mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1850 lines
60 KiB
1850 lines
60 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include <limits> |
|
|
|
namespace cv |
|
{ |
|
namespace linemod |
|
{ |
|
|
|
// struct Feature |
|
|
|
/** |
|
* \brief Get the label [0,8) of the single bit set in quantized. |
|
*/ |
|
static inline int getLabel(int quantized) |
|
{ |
|
switch (quantized) |
|
{ |
|
case 1: return 0; |
|
case 2: return 1; |
|
case 4: return 2; |
|
case 8: return 3; |
|
case 16: return 4; |
|
case 32: return 5; |
|
case 64: return 6; |
|
case 128: return 7; |
|
default: |
|
CV_Error(CV_StsBadArg, "Invalid value of quantized parameter"); |
|
return -1; //avoid warning |
|
} |
|
} |
|
|
|
void Feature::read(const FileNode& fn) |
|
{ |
|
FileNodeIterator fni = fn.begin(); |
|
fni >> x >> y >> label; |
|
} |
|
|
|
void Feature::write(FileStorage& fs) const |
|
{ |
|
fs << "[:" << x << y << label << "]"; |
|
} |
|
|
|
// struct Template |
|
|
|
/** |
|
* \brief Crop a set of overlapping templates from different modalities. |
|
* |
|
* \param[in,out] templates Set of templates representing the same object view. |
|
* |
|
* \return The bounding box of all the templates in original image coordinates. |
|
*/ |
|
static Rect cropTemplates(std::vector<Template>& templates) |
|
{ |
|
int min_x = std::numeric_limits<int>::max(); |
|
int min_y = std::numeric_limits<int>::max(); |
|
int max_x = std::numeric_limits<int>::min(); |
|
int max_y = std::numeric_limits<int>::min(); |
|
|
|
// First pass: find min/max feature x,y over all pyramid levels and modalities |
|
for (int i = 0; i < (int)templates.size(); ++i) |
|
{ |
|
Template& templ = templates[i]; |
|
|
|
for (int j = 0; j < (int)templ.features.size(); ++j) |
|
{ |
|
int x = templ.features[j].x << templ.pyramid_level; |
|
int y = templ.features[j].y << templ.pyramid_level; |
|
min_x = std::min(min_x, x); |
|
min_y = std::min(min_y, y); |
|
max_x = std::max(max_x, x); |
|
max_y = std::max(max_y, y); |
|
} |
|
} |
|
|
|
/// @todo Why require even min_x, min_y? |
|
if (min_x % 2 == 1) --min_x; |
|
if (min_y % 2 == 1) --min_y; |
|
|
|
// Second pass: set width/height and shift all feature positions |
|
for (int i = 0; i < (int)templates.size(); ++i) |
|
{ |
|
Template& templ = templates[i]; |
|
templ.width = (max_x - min_x) >> templ.pyramid_level; |
|
templ.height = (max_y - min_y) >> templ.pyramid_level; |
|
int offset_x = min_x >> templ.pyramid_level; |
|
int offset_y = min_y >> templ.pyramid_level; |
|
|
|
for (int j = 0; j < (int)templ.features.size(); ++j) |
|
{ |
|
templ.features[j].x -= offset_x; |
|
templ.features[j].y -= offset_y; |
|
} |
|
} |
|
|
|
return Rect(min_x, min_y, max_x - min_x, max_y - min_y); |
|
} |
|
|
|
void Template::read(const FileNode& fn) |
|
{ |
|
width = fn["width"]; |
|
height = fn["height"]; |
|
pyramid_level = fn["pyramid_level"]; |
|
|
|
FileNode features_fn = fn["features"]; |
|
features.resize(features_fn.size()); |
|
FileNodeIterator it = features_fn.begin(), it_end = features_fn.end(); |
|
for (int i = 0; it != it_end; ++it, ++i) |
|
{ |
|
features[i].read(*it); |
|
} |
|
} |
|
|
|
void Template::write(FileStorage& fs) const |
|
{ |
|
fs << "width" << width; |
|
fs << "height" << height; |
|
fs << "pyramid_level" << pyramid_level; |
|
|
|
fs << "features" << "["; |
|
for (int i = 0; i < (int)features.size(); ++i) |
|
{ |
|
features[i].write(fs); |
|
} |
|
fs << "]"; // features |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Modality interfaces * |
|
\****************************************************************************************/ |
|
|
|
void QuantizedPyramid::selectScatteredFeatures(const std::vector<Candidate>& candidates, |
|
std::vector<Feature>& features, |
|
size_t num_features, float distance) |
|
{ |
|
features.clear(); |
|
float distance_sq = CV_SQR(distance); |
|
int i = 0; |
|
while (features.size() < num_features) |
|
{ |
|
Candidate c = candidates[i]; |
|
|
|
// Add if sufficient distance away from any previously chosen feature |
|
bool keep = true; |
|
for (int j = 0; (j < (int)features.size()) && keep; ++j) |
|
{ |
|
Feature f = features[j]; |
|
keep = CV_SQR(c.f.x - f.x) + CV_SQR(c.f.y - f.y) >= distance_sq; |
|
} |
|
if (keep) |
|
features.push_back(c.f); |
|
|
|
if (++i == (int)candidates.size()) |
|
{ |
|
// Start back at beginning, and relax required distance |
|
i = 0; |
|
distance -= 1.0f; |
|
distance_sq = CV_SQR(distance); |
|
} |
|
} |
|
} |
|
|
|
Ptr<Modality> Modality::create(const std::string& modality_type) |
|
{ |
|
if (modality_type == "ColorGradient") |
|
return new ColorGradient(); |
|
else if (modality_type == "DepthNormal") |
|
return new DepthNormal(); |
|
else |
|
return NULL; |
|
} |
|
|
|
Ptr<Modality> Modality::create(const FileNode& fn) |
|
{ |
|
std::string type = fn["type"]; |
|
Ptr<Modality> modality = create(type); |
|
modality->read(fn); |
|
return modality; |
|
} |
|
|
|
void colormap(const Mat& quantized, Mat& dst) |
|
{ |
|
std::vector<Vec3b> lut(8); |
|
lut[0] = Vec3b( 0, 0, 255); |
|
lut[1] = Vec3b( 0, 170, 255); |
|
lut[2] = Vec3b( 0, 255, 170); |
|
lut[3] = Vec3b( 0, 255, 0); |
|
lut[4] = Vec3b(170, 255, 0); |
|
lut[5] = Vec3b(255, 170, 0); |
|
lut[6] = Vec3b(255, 0, 0); |
|
lut[7] = Vec3b(255, 0, 170); |
|
|
|
dst = Mat::zeros(quantized.size(), CV_8UC3); |
|
for (int r = 0; r < dst.rows; ++r) |
|
{ |
|
const uchar* quant_r = quantized.ptr(r); |
|
Vec3b* dst_r = dst.ptr<Vec3b>(r); |
|
for (int c = 0; c < dst.cols; ++c) |
|
{ |
|
uchar q = quant_r[c]; |
|
if (q) |
|
dst_r[c] = lut[getLabel(q)]; |
|
} |
|
} |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Color gradient modality * |
|
\****************************************************************************************/ |
|
|
|
// Forward declaration |
|
void hysteresisGradient(Mat& magnitude, Mat& angle, |
|
Mat& ap_tmp, float threshold); |
|
|
|
/** |
|
* \brief Compute quantized orientation image from color image. |
