Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

848 lines
28 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/core/opencl/ocl_defs.hpp"
using namespace cv;
using namespace cv::cuda;
using namespace cv::superres;
using namespace cv::superres::detail;
///////////////////////////////////////////////////////////////////
// CpuOpticalFlow
namespace
{
class CpuOpticalFlow : public virtual cv::superres::DenseOpticalFlowExt
{
public:
explicit CpuOpticalFlow(int work_type);
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2) CV_OVERRIDE;
void collectGarbage() CV_OVERRIDE;
protected:
virtual void impl(InputArray input0, InputArray input1, OutputArray dst) = 0;
private:
#ifdef HAVE_OPENCL
bool ocl_calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
#endif
int work_type_;
// Mat
Mat buf_[6];
Mat flow_;
Mat flows_[2];
// UMat
UMat ubuf_[6];
UMat uflow_;
std::vector<UMat> uflows_;
};
CpuOpticalFlow::CpuOpticalFlow(int work_type) :
work_type_(work_type)
{
}
#ifdef HAVE_OPENCL
bool CpuOpticalFlow::ocl_calc(InputArray _frame0, InputArray _frame1, OutputArray _flow1, OutputArray _flow2)
{
UMat frame0 = arrGetUMat(_frame0, ubuf_[0]);
UMat frame1 = arrGetUMat(_frame1, ubuf_[1]);
CV_Assert( frame1.type() == frame0.type() );
CV_Assert( frame1.size() == frame0.size() );
UMat input0 = convertToType(frame0, work_type_, ubuf_[2], ubuf_[3]);
UMat input1 = convertToType(frame1, work_type_, ubuf_[4], ubuf_[5]);
if (!_flow2.needed())
{
impl(input0, input1, _flow1);
return true;
}
impl(input0, input1, uflow_);
if (!_flow2.needed())
arrCopy(uflow_, _flow1);
else
{
split(uflow_, uflows_);
arrCopy(uflows_[0], _flow1);
arrCopy(uflows_[1], _flow2);
}
return true;
}
#endif
void CpuOpticalFlow::calc(InputArray _frame0, InputArray _frame1, OutputArray _flow1, OutputArray _flow2)
{
CV_INSTRUMENT_REGION();
CV_OCL_RUN(_flow1.isUMat() && (_flow2.isUMat() || !_flow2.needed()),
ocl_calc(_frame0, _frame1, _flow1, _flow2))
Mat frame0 = arrGetMat(_frame0, buf_[0]);
Mat frame1 = arrGetMat(_frame1, buf_[1]);
CV_Assert( frame1.type() == frame0.type() );
CV_Assert( frame1.size() == frame0.size() );
Mat input0 = convertToType(frame0, work_type_, buf_[2], buf_[3]);
Mat input1 = convertToType(frame1, work_type_, buf_[4], buf_[5]);
if (!_flow2.needed() && _flow1.kind() < _InputArray::OPENGL_BUFFER)
{
impl(input0, input1, _flow1);
return;
}
impl(input0, input1, flow_);
if (!_flow2.needed())
arrCopy(flow_, _flow1);
else
{
split(flow_, flows_);
arrCopy(flows_[0], _flow1);
arrCopy(flows_[1], _flow2);
}
}
void CpuOpticalFlow::collectGarbage()
{
// Mat
for (int i = 0; i < 6; ++i)
buf_[i].release();
flow_.release();
flows_[0].release();
flows_[1].release();
// UMat
for (int i = 0; i < 6; ++i)
ubuf_[i].release();
uflow_.release();
uflows_[0].release();
uflows_[1].release();
}
}
///////////////////////////////////////////////////////////////////
// Farneback
namespace
{
class Farneback CV_FINAL : public CpuOpticalFlow, public cv::superres::FarnebackOpticalFlow
{
public:
Farneback();
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2) CV_OVERRIDE;
