mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
232 lines
8.5 KiB
232 lines
8.5 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#if 0 |
|
#include "_modelest.h" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
class BareModelEstimator : public CvModelEstimator2 |
|
{ |
|
public: |
|
BareModelEstimator(int modelPoints, CvSize modelSize, int maxBasicSolutions); |
|
|
|
virtual int runKernel( const CvMat*, const CvMat*, CvMat* ); |
|
virtual void computeReprojError( const CvMat*, const CvMat*, |
|
const CvMat*, CvMat* ); |
|
|
|
bool checkSubsetPublic( const CvMat* ms1, int count, bool checkPartialSubset ); |
|
}; |
|
|
|
BareModelEstimator::BareModelEstimator(int _modelPoints, CvSize _modelSize, int _maxBasicSolutions) |
|
:CvModelEstimator2(_modelPoints, _modelSize, _maxBasicSolutions) |
|
{ |
|
} |
|
|
|
int BareModelEstimator::runKernel( const CvMat*, const CvMat*, CvMat* ) |
|
{ |
|
return 0; |
|
} |
|
|
|
void BareModelEstimator::computeReprojError( const CvMat*, const CvMat*, |
|
const CvMat*, CvMat* ) |
|
{ |
|
} |
|
|
|
bool BareModelEstimator::checkSubsetPublic( const CvMat* ms1, int count, bool checkPartialSubset ) |
|
{ |
|
checkPartialSubsets = checkPartialSubset; |
|
return checkSubset(ms1, count); |
|
} |
|
|
|
class CV_ModelEstimator2_Test : public cvtest::ArrayTest |
|
{ |
|
public: |
|
CV_ModelEstimator2_Test(); |
|
|
|
protected: |
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ); |
|
void fill_array( int test_case_idx, int i, int j, Mat& arr ); |
|
double get_success_error_level( int test_case_idx, int i, int j ); |
|
void run_func(); |
|
void prepare_to_validation( int test_case_idx ); |
|
|
|
bool checkPartialSubsets; |
|
int usedPointsCount; |
|
|
|
bool checkSubsetResult; |
|
int generalPositionsCount; |
|
int maxPointsCount; |
|
}; |
|
|
|
CV_ModelEstimator2_Test::CV_ModelEstimator2_Test() |
|
{ |
|
generalPositionsCount = get_test_case_count() / 2; |
|
maxPointsCount = 100; |
|
|
|
test_array[INPUT].push_back(NULL); |
|
test_array[OUTPUT].push_back(NULL); |
|
test_array[REF_OUTPUT].push_back(NULL); |
|
} |
|
|
|
void CV_ModelEstimator2_Test::get_test_array_types_and_sizes( int /*test_case_idx*/, |
|
vector<vector<Size> > &sizes, vector<vector<int> > &types ) |
|
{ |
|
RNG &rng = ts->get_rng(); |
|
checkPartialSubsets = (cvtest::randInt(rng) % 2 == 0); |
|
|
|
int pointsCount = cvtest::randInt(rng) % maxPointsCount; |
|
usedPointsCount = pointsCount == 0 ? 0 : cvtest::randInt(rng) % pointsCount; |
|
|
|
sizes[INPUT][0] = cvSize(1, pointsCount); |
|
types[INPUT][0] = CV_64FC2; |
|
|
|
sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(1, 1); |
|
types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_8UC1; |
|
} |
|
|
|
void CV_ModelEstimator2_Test::fill_array( int test_case_idx, int i, int j, Mat& arr ) |
|
{ |
|
if( i != INPUT ) |
|
{ |
|
cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr ); |
|
return; |
|
} |
|
|
|
if (test_case_idx < generalPositionsCount) |
|
{ |
|
//generate points in a general position (i.e. no three points can lie on the same line.) |
|
|
|
bool isGeneralPosition; |
|
do |
|
{ |
|
ArrayTest::fill_array(test_case_idx, i, j, arr); |