|
* |
|
* Implements section 2.2 "Computing the Gradient Orientations." |
|
* |
|
* \param[in] src The source 8-bit, 3-channel image. |
|
* \param[out] magnitude Destination floating-point array of squared magnitudes. |
|
* \param[out] angle Destination 8-bit array of orientations. Each bit |
|
* represents one bin of the orientation space. |
|
* \param threshold Magnitude threshold. Keep only gradients whose norms are |
|
* larger than this. |
|
*/ |
|
static void quantizedOrientations(const Mat& src, Mat& magnitude, |
|
Mat& angle, float threshold) |
|
{ |
|
magnitude.create(src.size(), CV_32F); |
|
|
|
// Allocate temporary buffers |
|
Size size = src.size(); |
|
Mat sobel_3dx; // per-channel horizontal derivative |
|
Mat sobel_3dy; // per-channel vertical derivative |
|
Mat sobel_dx(size, CV_32F); // maximum horizontal derivative |
|
Mat sobel_dy(size, CV_32F); // maximum vertical derivative |
|
Mat sobel_ag; // final gradient orientation (unquantized) |
|
Mat smoothed; |
|
|
|
// Compute horizontal and vertical image derivatives on all color channels separately |
|
static const int KERNEL_SIZE = 7; |
|
// For some reason cvSmooth/cv::GaussianBlur, cvSobel/cv::Sobel have different defaults for border handling... |
|
GaussianBlur(src, smoothed, Size(KERNEL_SIZE, KERNEL_SIZE), 0, 0, BORDER_REPLICATE); |
|
Sobel(smoothed, sobel_3dx, CV_16S, 1, 0, 3, 1.0, 0.0, BORDER_REPLICATE); |
|
Sobel(smoothed, sobel_3dy, CV_16S, 0, 1, 3, 1.0, 0.0, BORDER_REPLICATE); |
|
|
|
short * ptrx = (short *)sobel_3dx.data; |
|
short * ptry = (short *)sobel_3dy.data; |
|
float * ptr0x = (float *)sobel_dx.data; |
|
float * ptr0y = (float *)sobel_dy.data; |
|
float * ptrmg = (float *)magnitude.data; |
|
|
|
const int length1 = static_cast<const int>(sobel_3dx.step1()); |
|
const int length2 = static_cast<const int>(sobel_3dy.step1()); |
|
const int length3 = static_cast<const int>(sobel_dx.step1()); |
|
const int length4 = static_cast<const int>(sobel_dy.step1()); |
|
const int length5 = static_cast<const int>(magnitude.step1()); |
|
const int length0 = sobel_3dy.cols * 3; |
|
|
|
for (int r = 0; r < sobel_3dy.rows; ++r) |
|
{ |
|
int ind = 0; |
|
|
|
for (int i = 0; i < length0; i += 3) |
|
{ |
|
// Use the gradient orientation of the channel whose magnitude is largest |
|
int mag1 = CV_SQR(ptrx[i]) + CV_SQR(ptry[i]); |
|
int mag2 = CV_SQR(ptrx[i + 1]) + CV_SQR(ptry[i + 1]); |
|
int mag3 = CV_SQR(ptrx[i + 2]) + CV_SQR(ptry[i + 2]); |
|
|
|
if (mag1 >= mag2 && mag1 >= mag3) |
|
{ |
|
ptr0x[ind] = ptrx[i]; |
|
ptr0y[ind] = ptry[i]; |
|
ptrmg[ind] = (float)mag1; |
|
} |
|
else if (mag2 >= mag1 && mag2 >= mag3) |
|
{ |
|
ptr0x[ind] = ptrx[i + 1]; |
|
ptr0y[ind] = ptry[i + 1]; |
|
ptrmg[ind] = (float)mag2; |
|
} |
|
else |
|
{ |
|
ptr0x[ind] = ptrx[i + 2]; |
|
ptr0y[ind] = ptry[i + 2]; |
|
ptrmg[ind] = (float)mag3; |
|
} |
|
++ind; |
|
} |
|
ptrx += length1; |
|
ptry += length2; |
|
ptr0x += length3; |
|
ptr0y += length4; |
|
ptrmg += length5; |
|
} |
|
|
|
// Calculate the final gradient orientations |
|
phase(sobel_dx, sobel_dy, sobel_ag, true); |
|
hysteresisGradient(magnitude, angle, sobel_ag, CV_SQR(threshold)); |
|
} |
|
|
|
void hysteresisGradient(Mat& magnitude, Mat& quantized_angle, |
|
Mat& angle, float threshold) |
|
{ |
|
// Quantize 360 degree range of orientations into 16 buckets |
|
// Note that [0, 11.25), [348.75, 360) both get mapped in the end to label 0, |
|
// for stability of horizontal and vertical features. |
|
Mat_<unsigned char> quantized_unfiltered; |
|
angle.convertTo(quantized_unfiltered, CV_8U, 16.0 / 360.0); |
|
|
|
// Zero out top and bottom rows |
|
/// @todo is this necessary, or even correct? |
|
memset(quantized_unfiltered.ptr(), 0, quantized_unfiltered.cols); |
|
memset(quantized_unfiltered.ptr(quantized_unfiltered.rows - 1), 0, quantized_unfiltered.cols); |
|
// Zero out first and last columns |
|
for (int r = 0; r < quantized_unfiltered.rows; ++r) |
|
{ |
|
quantized_unfiltered(r, 0) = 0; |
|
quantized_unfiltered(r, quantized_unfiltered.cols - 1) = 0; |
|
} |
|
|
|
// Mask 16 buckets into 8 quantized orientations |
|
for (int r = 1; r < angle.rows - 1; ++r) |
|
{ |
|
uchar* quant_r = quantized_unfiltered.ptr<uchar>(r); |
|
for (int c = 1; c < angle.cols - 1; ++c) |
|
{ |
|
quant_r[c] &= 7; |
|
} |
|
} |
|
|
|
// Filter the raw quantized image. Only accept pixels where the magnitude is above some |
|
// threshold, and there is local agreement on the quantization. |
|
quantized_angle = Mat::zeros(angle.size(), CV_8U); |
|
for (int r = 1; r < angle.rows - 1; ++r) |
|
{ |
|
float* mag_r = magnitude.ptr<float>(r); |
|
|
|
for (int c = 1; c < angle.cols - 1; ++c) |
|
{ |
|
if (mag_r[c] > threshold) |
|
{ |
|
// Compute histogram of quantized bins in 3x3 patch around pixel |
|
int histogram[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
|
|
|
uchar* patch3x3_row = &quantized_unfiltered(r-1, c-1); |
|
histogram[patch3x3_row[0]]++; |
|
histogram[patch3x3_row[1]]++; |
|
histogram[patch3x3_row[2]]++; |
|
|
|
patch3x3_row += quantized_unfiltered.step1(); |
|
histogram[patch3x3_row[0]]++; |
|
histogram[patch3x3_row[1]]++; |
|
histogram[patch3x3_row[2]]++; |
|
|
|
patch3x3_row += quantized_unfiltered.step1(); |
|
histogram[patch3x3_row[0]]++; |
|
histogram[patch3x3_row[1]]++; |
|
histogram[patch3x3_row[2]]++; |
|
|
|
// Find bin with the most votes from the patch |
|
int max_votes = 0; |
|
int index = -1; |
|
for (int i = 0; i < 8; ++i) |
|
{ |
|
if (max_votes < histogram[i]) |
|
{ |
|
index = i; |
|
max_votes = histogram[i]; |
|
} |
|
} |
|
|
|
// Only accept the quantization if majority of pixels in the patch agree |
|
static const int NEIGHBOR_THRESHOLD = 5; |
|
if (max_votes >= NEIGHBOR_THRESHOLD) |
|
quantized_angle.at<uchar>(r, c) = uchar(1 << index); |
|
} |
|
} |
|
} |
|
} |
|
|
|
class ColorGradientPyramid : public QuantizedPyramid |
|
{ |
|
public: |
|
ColorGradientPyramid(const Mat& src, const Mat& mask, |
|