void collectGarbage() CV_OVERRIDE;
inline double getPyrScale() const CV_OVERRIDE { return pyrScale_; }
inline void setPyrScale(double val) CV_OVERRIDE { pyrScale_ = val; }
inline int getLevelsNumber() const CV_OVERRIDE { return numLevels_; }
inline void setLevelsNumber(int val) CV_OVERRIDE { numLevels_ = val; }
inline int getWindowSize() const CV_OVERRIDE { return winSize_; }
inline void setWindowSize(int val) CV_OVERRIDE { winSize_ = val; }
inline int getIterations() const CV_OVERRIDE { return numIters_; }
inline void setIterations(int val) CV_OVERRIDE { numIters_ = val; }
inline int getPolyN() const CV_OVERRIDE { return polyN_; }
inline void setPolyN(int val) CV_OVERRIDE { polyN_ = val; }
inline double getPolySigma() const CV_OVERRIDE { return polySigma_; }
inline void setPolySigma(double val) CV_OVERRIDE { polySigma_ = val; }
inline int getFlags() const CV_OVERRIDE { return flags_; }
inline void setFlags(int val) CV_OVERRIDE { flags_ = val; }
protected:
void impl(InputArray input0, InputArray input1, OutputArray dst) CV_OVERRIDE;
private:
double pyrScale_;
int numLevels_;
int winSize_;
int numIters_;
int polyN_;
double polySigma_;
int flags_;
};
Farneback::Farneback() : CpuOpticalFlow(CV_8UC1)
{
pyrScale_ = 0.5;
numLevels_ = 5;
winSize_ = 13;
numIters_ = 10;
polyN_ = 5;
polySigma_ = 1.1;
flags_ = 0;
}
void Farneback::calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2)
{
CV_INSTRUMENT_REGION();
CpuOpticalFlow::calc(frame0, frame1, flow1, flow2);
}
void Farneback::collectGarbage()
{
CpuOpticalFlow::collectGarbage();
}
void Farneback::impl(InputArray input0, InputArray input1, OutputArray dst)
{
calcOpticalFlowFarneback(input0, input1, InputOutputArray(dst), pyrScale_,
numLevels_, winSize_, numIters_,
polyN_, polySigma_, flags_);
}
}
Ptr<cv::superres::FarnebackOpticalFlow> cv::superres::createOptFlow_Farneback()
{
return makePtr<Farneback>();
}
///////////////////////////////////////////////////////////////////
// Simple
/*
namespace
{
class Simple : public CpuOpticalFlow
{
public:
AlgorithmInfo* info() const;
Simple();
protected:
void impl(InputArray input0, InputArray input1, OutputArray dst);
private:
int layers_;
int averagingBlockSize_;
int maxFlow_;
double sigmaDist_;
double sigmaColor_;
int postProcessWindow_;
double sigmaDistFix_;
double sigmaColorFix_;
double occThr_;
int upscaleAveragingRadius_;
double upscaleSigmaDist_;
double upscaleSigmaColor_;
double speedUpThr_;
};
CV_INIT_ALGORITHM(Simple, "DenseOpticalFlowExt.Simple",
obj.info()->addParam(obj, "layers", obj.layers_);
obj.info()->addParam(obj, "averagingBlockSize", obj.averagingBlockSize_);
obj.info()->addParam(obj, "maxFlow", obj.maxFlow_);
obj.info()->addParam(obj, "sigmaDist", obj.sigmaDist_);
obj.info()->addParam(obj, "sigmaColor", obj.sigmaColor_);
obj.info()->addParam(obj, "postProcessWindow", obj.postProcessWindow_);
obj.info()->addParam(obj, "sigmaDistFix", obj.sigmaDistFix_);
obj.info()->addParam(obj, "sigmaColorFix", obj.sigmaColorFix_);
obj.info()->addParam(obj, "occThr", obj.occThr_);
obj.info()->addParam(obj, "upscaleAveragingRadius", obj.upscaleAveragingRadius_);
