mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
135 lines
5.3 KiB
135 lines
5.3 KiB
#include <stdio.h> |
|
#include <iostream> |
|
#include <opencv2/imgproc/imgproc.hpp> |
|
#include <opencv2/highgui/highgui.hpp> |
|
#include <opencv2/core/utility.hpp> |
|
|
|
using namespace cv; // all the new API is put into "cv" namespace. Export its content |
|
using namespace std; |
|
|
|
static void help() |
|
{ |
|
cout << |
|
"\nThis program shows how to use cv::Mat and IplImages converting back and forth.\n" |
|
"It shows reading of images, converting to planes and merging back, color conversion\n" |
|
"and also iterating through pixels.\n" |
|
"Call:\n" |
|
"./image [image-name Default: ../data/lena.jpg]\n" << endl; |
|
} |
|
|
|
// enable/disable use of mixed API in the code below. |
|
#define DEMO_MIXED_API_USE 1 |
|
|
|
#ifdef DEMO_MIXED_API_USE |
|
# include <opencv2/highgui/highgui_c.h> |
|
# include <opencv2/imgcodecs/imgcodecs_c.h> |
|
#endif |
|
|
|
int main( int argc, char** argv ) |
|
{ |
|
cv::CommandLineParser parser(argc, argv, "{help h | |}{@image|../data/lena.jpg|}"); |
|
if (parser.has("help")) |
|
{ |
|
help(); |
|
return 0; |
|
} |
|
string imagename = parser.get<string>("@image"); |
|
#if DEMO_MIXED_API_USE |
|
//! [iplimage] |
|
Ptr<IplImage> iplimg(cvLoadImage(imagename.c_str())); // Ptr<T> is safe ref-counting pointer class |
|
if(!iplimg) |
|
{ |
|
fprintf(stderr, "Can not load image %s\n", imagename.c_str()); |
|
return -1; |
|
} |
|
Mat img = cv::cvarrToMat(iplimg); // cv::Mat replaces the CvMat and IplImage, but it's easy to convert |
|
// between the old and the new data structures (by default, only the header |
|
// is converted, while the data is shared) |
|
//! [iplimage] |
|
#else |
|
Mat img = imread(imagename); // the newer cvLoadImage alternative, MATLAB-style function |
|
if(img.empty()) |
|
{ |
|
fprintf(stderr, "Can not load image %s\n", imagename.c_str()); |
|
return -1; |
|
} |
|
#endif |
|
|
|
if( img.empty() ) // check if the image has been loaded properly |
|
return -1; |
|
|
|
Mat img_yuv; |
|
cvtColor(img, img_yuv, COLOR_BGR2YCrCb); // convert image to YUV color space. The output image will be created automatically |
|
|
|
vector<Mat> planes; // Vector is template vector class, similar to STL's vector. It can store matrices too. |
|
split(img_yuv, planes); // split the image into separate color planes |
|
|
|
#if 1 |
|
// method 1. process Y plane using an iterator |
|
MatIterator_<uchar> it = planes[0].begin<uchar>(), it_end = planes[0].end<uchar>(); |
|
for(; it != it_end; ++it) |
|
{ |
|
double v = *it*1.7 + rand()%21-10; |
|
*it = saturate_cast<uchar>(v*v/255.); |
|
} |
|
|
|
// method 2. process the first chroma plane using pre-stored row pointer. |
|
// method 3. process the second chroma plane using individual element access |
|
for( int y = 0; y < img_yuv.rows; y++ ) |
|
{ |
|
uchar* Uptr = planes[1].ptr<uchar>(y); |
|
for( int x = 0; x < img_yuv.cols; x++ ) |
|
{ |
|
Uptr[x] = saturate_cast<uchar>((Uptr[x]-128)/2 + 128); |
|
uchar& Vxy = planes[2].at<uchar>(y, x); |
|
Vxy = saturate_cast<uchar>((Vxy-128)/2 + 128); |
|
} |
|
} |
|
|
|
#else |
|
Mat noise(img.size(), CV_8U); // another Mat constructor; allocates a matrix of the specified size and type |
|
randn(noise, Scalar::all(128), Scalar::all(20)); // fills the matrix with normally distributed random values; |
|
// there is also randu() for uniformly distributed random number generation |
|
GaussianBlur(noise, noise, Size(3, 3), 0.5, 0.5); // blur the noise a bit, kernel size is 3x3 and both sigma's are set to 0.5 |
|
|
|
const double brightness_gain = 0; |
|
const double contrast_gain = 1.7; |
|
#if DEMO_MIXED_API_USE |
|
// it's easy to pass the new matrices to the functions that only work with IplImage or CvMat: |
|
// step 1) - convert the headers, data will not be copied |
|
IplImage cv_planes_0 = planes[0], cv_noise = noise; |
|
// step 2) call the function; do not forget unary "&" to form pointers |
|
cvAddWeighted(&cv_planes_0, contrast_gain, &cv_noise, 1, -128 + brightness_gain, &cv_planes_0); |
|
#else |
|
addWeighted(planes[0], contrast_gain, noise, 1, -128 + brightness_gain, planes[0]); |
|
#endif |
|
const double color_scale = 0.5; |
|
// Mat::convertTo() replaces cvConvertScale. One must explicitly specify the output matrix type (we keep it intact - planes[1].type()) |
|
planes[1].convertTo(planes[1], planes[1].type(), color_scale, 128*(1-color_scale)); |
|
// alternative form of cv::convertScale if we know the datatype at compile time ("uchar" here). |
|
// This expression will not create any temporary arrays and should be almost as fast as the above variant |
|
planes[2] = Mat_<uchar>(planes[2]*color_scale + 128*(1-color_scale)); |
|
|
|
// Mat::mul replaces cvMul(). Again, no temporary arrays are created in case of simple expressions. |
|
planes[0] = planes[0].mul(planes[0], 1./255); |
|
#endif |
|
|
|
// now merge the results back |
|
merge(planes, img_yuv); |
|
// and produce the output RGB image |
|
cvtColor(img_yuv, img, COLOR_YCrCb2BGR); |
|
|
|
// this is counterpart for cvNamedWindow |
|
namedWindow("image with grain", WINDOW_AUTOSIZE); |
|
#if DEMO_MIXED_API_USE |
|
// this is to demonstrate that img and iplimg really share the data - the result of the above |
|
// processing is stored in img and thus in iplimg too. |
|
cvShowImage("image with grain", iplimg); |
|
#else |
|
imshow("image with grain", img); |
|
#endif |
|
waitKey(); |
|
|
|
return 0; |
|
// all the memory will automatically be released by Vector<>, Mat and Ptr<> destructors. |
|
}
|
|
|