float weak_threshold, size_t num_features, |
|
float strong_threshold); |
|
|
|
virtual void quantize(Mat& dst) const; |
|
|
|
virtual bool extractTemplate(Template& templ) const; |
|
|
|
virtual void pyrDown(); |
|
|
|
protected: |
|
/// Recalculate angle and magnitude images |
|
void update(); |
|
|
|
Mat src; |
|
Mat mask; |
|
|
|
int pyramid_level; |
|
Mat angle; |
|
Mat magnitude; |
|
|
|
float weak_threshold; |
|
size_t num_features; |
|
float strong_threshold; |
|
}; |
|
|
|
ColorGradientPyramid::ColorGradientPyramid(const Mat& _src, const Mat& _mask, |
|
float _weak_threshold, size_t _num_features, |
|
float _strong_threshold) |
|
: src(_src), |
|
mask(_mask), |
|
pyramid_level(0), |
|
weak_threshold(_weak_threshold), |
|
num_features(_num_features), |
|
strong_threshold(_strong_threshold) |
|
{ |
|
update(); |
|
} |
|
|
|
void ColorGradientPyramid::update() |
|
{ |
|
quantizedOrientations(src, magnitude, angle, weak_threshold); |
|
} |
|
|
|
void ColorGradientPyramid::pyrDown() |
|
{ |
|
// Some parameters need to be adjusted |
|
num_features /= 2; /// @todo Why not 4? |
|
++pyramid_level; |
|
|
|
// Downsample the current inputs |
|
Size size(src.cols / 2, src.rows / 2); |
|
Mat next_src; |
|
cv::pyrDown(src, next_src, size); |
|
src = next_src; |
|
if (!mask.empty()) |
|
{ |
|
Mat next_mask; |
|
resize(mask, next_mask, size, 0.0, 0.0, CV_INTER_NN); |
|
mask = next_mask; |
|
} |
|
|
|
update(); |
|
} |
|
|
|
void ColorGradientPyramid::quantize(Mat& dst) const |
|
{ |
|
dst = Mat::zeros(angle.size(), CV_8U); |
|
angle.copyTo(dst, mask); |
|
} |
|
|
|
bool ColorGradientPyramid::extractTemplate(Template& templ) const |
|
{ |
|
// Want features on the border to distinguish from background |
|
Mat local_mask; |
|
if (!mask.empty()) |
|
{ |
|
erode(mask, local_mask, Mat(), Point(-1,-1), 1, BORDER_REPLICATE); |
|
subtract(mask, local_mask, local_mask); |
|
} |
|
|
|
// Create sorted list of all pixels with magnitude greater than a threshold |
|
std::vector<Candidate> candidates; |
|
bool no_mask = local_mask.empty(); |
|
float threshold_sq = CV_SQR(strong_threshold); |
|
for (int r = 0; r < magnitude.rows; ++r) |
|
{ |
|
const uchar* angle_r = angle.ptr<uchar>(r); |
|
const float* magnitude_r = magnitude.ptr<float>(r); |
|
const uchar* mask_r = no_mask ? NULL : local_mask.ptr<uchar>(r); |
|
|
|
for (int c = 0; c < magnitude.cols; ++c) |
|
{ |
|
if (no_mask || mask_r[c]) |
|
{ |
|
uchar quantized = angle_r[c]; |
|
if (quantized > 0) |
|
{ |
|
float score = magnitude_r[c]; |
|
if (score > threshold_sq) |
|
{ |
|
candidates.push_back(Candidate(c, r, getLabel(quantized), score)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
// We require a certain number of features |
|
if (candidates.size() < num_features) |
|
return false; |
|
// NOTE: Stable sort to agree with old code, which used std::list::sort() |
|
std::stable_sort(candidates.begin(), candidates.end()); |
|
|
|
// Use heuristic based on surplus of candidates in narrow outline for initial distance threshold |
|
float distance = static_cast<float>(candidates.size() / num_features + 1); |
|
selectScatteredFeatures(candidates, templ.features, num_features, distance); |
|
|
|
// Size determined externally, needs to match templates for other modalities |
|
templ.width = -1; |
|
templ.height = -1; |
|
templ.pyramid_level = pyramid_level; |
|
|
|
return true; |
|
} |
|
|
|
ColorGradient::ColorGradient() |
|
: weak_threshold(10.0f), |
|
num_features(63), |
|
strong_threshold(55.0f) |
|
{ |
|
} |
|
|
|
ColorGradient::ColorGradient(float _weak_threshold, size_t _num_features, float _strong_threshold) |
|
: weak_threshold(_weak_threshold), |
|
num_features(_num_features), |
|
strong_threshold(_strong_threshold) |
|
{ |
|
} |
|
|
|
static const char CG_NAME[] = "ColorGradient"; |
|
|
|
std::string ColorGradient::name() const |
|
{ |
|
return CG_NAME; |
|
} |
|
|
|
Ptr<QuantizedPyramid> ColorGradient::processImpl(const Mat& src, |
|
const Mat& mask) const |
|
{ |
|
return new ColorGradientPyramid(src, mask, weak_threshold, num_features, strong_threshold); |
|
} |
|
|
|
void ColorGradient::read(const FileNode& fn) |
|
{ |
|
std::string type = fn["type"]; |
|
CV_Assert(type == CG_NAME); |
|
|
|
weak_threshold = fn["weak_threshold"]; |
|
num_features = int(fn["num_features"]); |
|
strong_threshold = fn["strong_threshold"]; |
|
} |
|
|
|
void ColorGradient::write(FileStorage& fs) const |
|
{ |
|
fs << "type" << CG_NAME; |
|
fs << "weak_threshold" << weak_threshold; |
|
fs << "num_features" << int(num_features); |
|
fs << "strong_threshold" << strong_threshold; |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Depth normal modality * |
|
\****************************************************************************************/ |
|
|
|
// Contains GRANULARITY and NORMAL_LUT |
|
#include "normal_lut.i" |
|
|
|
static void accumBilateral(long delta, long i, long j, long * A, long * b, int threshold) |
|
{ |
|
long f = std::abs(delta) < threshold ? 1 : 0; |
|
|
|
const long fi = f * i; |
|
const long fj = f * j; |
|
|
|
A[0] += fi * i; |
|
A[1] += fi * j; |
|
A[3] += fj * j; |
|
b[0] += fi * delta; |
|
b[1] += fj * delta; |
|
} |
|
|
|
/** |
|
* \brief Compute quantized normal image from depth image. |
|
* |
|
* Implements section 2.6 "Extension to Dense Depth Sensors." |
|
* |
|
* \param[in] src The source 16-bit depth image (in mm). |
|
* \param[out] dst The destination 8-bit image. Each bit represents one bin of |
|
* the view cone. |
|
* \param distance_threshold Ignore pixels beyond this distance. |
|
* \param difference_threshold When computing normals, ignore contributions of pixels whose |
|
* depth difference with the central pixel is above this threshold. |
|
* |
|
* \todo Should also need camera model, or at least focal lengths? Replace distance_threshold with mask? |
|
*/ |
|
static void quantizedNormals(const Mat& src, Mat& dst, int distance_threshold, |
|
int difference_threshold) |