obj.info()->addParam(obj, "upscaleSigmaDist", obj.upscaleSigmaDist_);
obj.info()->addParam(obj, "upscaleSigmaColor", obj.upscaleSigmaColor_);
obj.info()->addParam(obj, "speedUpThr", obj.speedUpThr_))
Simple::Simple() : CpuOpticalFlow(CV_8UC3)
{
layers_ = 3;
averagingBlockSize_ = 2;
maxFlow_ = 4;
sigmaDist_ = 4.1;
sigmaColor_ = 25.5;
postProcessWindow_ = 18;
sigmaDistFix_ = 55.0;
sigmaColorFix_ = 25.5;
occThr_ = 0.35;
upscaleAveragingRadius_ = 18;
upscaleSigmaDist_ = 55.0;
upscaleSigmaColor_ = 25.5;
speedUpThr_ = 10;
}
void Simple::impl(InputArray _input0, InputArray _input1, OutputArray _dst)
{
calcOpticalFlowSF(_input0, _input1, _dst,
layers_,
averagingBlockSize_,
maxFlow_,
sigmaDist_,
sigmaColor_,
postProcessWindow_,
sigmaDistFix_,
sigmaColorFix_,
occThr_,
upscaleAveragingRadius_,
upscaleSigmaDist_,
upscaleSigmaColor_,
speedUpThr_);
}
}
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Simple()
{
return makePtr<Simple>();
}*/
///////////////////////////////////////////////////////////////////
// DualTVL1
namespace
{
class DualTVL1 CV_FINAL : public CpuOpticalFlow, public virtual cv::superres::DualTVL1OpticalFlow
{
public:
DualTVL1();
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2) CV_OVERRIDE;
void collectGarbage() CV_OVERRIDE;
inline double getTau() const CV_OVERRIDE { return (*alg_).getTau(); }
inline void setTau(double val) CV_OVERRIDE { (*alg_).setTau(val); }
inline double getLambda() const CV_OVERRIDE { return (*alg_).getLambda(); }
inline void setLambda(double val) CV_OVERRIDE { (*alg_).setLambda(val); }
inline double getTheta() const CV_OVERRIDE { return (*alg_).getTheta(); }
inline void setTheta(double val) CV_OVERRIDE { (*alg_).setTheta(val); }
inline int getScalesNumber() const CV_OVERRIDE { return (*alg_).getScalesNumber(); }
inline void setScalesNumber(int val) CV_OVERRIDE { (*alg_).setScalesNumber(val); }
inline int getWarpingsNumber() const CV_OVERRIDE { return (*alg_).getWarpingsNumber(); }
inline void setWarpingsNumber(int val) CV_OVERRIDE { (*alg_).setWarpingsNumber(val); }
inline double getEpsilon() const CV_OVERRIDE { return (*alg_).getEpsilon(); }
inline void setEpsilon(double val) CV_OVERRIDE { (*alg_).setEpsilon(val); }
inline int getIterations() const CV_OVERRIDE { return (*alg_).getOuterIterations(); }
inline void setIterations(int val) CV_OVERRIDE { (*alg_).setOuterIterations(val); }
inline bool getUseInitialFlow() const CV_OVERRIDE { return (*alg_).getUseInitialFlow(); }
inline void setUseInitialFlow(bool val) CV_OVERRIDE { (*alg_).setUseInitialFlow(val); }
protected:
void impl(InputArray input0, InputArray input1, OutputArray dst) CV_OVERRIDE;
private:
Ptr<cv::DualTVL1OpticalFlow> alg_;
};
DualTVL1::DualTVL1() : CpuOpticalFlow(CV_8UC1)
{
alg_ = cv::createOptFlow_DualTVL1();
}
void DualTVL1::calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2)
{
CV_INSTRUMENT_REGION();
CpuOpticalFlow::calc(frame0, frame1, flow1, flow2);
}
void DualTVL1::impl(InputArray input0, InputArray input1, OutputArray dst)
{
alg_->calc(input0, input1, (InputOutputArray)dst);
}
