p2"] >> op2; |
|
fs["s1"] >> os1; |
|
fs["c1"] >> oc1; |
|
fs["r1"] >> or1; |
|
fs["v1"] >> ov1; |
|
fs["sc1"] >> osc1; |
|
fs["g1"] >> og1; |
|
CV_Assert( mi2.empty() ); |
|
CV_Assert( mv2.empty() ); |
|
CV_Assert( cvtest::norm(Mat(mi3), Mat(mi4), CV_C) == 0 ); |
|
CV_Assert( mv4.size() == 1 ); |
|
double n = cvtest::norm(mv3[0], mv4[0], CV_C); |
|
CV_Assert( vudt2.empty() ); |
|
CV_Assert( vudt3 == vudt4 ); |
|
CV_Assert( n == 0 ); |
|
CV_Assert( op1 == p1 ); |
|
CV_Assert( op2 == p2 ); |
|
CV_Assert( os1 == s1 ); |
|
CV_Assert( oc1 == c1 ); |
|
CV_Assert( or1 == r1 ); |
|
CV_Assert( ov1 == v1 ); |
|
CV_Assert( osc1 == sc1 ); |
|
CV_Assert( og1 == g1 ); |
|
} |
|
catch(...) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); |
|
} |
|
} |
|
}; |
|
|
|
TEST(Core_InputOutput, misc) { CV_MiscIOTest test; test.safe_run(); } |
|
|
|
/*class CV_BigMatrixIOTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_BigMatrixIOTest() {} |
|
~CV_BigMatrixIOTest() {} |
|
protected: |
|
void run(int) |
|
{ |
|
try |
|
{ |
|
RNG& rng = theRNG(); |
|
int N = 1000, M = 1200000; |
|
Mat mat(M, N, CV_32F); |
|
rng.fill(mat, RNG::UNIFORM, 0, 1); |
|
FileStorage fs(cv::tempfile(".xml"), FileStorage::WRITE); |
|
fs << "mat" << mat; |
|
fs.release(); |
|
} |
|
catch(...) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); |
|
} |
|
} |
|
}; |
|
|
|
TEST(Core_InputOutput, huge) { CV_BigMatrixIOTest test; test.safe_run(); } |
|
*/ |
|
|
|
TEST(Core_globbing, accuracy) |
|
{ |
|
std::string patternLena = cvtest::TS::ptr()->get_data_path() + "lena*.*"; |
|
std::string patternLenaPng = cvtest::TS::ptr()->get_data_path() + "lena.png"; |
|
|
|
std::vector<String> lenas, pngLenas; |
|
cv::glob(patternLena, lenas, true); |
|
cv::glob(patternLenaPng, pngLenas, true); |
|
|
|
ASSERT_GT(lenas.size(), pngLenas.size()); |
|
|
|
for (size_t i = 0; i < pngLenas.size(); ++i) |
|
{ |
|
ASSERT_NE(std::find(lenas.begin(), lenas.end(), pngLenas[i]), lenas.end()); |
|
} |
|
} |
|
|
|
TEST(Core_InputOutput, FileStorage) |
|
{ |
|
std::string file = cv::tempfile(".xml"); |
|
cv::FileStorage f(file, cv::FileStorage::WRITE); |
|
|
|
char arr[66]; |
|
sprintf(arr, "sprintf is hell %d", 666); |
|
EXPECT_NO_THROW(f << arr); |
|
} |
|
|
|
TEST(Core_InputOutput, FileStorageKey) |
|
{ |
|
cv::FileStorage f("dummy.yml", cv::FileStorage::WRITE | cv::FileStorage::MEMORY); |
|
|
|
EXPECT_NO_THROW(f << "key1" << "value1"); |
|
EXPECT_NO_THROW(f << "_key2" << "value2"); |
|
EXPECT_NO_THROW(f << "key_3" << "value3"); |
|
const std::string expected = "%YAML:1.0\nkey1: value1\n_key2: value2\nkey_3: value3\n"; |
|
ASSERT_STREQ(f.releaseAndGetString().c_str(), expected.c_str()); |
|
}
|
|
|