|
{ |
|
dst = Mat::zeros(src.size(), CV_8U); |
|
|
|
IplImage src_ipl = src; |
|
IplImage* ap_depth_data = &src_ipl; |
|
IplImage dst_ipl = dst; |
|
IplImage* dst_ipl_ptr = &dst_ipl; |
|
IplImage** m_dep = &dst_ipl_ptr; |
|
|
|
unsigned short * lp_depth = (unsigned short *)ap_depth_data->imageData; |
|
unsigned char * lp_normals = (unsigned char *)m_dep[0]->imageData; |
|
|
|
const int l_W = ap_depth_data->width; |
|
const int l_H = ap_depth_data->height; |
|
|
|
const int l_r = 5; // used to be 7 |
|
const int l_offset0 = -l_r - l_r * l_W; |
|
const int l_offset1 = 0 - l_r * l_W; |
|
const int l_offset2 = +l_r - l_r * l_W; |
|
const int l_offset3 = -l_r; |
|
const int l_offset4 = +l_r; |
|
const int l_offset5 = -l_r + l_r * l_W; |
|
const int l_offset6 = 0 + l_r * l_W; |
|
const int l_offset7 = +l_r + l_r * l_W; |
|
|
|
const int l_offsetx = GRANULARITY / 2; |
|
const int l_offsety = GRANULARITY / 2; |
|
|
|
for (int l_y = l_r; l_y < l_H - l_r - 1; ++l_y) |
|
{ |
|
unsigned short * lp_line = lp_depth + (l_y * l_W + l_r); |
|
unsigned char * lp_norm = lp_normals + (l_y * l_W + l_r); |
|
|
|
for (int l_x = l_r; l_x < l_W - l_r - 1; ++l_x) |
|
{ |
|
long l_d = lp_line[0]; |
|
|
|
if (l_d < distance_threshold) |
|
{ |
|
// accum |
|
long l_A[4]; l_A[0] = l_A[1] = l_A[2] = l_A[3] = 0; |
|
long l_b[2]; l_b[0] = l_b[1] = 0; |
|
accumBilateral(lp_line[l_offset0] - l_d, -l_r, -l_r, l_A, l_b, difference_threshold); |
|
accumBilateral(lp_line[l_offset1] - l_d, 0, -l_r, l_A, l_b, difference_threshold); |
|
accumBilateral(lp_line[l_offset2] - l_d, +l_r, -l_r, l_A, l_b, difference_threshold); |
|
accumBilateral(lp_line[l_offset3] - l_d, -l_r, 0, l_A, l_b, difference_threshold); |
|
accumBilateral(lp_line[l_offset4] - l_d, +l_r, 0, l_A, l_b, difference_threshold); |
|
accumBilateral(lp_line[l_offset5] - l_d, -l_r, +l_r, l_A, l_b, difference_threshold); |
|
accumBilateral(lp_line[l_offset6] - l_d, 0, +l_r, l_A, l_b, difference_threshold); |
|
accumBilateral(lp_line[l_offset7] - l_d, +l_r, +l_r, l_A, l_b, difference_threshold); |
|
|
|
// solve |
|
long l_det = l_A[0] * l_A[3] - l_A[1] * l_A[1]; |
|
long l_ddx = l_A[3] * l_b[0] - l_A[1] * l_b[1]; |
|
long l_ddy = -l_A[1] * l_b[0] + l_A[0] * l_b[1]; |
|
|
|
/// @todo Magic number 1150 is focal length? This is something like |
|
/// f in SXGA mode, but in VGA is more like 530. |
|
float l_nx = static_cast<float>(1150 * l_ddx); |
|
float l_ny = static_cast<float>(1150 * l_ddy); |
|
float l_nz = static_cast<float>(-l_det * l_d); |
|
|
|
float l_sqrt = sqrtf(l_nx * l_nx + l_ny * l_ny + l_nz * l_nz); |
|
|
|
if (l_sqrt > 0) |
|
{ |
|
float l_norminv = 1.0f / (l_sqrt); |
|
|
|
l_nx *= l_norminv; |
|
l_ny *= l_norminv; |
|
l_nz *= l_norminv; |
|
|
|
//*lp_norm = fabs(l_nz)*255; |
|
|
|
int l_val1 = static_cast<int>(l_nx * l_offsetx + l_offsetx); |
|
int l_val2 = static_cast<int>(l_ny * l_offsety + l_offsety); |
|
int l_val3 = static_cast<int>(l_nz * GRANULARITY + GRANULARITY); |
|
|
|
*lp_norm = NORMAL_LUT[l_val3][l_val2][l_val1]; |
|
} |
|
else |
|
{ |
|
*lp_norm = 0; // Discard shadows from depth sensor |
|
} |
|
} |
|
else |
|
{ |
|
*lp_norm = 0; //out of depth |
|
} |
|
++lp_line; |
|
++lp_norm; |
|
} |
|
} |
|
cvSmooth(m_dep[0], m_dep[0], CV_MEDIAN, 5, 5); |
|
} |
|
|
|
class DepthNormalPyramid : public QuantizedPyramid |
|
{ |
|
public: |
|
DepthNormalPyramid(const Mat& src, const Mat& mask, |
|
int distance_threshold, int difference_threshold, size_t num_features, |
|
int extract_threshold); |
|
|
|
virtual void quantize(Mat& dst) const; |
|
|
|
virtual bool extractTemplate(Template& templ) const; |
|
|
|
virtual void pyrDown(); |
|
|
|
protected: |
|
Mat mask; |
|
|
|
int pyramid_level; |
|
Mat normal; |
|
|
|
size_t num_features; |
|
int extract_threshold; |
|
}; |
|
|
|
DepthNormalPyramid::DepthNormalPyramid(const Mat& src, const Mat& _mask, |
|
int distance_threshold, int difference_threshold, size_t _num_features, |
|
int _extract_threshold) |
|
: mask(_mask), |
|
pyramid_level(0), |
|
num_features(_num_features), |
|
extract_threshold(_extract_threshold) |
|
{ |
|
quantizedNormals(src, normal, distance_threshold, difference_threshold); |
|
} |
|
|
|
void DepthNormalPyramid::pyrDown() |
|
{ |
|
// Some parameters need to be adjusted |
|
num_features /= 2; /// @todo Why not 4? |
|
extract_threshold /= 2; |
|
++pyramid_level; |
|
|
|
// In this case, NN-downsample the quantized image |
|
Mat next_normal; |
|
Size size(normal.cols / 2, normal.rows / 2); |
|
resize(normal, next_normal, size, 0.0, 0.0, CV_INTER_NN); |
|
normal = next_normal; |
|
if (!mask.empty()) |
|
{ |
|
Mat next_mask; |
|
resize(mask, next_mask, size, 0.0, 0.0, CV_INTER_NN); |
|
mask = next_mask; |
|
} |
|
} |
|
|
|
void DepthNormalPyramid::quantize(Mat& dst) const |
|
{ |
|
dst = Mat::zeros(normal.size(), CV_8U); |
|
normal.copyTo(dst, mask); |
|
} |
|
|
|
bool DepthNormalPyramid::extractTemplate(Template& templ) const |
|
{ |
|
// Features right on the object border are unreliable |
|
Mat local_mask; |
|
if (!mask.empty()) |
|
{ |
|
erode(mask, local_mask, Mat(), Point(-1,-1), 2, BORDER_REPLICATE); |
|
} |
|
|
|
// Compute distance transform for each individual quantized orientation |
|
Mat temp = Mat::zeros(normal.size(), CV_8U); |
|
Mat distances[8]; |
|
for (int i = 0; i < 8; ++i) |
|
{ |
|
temp.setTo(1 << i, local_mask); |
|
bitwise_and(temp, normal, temp); |
|
// temp is now non-zero at pixels in the mask with quantized orientation i |
|
distanceTransform(temp, distances[i], CV_DIST_C, 3); |
|
} |
|
|
|
// Count how many features taken for each label |
|
int label_counts[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
|
|
|
// Create sorted list of candidate features |
|
std::vector<Candidate> candidates; |
|
bool no_mask = local_mask.empty(); |
|
for (int r = 0; r < normal.rows; ++r) |
|
{ |
|
const uchar* normal_r = normal.ptr<uchar>(r); |
|
const uchar* mask_r = no_mask ? NULL : local_mask.ptr<uchar>(r); |
|
|
|
