Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

144 lines
4.9 KiB

#include <iostream>
#include <fstream>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/dnn/dnn.hpp>
using namespace cv;
using namespace cv::dnn;
String keys =
"{ help h | | Print help message. }"
"{ inputImage i | | Path to an input image. Skip this argument to capture frames from a camera. }"
"{ modelPath mp | | Path to a binary .onnx file contains trained CRNN text recognition model. "
"Download links are provided in doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown}"
"{ RGBInput rgb |0| 0: imread with flags=IMREAD_GRAYSCALE; 1: imread with flags=IMREAD_COLOR. }"
"{ evaluate e |false| false: predict with input images; true: evaluate on benchmarks. }"
"{ evalDataPath edp | | Path to benchmarks for evaluation. "
"Download links are provided in doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown}"
"{ vocabularyPath vp | alphabet_36.txt | Path to recognition vocabulary. "
"Download links are provided in doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown}";
String convertForEval(String &input);
int main(int argc, char** argv)
{
// Parse arguments
CommandLineParser parser(argc, argv, keys);
parser.about("Use this script to run the PyTorch implementation of "
"An End-to-End Trainable Neural Network for Image-based SequenceRecognition and Its Application to Scene Text Recognition "
"(https://arxiv.org/abs/1507.05717)");
if (argc == 1 || parser.has("help"))
{
parser.printMessage();
return 0;
}
String modelPath = parser.get<String>("modelPath");
String vocPath = parser.get<String>("vocabularyPath");
int imreadRGB = parser.get<int>("RGBInput");
if (!parser.check())
{
parser.printErrors();
return 1;
}
// Load the network
CV_Assert(!modelPath.empty());
TextRecognitionModel recognizer(modelPath);
// Load vocabulary
CV_Assert(!vocPath.empty());
std::ifstream vocFile;
vocFile.open(samples::findFile(vocPath));
CV_Assert(vocFile.is_open());
String vocLine;
std::vector<String> vocabulary;
while (std::getline(vocFile, vocLine)) {
vocabulary.push_back(vocLine);
}
recognizer.setVocabulary(vocabulary);
recognizer.setDecodeType("CTC-greedy");
// Set parameters
double scale = 1.0 / 127.5;
Scalar mean = Scalar(127.5, 127.5, 127.5);
Size inputSize = Size(100, 32);
recognizer.setInputParams(scale, inputSize, mean);
if (parser.get<bool>("evaluate"))
{
// For evaluation
String evalDataPath = parser.get<String>("evalDataPath");
CV_Assert(!evalDataPath.empty());
String gtPath = evalDataPath + "/test_gts.txt";
std::ifstream evalGts;
evalGts.open(gtPath);
CV_Assert(evalGts.is_open());
String gtLine;
int cntRight=0, cntAll=0;
TickMeter timer;
timer.reset();
while (std::getline(evalGts, gtLine)) {
size_t splitLoc = gtLine.find_first_of(' ');
String imgPath = evalDataPath + '/' + gtLine.substr(0, splitLoc);
String gt = gtLine.substr(splitLoc+1);
// Inference
Mat frame = imread(samples::findFile(imgPath), imreadRGB);
CV_Assert(!frame.empty());
timer.start();
std::string recognitionResult = recognizer.recognize(frame);
timer.stop();
if (gt == convertForEval(recognitionResult))
cntRight++;
cntAll++;
}
std::cout << "Accuracy(%): " << (double)(cntRight) / (double)(cntAll) << std::endl;
std::cout << "Average Inference Time(ms): " << timer.getTimeMilli() / (double)(cntAll) << std::endl;
}
else
{
// Create a window
static const std::string winName = "Input Cropped Image";
// Open an image file
CV_Assert(parser.has("inputImage"));
Mat frame = imread(samples::findFile(parser.get<String>("inputImage")), imreadRGB);
CV_Assert(!frame.empty());
// Recognition
std::string recognitionResult = recognizer.recognize(frame);
imshow(winName, frame);
std::cout << "Predition: '" << recognitionResult << "'" << std::endl;
waitKey();
}
return 0;
}
// Convert the predictions to lower case, and remove other characters.
// Only for Evaluation
String convertForEval(String & input)
{
String output;
for (uint i = 0; i < input.length(); i++){
char ch = input[i];
if ((int)ch >= 97 && (int)ch <= 122) {
output.push_back(ch);
} else if ((int)ch >= 65 && (int)ch <= 90) {
output.push_back((char)(ch + 32));
} else {
continue;
}
}
return output;
}