void DualTVL1::collectGarbage()
{
alg_->collectGarbage();
CpuOpticalFlow::collectGarbage();
}
}
Ptr<cv::superres::DualTVL1OpticalFlow> cv::superres::createOptFlow_DualTVL1()
{
return makePtr<DualTVL1>();
}
///////////////////////////////////////////////////////////////////
// GpuOpticalFlow
#ifndef HAVE_OPENCV_CUDAOPTFLOW
Ptr<cv::superres::FarnebackOpticalFlow> cv::superres::createOptFlow_Farneback_CUDA()
{
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform");
}
Ptr<cv::superres::DualTVL1OpticalFlow> cv::superres::createOptFlow_DualTVL1_CUDA()
{
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform");
}
Ptr<cv::superres::BroxOpticalFlow> cv::superres::createOptFlow_Brox_CUDA()
{
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform");
}
Ptr<cv::superres::PyrLKOpticalFlow> cv::superres::createOptFlow_PyrLK_CUDA()
{
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform");
}
#else // HAVE_OPENCV_CUDAOPTFLOW
namespace
{
class GpuOpticalFlow : public virtual cv::superres::DenseOpticalFlowExt
{
public:
explicit GpuOpticalFlow(int work_type);
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2) CV_OVERRIDE;
void collectGarbage() CV_OVERRIDE;
protected:
virtual void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2) = 0;
private:
int work_type_;
GpuMat buf_[6];
GpuMat u_, v_, flow_;
};
GpuOpticalFlow::GpuOpticalFlow(int work_type) : work_type_(work_type)
{
}
void GpuOpticalFlow::calc(InputArray _frame0, InputArray _frame1, OutputArray _flow1, OutputArray _flow2)
{
CV_INSTRUMENT_REGION();
GpuMat frame0 = arrGetGpuMat(_frame0, buf_[0]);
GpuMat frame1 = arrGetGpuMat(_frame1, buf_[1]);
CV_Assert( frame1.type() == frame0.type() );
CV_Assert( frame1.size() == frame0.size() );
GpuMat input0 = convertToType(frame0, work_type_, buf_[2], buf_[3]);
GpuMat input1 = convertToType(frame1, work_type_, buf_[4], buf_[5]);
if (_flow2.needed() && _flow1.kind() == _InputArray::CUDA_GPU_MAT && _flow2.kind() == _InputArray::CUDA_GPU_MAT)
{
impl(input0, input1, _flow1.getGpuMatRef(), _flow2.getGpuMatRef());
return;
}
impl(input0, input1, u_, v_);
if (_flow2.needed())
{
arrCopy(u_, _flow1);
arrCopy(v_, _flow2);
}
else
{
GpuMat src[] = {u_, v_};
merge(src, 2, flow_);
arrCopy(flow_, _flow1);
}
}
void GpuOpticalFlow::collectGarbage()
{
for (int i = 0; i < 6; ++i)
buf_[i].release();
u_.release();
v_.release();
flow_.release();
}
}
///////////////////////////////////////////////////////////////////
// Brox_CUDA
namespace
{
class Brox_CUDA : public GpuOpticalFlow, public virtual cv::superres::BroxOpticalFlow
{
public:
Brox_CUDA();
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2) CV_OVERRIDE;
void collectGarbage() CV_OVERRIDE;
inline double getAlpha() const CV_OVERRIDE { return alpha_; }
inline void setAlpha(double val) CV_OVERRIDE { alpha_ = val; }
inline double getGamma() const CV_OVERRIDE { return gamma_; }
inline void setGamma(double val) CV_OVERRIDE { gamma_ = val; }
inline double getScaleFactor() const CV_OVERRIDE { return scaleFactor_; }
inline void setScaleFactor(double val) CV_OVERRIDE { scaleFactor_ = val; }