for (int c = 0; c < normal.cols; ++c) |
|
{ |
|
if (no_mask || mask_r[c]) |
|
{ |
|
uchar quantized = normal_r[c]; |
|
|
|
if (quantized != 0 && quantized != 255) // background and shadow |
|
{ |
|
int label = getLabel(quantized); |
|
|
|
// Accept if distance to a pixel belonging to a different label is greater than |
|
// some threshold. IOW, ideal feature is in the center of a large homogeneous |
|
// region. |
|
float score = distances[label].at<float>(r, c); |
|
if (score >= extract_threshold) |
|
{ |
|
candidates.push_back( Candidate(c, r, label, score) ); |
|
++label_counts[label]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
// We require a certain number of features |
|
if (candidates.size() < num_features) |
|
return false; |
|
|
|
// Prefer large distances, but also want to collect features over all 8 labels. |
|
// So penalize labels with lots of candidates. |
|
for (size_t i = 0; i < candidates.size(); ++i) |
|
{ |
|
Candidate& c = candidates[i]; |
|
c.score /= (float)label_counts[c.f.label]; |
|
} |
|
std::stable_sort(candidates.begin(), candidates.end()); |
|
|
|
// Use heuristic based on object area for initial distance threshold |
|
float area = no_mask ? (float)normal.total() : (float)countNonZero(local_mask); |
|
float distance = sqrtf(area) / sqrtf((float)num_features) + 1.5f; |
|
selectScatteredFeatures(candidates, templ.features, num_features, distance); |
|
|
|
// Size determined externally, needs to match templates for other modalities |
|
templ.width = -1; |
|
templ.height = -1; |
|
templ.pyramid_level = pyramid_level; |
|
|
|
return true; |
|
} |
|
|
|
DepthNormal::DepthNormal() |
|
: distance_threshold(2000), |
|
difference_threshold(50), |
|
num_features(63), |
|
extract_threshold(2) |
|
{ |
|
} |
|
|
|
DepthNormal::DepthNormal(int _distance_threshold, int _difference_threshold, size_t _num_features, |
|
int _extract_threshold) |
|
: distance_threshold(_distance_threshold), |
|
difference_threshold(_difference_threshold), |
|
num_features(_num_features), |
|
extract_threshold(_extract_threshold) |
|
{ |
|
} |
|
|
|
static const char DN_NAME[] = "DepthNormal"; |
|
|
|
std::string DepthNormal::name() const |
|
{ |
|
return DN_NAME; |
|
} |
|
|
|
Ptr<QuantizedPyramid> DepthNormal::processImpl(const Mat& src, |
|
const Mat& mask) const |
|
{ |
|
return new DepthNormalPyramid(src, mask, distance_threshold, difference_threshold, |
|
num_features, extract_threshold); |
|
} |
|
|
|
void DepthNormal::read(const FileNode& fn) |
|
{ |
|
std::string type = fn["type"]; |
|
CV_Assert(type == DN_NAME); |
|
|
|
distance_threshold = fn["distance_threshold"]; |
|
difference_threshold = fn["difference_threshold"]; |
|
num_features = int(fn["num_features"]); |
|
extract_threshold = fn["extract_threshold"]; |
|
} |
|
|
|
void DepthNormal::write(FileStorage& fs) const |
|
{ |
|
fs << "type" << DN_NAME; |
|
fs << "distance_threshold" << distance_threshold; |
|
fs << "difference_threshold" << difference_threshold; |
|
fs << "num_features" << int(num_features); |
|
fs << "extract_threshold" << extract_threshold; |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Response maps * |
|
\****************************************************************************************/ |
|
|
|
static void orUnaligned8u(const uchar * src, const int src_stride, |
|
uchar * dst, const int dst_stride, |
|
const int width, const int height) |
|
{ |
|
#if CV_SSE2 |
|
volatile bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2); |
|
#if CV_SSE3 |
|
volatile bool haveSSE3 = checkHardwareSupport(CV_CPU_SSE3); |
|
#endif |
|
bool src_aligned = reinterpret_cast<unsigned long long>(src) % 16 == 0; |
|
#endif |
|
|
|
for (int r = 0; r < height; ++r) |
|
{ |
|
int c = 0; |
|
|
|
#if CV_SSE2 |
|
// Use aligned loads if possible |
|
if (haveSSE2 && src_aligned) |
|
{ |
|
for ( ; c < width - 15; c += 16) |
|
{ |
|
const __m128i* src_ptr = reinterpret_cast<const __m128i*>(src + c); |
|
__m128i* dst_ptr = reinterpret_cast<__m128i*>(dst + c); |
|
*dst_ptr = _mm_or_si128(*dst_ptr, *src_ptr); |
|
} |
|
} |
|
#if CV_SSE3 |
|
// Use LDDQU for fast unaligned load |
|
else if (haveSSE3) |
|
{ |
|
for ( ; c < width - 15; c += 16) |
|
{ |
|
__m128i val = _mm_lddqu_si128(reinterpret_cast<const __m128i*>(src + c)); |
|
__m128i* dst_ptr = reinterpret_cast<__m128i*>(dst + c); |
|
*dst_ptr = _mm_or_si128(*dst_ptr, val); |
|
} |
|
} |
|
#endif |
|
// Fall back to MOVDQU |
|
else if (haveSSE2) |
|
{ |
|
for ( ; c < width - 15; c += 16) |
|
{ |
|
__m128i val = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src + c)); |
|
__m128i* dst_ptr = reinterpret_cast<__m128i*>(dst + c); |
|
*dst_ptr = _mm_or_si128(*dst_ptr, val); |
|
} |
|
} |
|
#endif |
|
for ( ; c < width; ++c) |
|
dst[c] |= src[c]; |
|
|
|
// Advance to next row |
|
src += src_stride; |
|
dst += dst_stride; |
|
} |
|
} |
|
|
|
/** |
|
* \brief Spread binary labels in a quantized image. |
|
* |
|
* Implements section 2.3 "Spreading the Orientations." |
|
* |
|
* \param[in] src The source 8-bit quantized image. |
|
* \param[out] dst Destination 8-bit spread image. |
|
* \param T Sampling step. Spread labels T/2 pixels in each direction. |
|
*/ |
|
static void spread(const Mat& src, Mat& dst, int T) |
|
{ |
|
// Allocate and zero-initialize spread (OR'ed) image |
|
dst = Mat::zeros(src.size(), CV_8U); |
|
|
|
// Fill in spread gradient image (section 2.3) |
|
for (int r = 0; r < T; ++r) |
|
{ |
|
int height = src.rows - r; |
|
for (int c = 0; c < T; ++c) |
|
{ |
|
orUnaligned8u(&src.at<unsigned char>(r, c), static_cast<const int>(src.step1()), dst.ptr(), |
|
static_cast<const int>(dst.step1()), src.cols - c, height); |
|
} |
|
} |
|
} |
|
|
|
// Auto-generated by create_similarity_lut.py |
|