|
|
|
//a simple check that the position is general: |
|
// for each line check that all other points don't belong to it |
|
isGeneralPosition = true; |
|
for (int startPointIndex = 0; startPointIndex < usedPointsCount && isGeneralPosition; startPointIndex++) |
|
{ |
|
for (int endPointIndex = startPointIndex + 1; endPointIndex < usedPointsCount && isGeneralPosition; endPointIndex++) |
|
{ |
|
|
|
for (int testPointIndex = 0; testPointIndex < usedPointsCount && isGeneralPosition; testPointIndex++) |
|
{ |
|
if (testPointIndex == startPointIndex || testPointIndex == endPointIndex) |
|
{ |
|
continue; |
|
} |
|
|
|
CV_Assert(arr.type() == CV_64FC2); |
|
Point2d tangentVector_1 = arr.at<Point2d>(endPointIndex) - arr.at<Point2d>(startPointIndex); |
|
Point2d tangentVector_2 = arr.at<Point2d>(testPointIndex) - arr.at<Point2d>(startPointIndex); |
|
|
|
const float eps = 1e-4f; |
|
//TODO: perhaps it is better to normalize the cross product by norms of the tangent vectors |
|
if (fabs(tangentVector_1.cross(tangentVector_2)) < eps) |
|
{ |
|
isGeneralPosition = false; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
while(!isGeneralPosition); |
|
} |
|
else |
|
{ |
|
//create points in a degenerate position (there are at least 3 points belonging to the same line) |
|
|
|
ArrayTest::fill_array(test_case_idx, i, j, arr); |
|
if (usedPointsCount <= 2) |
|
{ |
|
return; |
|
} |
|
|
|
RNG &rng = ts->get_rng(); |
|
int startPointIndex, endPointIndex, modifiedPointIndex; |
|
do |
|
{ |
|
startPointIndex = cvtest::randInt(rng) % usedPointsCount; |
|
endPointIndex = cvtest::randInt(rng) % usedPointsCount; |
|
modifiedPointIndex = checkPartialSubsets ? usedPointsCount - 1 : cvtest::randInt(rng) % usedPointsCount; |
|
} |
|
while (startPointIndex == endPointIndex || startPointIndex == modifiedPointIndex || endPointIndex == modifiedPointIndex); |
|
|
|
double startWeight = cvtest::randReal(rng); |
|
CV_Assert(arr.type() == CV_64FC2); |
|
arr.at<Point2d>(modifiedPointIndex) = startWeight * arr.at<Point2d>(startPointIndex) + (1.0 - startWeight) * arr.at<Point2d>(endPointIndex); |
|
} |
|
} |
|
|
|
|
|
double CV_ModelEstimator2_Test::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) |
|
{ |
|
return 0; |
|
} |
|
|
|
void CV_ModelEstimator2_Test::prepare_to_validation( int test_case_idx ) |
|
{ |
|
test_mat[OUTPUT][0].at<uchar>(0) = checkSubsetResult; |
|
test_mat[REF_OUTPUT][0].at<uchar>(0) = test_case_idx < generalPositionsCount || usedPointsCount <= 2; |
|
} |
|
|
|
void CV_ModelEstimator2_Test::run_func() |
|
{ |
|
//make the input continuous |
|
Mat input = test_mat[INPUT][0].clone(); |
|
CvMat _input = input; |
|
|
|
RNG &rng = ts->get_rng(); |
|
int modelPoints = cvtest::randInt(rng); |
|
CvSize modelSize = cvSize(2, modelPoints); |
|
int maxBasicSolutions = cvtest::randInt(rng); |
|
BareModelEstimator modelEstimator(modelPoints, modelSize, maxBasicSolutions); |
|
checkSubsetResult = modelEstimator.checkSubsetPublic(&_input, usedPointsCount, checkPartialSubsets); |
|
} |
|
|
|
TEST(Calib3d_ModelEstimator2, accuracy) { CV_ModelEstimator2_Test test; test.safe_run(); } |
|
|
|
#endif |
|
|
|
|