inline int getInnerIterations() const CV_OVERRIDE { return innerIterations_; }
inline void setInnerIterations(int val) CV_OVERRIDE { innerIterations_ = val; }
inline int getOuterIterations() const CV_OVERRIDE { return outerIterations_; }
inline void setOuterIterations(int val) CV_OVERRIDE { outerIterations_ = val; }
inline int getSolverIterations() const CV_OVERRIDE { return solverIterations_; }
inline void setSolverIterations(int val) CV_OVERRIDE { solverIterations_ = val; }
protected:
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2) CV_OVERRIDE;
private:
double alpha_;
double gamma_;
double scaleFactor_;
int innerIterations_;
int outerIterations_;
int solverIterations_;
Ptr<cuda::BroxOpticalFlow> alg_;
};
Brox_CUDA::Brox_CUDA() : GpuOpticalFlow(CV_32FC1)
{
alg_ = cuda::BroxOpticalFlow::create(0.197f, 50.0f, 0.8f, 10, 77, 10);
alpha_ = alg_->getFlowSmoothness();
gamma_ = alg_->getGradientConstancyImportance();
scaleFactor_ = alg_->getPyramidScaleFactor();
innerIterations_ = alg_->getInnerIterations();
outerIterations_ = alg_->getOuterIterations();
solverIterations_ = alg_->getSolverIterations();
}
void Brox_CUDA::calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2)
{
GpuOpticalFlow::calc(frame0, frame1, flow1, flow2);
}
void Brox_CUDA::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2)
{
alg_->setFlowSmoothness(alpha_);
alg_->setGradientConstancyImportance(gamma_);
alg_->setPyramidScaleFactor(scaleFactor_);
alg_->setInnerIterations(innerIterations_);
alg_->setOuterIterations(outerIterations_);
alg_->setSolverIterations(solverIterations_);
GpuMat flow;
alg_->calc(input0, input1, flow);
GpuMat flows[2];
cuda::split(flow, flows);
dst1 = flows[0];
dst2 = flows[1];
}
void Brox_CUDA::collectGarbage()
{
alg_ = cuda::BroxOpticalFlow::create(alpha_, gamma_, scaleFactor_, innerIterations_, outerIterations_, solverIterations_);
GpuOpticalFlow::collectGarbage();
}
}
Ptr<cv::superres::BroxOpticalFlow> cv::superres::createOptFlow_Brox_CUDA()
{
return makePtr<Brox_CUDA>();
}
///////////////////////////////////////////////////////////////////
// PyrLK_CUDA
namespace
{
class PyrLK_CUDA : public GpuOpticalFlow, public cv::superres::PyrLKOpticalFlow
{
public:
PyrLK_CUDA();
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2) CV_OVERRIDE;
void collectGarbage() CV_OVERRIDE;
inline int getWindowSize() const CV_OVERRIDE { return winSize_; }
inline void setWindowSize(int val) CV_OVERRIDE { winSize_ = val; }
inline int getMaxLevel() const CV_OVERRIDE { return maxLevel_; }
inline void setMaxLevel(int val) CV_OVERRIDE { maxLevel_ = val; }
inline int getIterations() const CV_OVERRIDE { return iterations_; }
inline void setIterations(int val) CV_OVERRIDE { iterations_ = val; }
protected:
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2) CV_OVERRIDE;
private:
int winSize_;
int maxLevel_;
int iterations_;
Ptr<cuda::DensePyrLKOpticalFlow> alg_;
};
PyrLK_CUDA::PyrLK_CUDA() : GpuOpticalFlow(CV_8UC1)
{
alg_ = cuda::DensePyrLKOpticalFlow::create();
winSize_ = alg_->getWinSize().width;
maxLevel_ = alg_->getMaxLevel();