CV_DECL_ALIGNED(16) static const unsigned char SIMILARITY_LUT[256] = {0, 4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 4, 2, 4, 3, 4, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 0, 3, 4, 4, 3, 3, 4, 4, 2, 3, 4, 4, 3, 3, 4, 4, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 0, 2, 1, 2, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 0, 3, 2, 3, 1, 3, 2, 3, 0, 3, 2, 3, 1, 3, 2, 3, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 0, 4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 4, 2, 4, 3, 4, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 3, 4, 4, 3, 3, 4, 4, 2, 3, 4, 4, 3, 3, 4, 4, 0, 2, 1, 2, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 2, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 0, 3, 2, 3, 1, 3, 2, 3, 0, 3, 2, 3, 1, 3, 2, 3, 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4}; |
|
|
|
/** |
|
* \brief Precompute response maps for a spread quantized image. |
|
* |
|
* Implements section 2.4 "Precomputing Response Maps." |
|
* |
|
* \param[in] src The source 8-bit spread quantized image. |
|
* \param[out] response_maps Vector of 8 response maps, one for each bit label. |
|
*/ |
|
static void computeResponseMaps(const Mat& src, std::vector<Mat>& response_maps) |
|
{ |
|
CV_Assert((src.rows * src.cols) % 16 == 0); |
|
|
|
// Allocate response maps |
|
response_maps.resize(8); |
|
for (int i = 0; i < 8; ++i) |
|
response_maps[i].create(src.size(), CV_8U); |
|
|
|
Mat lsb4(src.size(), CV_8U); |
|
Mat msb4(src.size(), CV_8U); |
|
|
|
for (int r = 0; r < src.rows; ++r) |
|
{ |
|
const uchar* src_r = src.ptr(r); |
|
uchar* lsb4_r = lsb4.ptr(r); |
|
uchar* msb4_r = msb4.ptr(r); |
|
|
|
for (int c = 0; c < src.cols; ++c) |
|
{ |
|
// Least significant 4 bits of spread image pixel |
|
lsb4_r[c] = src_r[c] & 15; |
|
// Most significant 4 bits, right-shifted to be in [0, 16) |
|
msb4_r[c] = (src_r[c] & 240) >> 4; |
|
} |
|
} |
|
|
|
#if CV_SSSE3 |
|
volatile bool haveSSSE3 = checkHardwareSupport(CV_CPU_SSSE3); |
|
if (haveSSSE3) |
|
{ |
|
const __m128i* lut = reinterpret_cast<const __m128i*>(SIMILARITY_LUT); |
|
for (int ori = 0; ori < 8; ++ori) |
|
{ |
|
__m128i* map_data = response_maps[ori].ptr<__m128i>(); |
|
__m128i* lsb4_data = lsb4.ptr<__m128i>(); |
|
__m128i* msb4_data = msb4.ptr<__m128i>(); |
|
|
|
// Precompute the 2D response map S_i (section 2.4) |
|
for (int i = 0; i < (src.rows * src.cols) / 16; ++i) |
|
{ |
|
// Using SSE shuffle for table lookup on 4 orientations at a time |
|
// The most/least significant 4 bits are used as the LUT index |
|
__m128i res1 = _mm_shuffle_epi8(lut[2*ori + 0], lsb4_data[i]); |
|
__m128i res2 = _mm_shuffle_epi8(lut[2*ori + 1], msb4_data[i]); |
|
|
|
// Combine the results into a single similarity score |
|
map_data[i] = _mm_max_epu8(res1, res2); |
|
} |
|
} |
|
} |
|
else |
|
#endif |
|
{ |
|
// For each of the 8 quantized orientations... |
|
for (int ori = 0; ori < 8; ++ori) |
|
{ |
|
uchar* map_data = response_maps[ori].ptr<uchar>(); |
|
uchar* lsb4_data = lsb4.ptr<uchar>(); |
|
uchar* msb4_data = msb4.ptr<uchar>(); |
|
const uchar* lut_low = SIMILARITY_LUT + 32*ori; |
|
const uchar* lut_hi = lut_low + 16; |
|
|
|
for (int i = 0; i < src.rows * src.cols; ++i) |
|
{ |
|
map_data[i] = std::max(lut_low[ lsb4_data[i] ], lut_hi[ msb4_data[i] ]); |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* \brief Convert a response map to fast linearized ordering. |
|
* |
|
* Implements section 2.5 "Linearizing the Memory for Parallelization." |
|
* |
|
* \param[in] response_map The 2D response map, an 8-bit image. |
|
* \param[out] linearized The response map in linearized order. It has T*T rows, |
|
* each of which is a linear memory of length (W/T)*(H/T). |
|
* \param T Sampling step. |
|
*/ |
|
static void linearize(const Mat& response_map, Mat& linearized, int T) |
|
{ |
|
CV_Assert(response_map.rows % T == 0); |
|
CV_Assert(response_map.cols % T == 0); |
|
|
|
// linearized has T^2 rows, where each row is a linear memory |
|
int mem_width = response_map.cols / T; |
|
int mem_height = response_map.rows / T; |
|
linearized.create(T*T, mem_width * mem_height, CV_8U); |
|
|
|
// Outer two for loops iterate over top-left T^2 starting pixels |
|
int index = 0; |
|
for (int r_start = 0; r_start < T; ++r_start) |
|
{ |
|
for (int c_start = 0; c_start < T; ++c_start) |
|
{ |
|
uchar* memory = linearized.ptr(index); |
|
++index; |
|
|
|
// Inner two loops copy every T-th pixel into the linear memory |
|
for (int r = r_start; r < response_map.rows; r += T) |
|
{ |
|
const uchar* response_data = response_map.ptr(r); |
|
for (int c = c_start; c < response_map.cols; c += T) |
|
*memory++ = response_data[c]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Linearized similarities * |
|
\****************************************************************************************/ |
|
|
|
static const unsigned char* accessLinearMemory(const std::vector<Mat>& linear_memories, |
|
const Feature& f, int T, int W) |
|
{ |
|
// Retrieve the TxT grid of linear memories associated with the feature label |
|
const Mat& memory_grid = linear_memories[f.label]; |
|
CV_DbgAssert(memory_grid.rows == T*T); |
|
CV_DbgAssert(f.x >= 0); |
|
CV_DbgAssert(f.y >= 0); |
|
// The LM we want is at (x%T, y%T) in the TxT grid (stored as the rows of memory_grid) |
|
int grid_x = f.x % T; |
|
int grid_y = f.y % T; |
|
int grid_index = grid_y * T + grid_x; |
|
CV_DbgAssert(grid_index >= 0); |
|
CV_DbgAssert(grid_index < memory_grid.rows); |
|
const unsigned char* memory = memory_grid.ptr(grid_index); |
|
// Within the LM, the feature is at (x/T, y/T). W is the "width" of the LM, the |
|
// input image width decimated by T. |
|
int lm_x = f.x / T; |
|
int lm_y = f.y / T; |
|
int lm_index = lm_y * W + lm_x; |
|
CV_DbgAssert(lm_index >= 0); |
|
CV_DbgAssert(lm_index < memory_grid.cols); |
|
return memory + lm_index; |
|
} |
|
|
|
/** |
|
* \brief Compute similarity measure for a given template at each sampled image location. |
|
* |
|
* Uses linear memories to compute the similarity measure as described in Fig. 7. |
|
* |
|
* \param[in] linear_memories Vector of 8 linear memories, one for each label. |
|
* \param[in] templ Template to match against. |
|
* \param[out] dst Destination 8-bit similarity image of size (W/T, H/T). |
|
* \param size Size (W, H) of the original input image. |
|
* \param T Sampling step. |
|
*/ |
|
static void similarity(const std::vector<Mat>& linear_memories, const Template& templ, |
|
Mat& dst, Size size, int T) |
|
{ |
|
// 63 features or less is a special case because the max similarity per-feature is 4. |
|
// 255/4 = 63, so up to that many we can add up similarities in 8 bits without worrying |
|
// about overflow. Therefore here we use _mm_add_epi8 as the workhorse, whereas a more |
|
// general function would use _mm_add_epi16. |
|
CV_Assert(templ.features.size() <= 63); |
|
/// @todo Handle more than 255/MAX_RESPONSE features!! |
|
|
|
// Decimate input image size by factor of T |
|
int W = size.width / T; |
|
int H = size.height / T; |
|
|
|
// Feature dimensions, decimated by factor T and rounded up |
|
int wf = (templ.width - 1) / T + 1; |
|
int hf = (templ.height - 1) / T + 1; |
|
|
|
// Span is the range over which we can shift the template around the input image |
|
int span_x = W - wf; |
|
int span_y = H - hf; |
|
|
|
// Compute number of contiguous (in memory) pixels to check when sliding feature over |
|
// image. This allows template to wrap around left/right border incorrectly, so any |
|
// wrapped template matches must be filtered out! |
|
int template_positions = span_y * W + span_x + 1; // why add 1? |
|
//int template_positions = (span_y - 1) * W + span_x; // More correct? |
|
|
|
/// @todo In old code, dst is buffer of size m_U. Could make it something like |
|
/// (span_x)x(span_y) instead? |
|
dst = Mat::zeros(H, W, CV_8U); |
|
uchar* dst_ptr = dst.ptr<uchar>(); |
|
|
|
#if CV_SSE2 |
|
volatile bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2); |
|
#if CV_SSE3 |
|
volatile bool haveSSE3 = checkHardwareSupport(CV_CPU_SSE3); |
|
#endif |
|
#endif |
|
|
|
// Compute the similarity measure for this template by accumulating the contribution of |
|
// each feature |
|
for (int i = 0; i < (int)templ.features.size(); ++i) |
|
{ |
|
// Add the linear memory at the appropriate offset computed from the location of |
|
// the feature in the template |
|
Feature f = templ.features[i]; |
|
// Discard feature if out of bounds |
|
/// @todo Shouldn't actually see x or y < 0 here? |
|
if (f.x < 0 || f.x >= size.width || f.y < 0 || f.y >= size.height) |
|
continue; |
|
const uchar* lm_ptr = accessLinearMemory(linear_memories, f, T, W); |
|
|
|
// Now we do an aligned/unaligned add of dst_ptr and lm_ptr with template_positions elements |
|
int j = 0; |
|
// Process responses 16 at a time if vectorization possible |
|
#if CV_SSE2 |
|
#if CV_SSE3 |
|
if (haveSSE3) |
|
{ |
|
// LDDQU may be more efficient than MOVDQU for unaligned load of next 16 responses |
|
for ( ; j < template_positions - 15; j += 16) |
|
{ |
|
__m128i responses = _mm_lddqu_si128(reinterpret_cast<const __m128i*>(lm_ptr + j)); |
|
__m128i* dst_ptr_sse = reinterpret_cast<__m128i*>(dst_ptr + j); |
|
*dst_ptr_sse = _mm_add_epi8(*dst_ptr_sse, responses); |
|
} |
|
} |
|
else |
|
#endif |
|
if (haveSSE2) |
|
{ |
|
// Fall back to MOVDQU |
|
for ( ; j < template_positions - 15; j += 16) |
|
{ |
|
__m128i responses = _mm_loadu_si128(reinterpret_cast<const __m128i*>(lm_ptr + j)); |
|
__m128i* dst_ptr_sse = reinterpret_cast<__m128i*>(dst_ptr + j); |
|
*dst_ptr_sse = _mm_add_epi8(*dst_ptr_sse, responses); |
|
} |
|
} |
|
#endif |
|
for ( ; j < template_positions; ++j) |
|
dst_ptr[j] = uchar(dst_ptr[j] + lm_ptr[j]); |
|
} |
|
} |
|
|
|
/** |
|
* \brief Compute similarity measure for a given template in a local region. |
|
* |
|
* \param[in] linear_memories Vector of 8 linear memories, one for each label. |
|
* \param[in] templ Template to match against. |
|
* \param[out] dst Destination 8-bit similarity image, 16x16. |
|
* \param size Size (W, H) of the original input image. |
|
* \param T Sampling step. |
|
* \param center Center of the local region. |
|
*/ |
|
static void similarityLocal(const std::vector<Mat>& linear_memories, const Template& templ, |
|
Mat& dst, Size size, int T, Point center) |
|
{ |
|
// Similar to whole-image similarity() above. This version takes a position 'center' |
|
// and computes the energy in the 16x16 patch centered on it. |
|
CV_Assert(templ.features.size() <= 63); |
|
|
|
// Compute the similarity map in a 16x16 patch around center |
|
int W = size.width / T; |
|
dst = Mat::zeros(16, 16, CV_8U); |
|
|
|
// Offset each feature point by the requested center. Further adjust to (-8,-8) from the |
|
// center to get the top-left corner of the 16x16 patch. |
|
// NOTE: We make the offsets multiples of T to agree with results of the original code. |
|
int offset_x = (center.x / T - 8) * T; |
|
int offset_y = (center.y / T - 8) * T; |
|
|
|
#if CV_SSE2 |
|
volatile bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2); |
|
#if CV_SSE3 |
|
volatile bool haveSSE3 = checkHardwareSupport(CV_CPU_SSE3); |
|
#endif |
|
__m128i* dst_ptr_sse = dst.ptr<__m128i>(); |
|
#endif |
|
|
|
for (int i = 0; i < (int)templ.features.size(); ++i) |
|
{ |
|
Feature f = templ.features[i]; |
|
f.x += offset_x; |
|
f.y += offset_y; |
|
// Discard feature if out of bounds, possibly due to applying the offset |
|
if (f.x < 0 || f.y < 0 || f.x >= size.width || f.y >= size.height) |
|
continue; |
|
|
|
const uchar* lm_ptr = accessLinearMemory(linear_memories, f, T, W); |
|
|
|
// Process whole row at a time if vectorization possible |
|
#if CV_SSE2 |
|
#if CV_SSE3 |
|
if (haveSSE3) |
|
{ |
|
// LDDQU may be more efficient than MOVDQU for unaligned load of 16 responses from current row |
|
for (int row = 0; row < 16; ++row) |
|
{ |
|
__m128i aligned = _mm_lddqu_si128(reinterpret_cast<const __m128i*>(lm_ptr)); |
|
dst_ptr_sse[row] = _mm_add_epi8(dst_ptr_sse[row], aligned); |
|
lm_ptr += W; // Step to next row |
|
} |
|
} |
|
else |