iterations_ = alg_->getNumIters();
}
void PyrLK_CUDA::calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2)
{
GpuOpticalFlow::calc(frame0, frame1, flow1, flow2);
}
void PyrLK_CUDA::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2)
{
alg_->setWinSize(Size(winSize_, winSize_));
alg_->setMaxLevel(maxLevel_);
alg_->setNumIters(iterations_);
GpuMat flow;
alg_->calc(input0, input1, flow);
GpuMat flows[2];
cuda::split(flow, flows);
dst1 = flows[0];
dst2 = flows[1];
}
void PyrLK_CUDA::collectGarbage()
{
alg_ = cuda::DensePyrLKOpticalFlow::create();
GpuOpticalFlow::collectGarbage();
}
}
Ptr<cv::superres::PyrLKOpticalFlow> cv::superres::createOptFlow_PyrLK_CUDA()
{
return makePtr<PyrLK_CUDA>();
}
///////////////////////////////////////////////////////////////////
// Farneback_CUDA
namespace
{
class Farneback_CUDA : public GpuOpticalFlow, public cv::superres::FarnebackOpticalFlow
{
public:
Farneback_CUDA();
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2) CV_OVERRIDE;
void collectGarbage() CV_OVERRIDE;
inline double getPyrScale() const CV_OVERRIDE { return pyrScale_; }
inline void setPyrScale(double val) CV_OVERRIDE { pyrScale_ = val; }
inline int getLevelsNumber() const CV_OVERRIDE { return numLevels_; }
inline void setLevelsNumber(int val) CV_OVERRIDE { numLevels_ = val; }
inline int getWindowSize() const CV_OVERRIDE { return winSize_; }
inline void setWindowSize(int val) CV_OVERRIDE { winSize_ = val; }
inline int getIterations() const CV_OVERRIDE { return numIters_; }
inline void setIterations(int val) CV_OVERRIDE { numIters_ = val; }
inline int getPolyN() const CV_OVERRIDE { return polyN_; }
inline void setPolyN(int val) CV_OVERRIDE { polyN_ = val; }
inline double getPolySigma() const CV_OVERRIDE { return polySigma_; }
inline void setPolySigma(double val) CV_OVERRIDE { polySigma_ = val; }
inline int getFlags() const CV_OVERRIDE { return flags_; }
inline void setFlags(int val) CV_OVERRIDE { flags_ = val; }
protected:
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2) CV_OVERRIDE;
private:
double pyrScale_;
int numLevels_;
int winSize_;
int numIters_;
int polyN_;
double polySigma_;
int flags_;
Ptr<cuda::FarnebackOpticalFlow> alg_;
};
Farneback_CUDA::Farneback_CUDA() : GpuOpticalFlow(CV_8UC1)
{
alg_ = cuda::FarnebackOpticalFlow::create();
pyrScale_ = alg_->getPyrScale();
numLevels_ = alg_->getNumLevels();
winSize_ = alg_->getWinSize();
numIters_ = alg_->getNumIters();
polyN_ = alg_->getPolyN();
polySigma_ = alg_->getPolySigma();
flags_ = alg_->getFlags();
}
void Farneback_CUDA::calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2)
{
GpuOpticalFlow::calc(frame0, frame1, flow1, flow2);
}
void Farneback_CUDA::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2)
{
alg_->setPyrScale(pyrScale_);
alg_->setNumLevels(numLevels_);
alg_->setWinSize(winSize_);
alg_->setNumIters(numIters_);
alg_->setPolyN(polyN_);
alg_->setPolySigma(polySigma_);
alg_->setFlags(flags_);
GpuMat flow;
alg_->calc(input0, input1, flow);
GpuMat flows[2];
cuda::split(flow, flows);
dst1 = flows[0];
dst2 = flows[1];
}
void Farneback_CUDA::collectGarbage()
{
alg_ = cuda::FarnebackOpticalFlow::create();
GpuOpticalFlow::collectGarbage();
}
}
Ptr<cv::superres::FarnebackOpticalFlow> cv::superres::createOptFlow_Farneback_CUDA()
{
return makePtr<Farneback_CUDA>();
}
///////////////////////////////////////////////////////////////////
// DualTVL1_CUDA
namespace
{
class DualTVL1_CUDA : public GpuOpticalFlow, public cv::superres::DualTVL1OpticalFlow
{
public:
DualTVL1_CUDA();
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2) CV_OVERRIDE;
void collectGarbage() CV_OVERRIDE;
inline double getTau() const CV_OVERRIDE { return tau_; }
inline void setTau(double val) CV_OVERRIDE { tau_ = val; }
inline double getLambda() const CV_OVERRIDE { return lambda_; }
inline void setLambda(double val) CV_OVERRIDE { lambda_ = val; }
inline double getTheta() const CV_OVERRIDE { return theta_; }
inline void setTheta(double val) CV_OVERRIDE { theta_ = val; }
inline int getScalesNumber() const CV_OVERRIDE { return nscales_; }
inline void setScalesNumber(int val) CV_OVERRIDE { nscales_ = val; }
inline int getWarpingsNumber() const CV_OVERRIDE { return warps_; }
inline void setWarpingsNumber(int val) CV_OVERRIDE { warps_ = val; }
inline double getEpsilon() const CV_OVERRIDE { return epsilon_; }
inline void setEpsilon(double val) CV_OVERRIDE { epsilon_ = val; }
inline int getIterations() const CV_OVERRIDE { return iterations_; }
inline void setIterations(int val) CV_OVERRIDE { iterations_ = val; }
inline bool getUseInitialFlow() const CV_OVERRIDE { return useInitialFlow_; }
inline void setUseInitialFlow(bool val) CV_OVERRIDE { useInitialFlow_ = val; }
protected:
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2) CV_OVERRIDE;
private:
double tau_;
double lambda_;
double theta_;
int nscales_;
int warps_;
double epsilon_;
int iterations_;
bool useInitialFlow_;
Ptr<cuda::OpticalFlowDual_TVL1> alg_;
};
DualTVL1_CUDA::DualTVL1_CUDA() : GpuOpticalFlow(CV_8UC1)
{
alg_ = cuda::OpticalFlowDual_TVL1::create();
tau_ = alg_->getTau();
lambda_ = alg_->getLambda();
theta_ = alg_->getTheta();
nscales_ = alg_->getNumScales();
warps_ = alg_->getNumWarps();
epsilon_ = alg_->getEpsilon();
iterations_ = alg_->getNumIterations();
useInitialFlow_ = alg_->getUseInitialFlow();
}
void DualTVL1_CUDA::calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2)
{
GpuOpticalFlow::calc(frame0, frame1, flow1, flow2);
}
void DualTVL1_CUDA::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2)
{
alg_->setTau(tau_);
alg_->setLambda(lambda_);
alg_->setTheta(theta_);
alg_->setNumScales(nscales_);
alg_->setNumWarps(warps_);
alg_->setEpsilon(epsilon_);
alg_->setNumIterations(iterations_);
alg_->setUseInitialFlow(useInitialFlow_);
GpuMat flow;
alg_->calc(input0, input1, flow);
GpuMat flows[2];
cuda::split(flow, flows);
dst1 = flows[0];
dst2 = flows[1];
}
void DualTVL1_CUDA::collectGarbage()
{
alg_ = cuda::OpticalFlowDual_TVL1::create();
GpuOpticalFlow::collectGarbage();
}
}
Ptr<cv::superres::DualTVL1OpticalFlow> cv::superres::createOptFlow_DualTVL1_CUDA()
{
return makePtr<DualTVL1_CUDA>();
}
#endif // HAVE_OPENCV_CUDAOPTFLOW