|
#endif |
|
if (haveSSE2) |
|
{ |
|
// Fall back to MOVDQU |
|
for (int row = 0; row < 16; ++row) |
|
{ |
|
__m128i aligned = _mm_loadu_si128(reinterpret_cast<const __m128i*>(lm_ptr)); |
|
dst_ptr_sse[row] = _mm_add_epi8(dst_ptr_sse[row], aligned); |
|
lm_ptr += W; // Step to next row |
|
} |
|
} |
|
else |
|
#endif |
|
{ |
|
uchar* dst_ptr = dst.ptr<uchar>(); |
|
for (int row = 0; row < 16; ++row) |
|
{ |
|
for (int col = 0; col < 16; ++col) |
|
dst_ptr[col] = uchar(dst_ptr[col] + lm_ptr[col]); |
|
dst_ptr += 16; |
|
lm_ptr += W; |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void addUnaligned8u16u(const uchar * src1, const uchar * src2, ushort * res, int length) |
|
{ |
|
const uchar * end = src1 + length; |
|
|
|
while (src1 != end) |
|
{ |
|
*res = *src1 + *src2; |
|
|
|
++src1; |
|
++src2; |
|
++res; |
|
} |
|
} |
|
|
|
/** |
|
* \brief Accumulate one or more 8-bit similarity images. |
|
* |
|
* \param[in] similarities Source 8-bit similarity images. |
|
* \param[out] dst Destination 16-bit similarity image. |
|
*/ |
|
static void addSimilarities(const std::vector<Mat>& similarities, Mat& dst) |
|
{ |
|
if (similarities.size() == 1) |
|
{ |
|
similarities[0].convertTo(dst, CV_16U); |
|
} |
|
else |
|
{ |
|
// NOTE: add() seems to be rather slow in the 8U + 8U -> 16U case |
|
dst.create(similarities[0].size(), CV_16U); |
|
addUnaligned8u16u(similarities[0].ptr(), similarities[1].ptr(), dst.ptr<ushort>(), static_cast<int>(dst.total())); |
|
|
|
/// @todo Optimize 16u + 8u -> 16u when more than 2 modalities |
|
for (size_t i = 2; i < similarities.size(); ++i) |
|
add(dst, similarities[i], dst, noArray(), CV_16U); |
|
} |
|
} |
|
|
|
/****************************************************************************************\ |
|
* High-level Detector API * |
|
\****************************************************************************************/ |
|
|
|
Detector::Detector() |
|
{ |
|
} |
|
|
|
Detector::Detector(const std::vector< Ptr<Modality> >& _modalities, |
|
const std::vector<int>& T_pyramid) |
|
: modalities(_modalities), |
|
pyramid_levels(static_cast<int>(T_pyramid.size())), |
|
T_at_level(T_pyramid) |
|
{ |
|
} |
|
|
|
void Detector::match(const std::vector<Mat>& sources, float threshold, std::vector<Match>& matches, |
|
const std::vector<std::string>& class_ids, OutputArrayOfArrays quantized_images, |
|
const std::vector<Mat>& masks) const |
|
{ |
|
matches.clear(); |
|
if (quantized_images.needed()) |
|
quantized_images.create(1, static_cast<int>(pyramid_levels * modalities.size()), CV_8U); |
|
|
|
assert(sources.size() == modalities.size()); |
|
// Initialize each modality with our sources |
|
std::vector< Ptr<QuantizedPyramid> > quantizers; |
|
for (int i = 0; i < (int)modalities.size(); ++i){ |
|
Mat mask, source; |
|
source = sources[i]; |
|
if(!masks.empty()){ |
|
assert(masks.size() == modalities.size()); |
|
mask = masks[i]; |
|
} |
|
assert(mask.empty() || mask.size() == source.size()); |
|
quantizers.push_back(modalities[i]->process(source, mask)); |
|
} |
|
// pyramid level -> modality -> quantization |
|
LinearMemoryPyramid lm_pyramid(pyramid_levels, |
|
std::vector<LinearMemories>(modalities.size(), LinearMemories(8))); |
|
|
|
// For each pyramid level, precompute linear memories for each modality |
|
std::vector<Size> sizes; |
|
for (int l = 0; l < pyramid_levels; ++l) |
|
{ |
|
int T = T_at_level[l]; |
|
std::vector<LinearMemories>& lm_level = lm_pyramid[l]; |
|
|
|
if (l > 0) |
|
{ |
|
for (int i = 0; i < (int)quantizers.size(); ++i) |
|
quantizers[i]->pyrDown(); |
|
} |
|
|
|
Mat quantized, spread_quantized; |
|
std::vector<Mat> response_maps; |
|
for (int i = 0; i < (int)quantizers.size(); ++i) |
|
{ |
|
quantizers[i]->quantize(quantized); |
|
spread(quantized, spread_quantized, T); |
|
computeResponseMaps(spread_quantized, response_maps); |
|
|
|
LinearMemories& memories = lm_level[i]; |
|
for (int j = 0; j < 8; ++j) |
|
linearize(response_maps[j], memories[j], T); |
|
|
|
if (quantized_images.needed()) //use copyTo here to side step reference semantics. |
|
quantized.copyTo(quantized_images.getMatRef(static_cast<int>(l*quantizers.size() + i))); |
|
} |
|
|
|
sizes.push_back(quantized.size()); |
|
} |
|
|
|
if (class_ids.empty()) |
|
{ |
|
// Match all templates |
|
TemplatesMap::const_iterator it = class_templates.begin(), itend = class_templates.end(); |
|
for ( ; it != itend; ++it) |
|
matchClass(lm_pyramid, sizes, threshold, matches, it->first, it->second); |
|
} |
|
else |
|
{ |
|
// Match only templates for the requested class IDs |
|
for (int i = 0; i < (int)class_ids.size(); ++i) |
|
{ |
|
TemplatesMap::const_iterator it = class_templates.find(class_ids[i]); |
|
if (it != class_templates.end()) |
|
matchClass(lm_pyramid, sizes, threshold, matches, it->first, it->second); |
|
} |
|
} |
|
|
|
// Sort matches by similarity, and prune any duplicates introduced by pyramid refinement |
|
std::sort(matches.begin(), matches.end()); |
|
std::vector<Match>::iterator new_end = std::unique(matches.begin(), matches.end()); |
|
matches.erase(new_end, matches.end()); |
|
} |
|
|
|
// Used to filter out weak matches |
|
struct MatchPredicate |
|
{ |
|
MatchPredicate(float _threshold) : threshold(_threshold) {} |
|
bool operator() (const Match& m) { return m.similarity < threshold; } |
|
float threshold; |
|
}; |
|
|
|
void Detector::matchClass(const LinearMemoryPyramid& lm_pyramid, |
|
const std::vector<Size>& sizes, |
|
float threshold, std::vector<Match>& matches, |
|
const std::string& class_id, |
|
const std::vector<TemplatePyramid>& template_pyramids) const |
|
{ |
|
// For each template... |
|
for (size_t template_id = 0; template_id < template_pyramids.size(); ++template_id) |
|
{ |
|
const TemplatePyramid& tp = template_pyramids[template_id]; |
|
|
|
// First match over the whole image at the lowest pyramid level |
|
/// @todo Factor this out into separate function |
|
const std::vector<LinearMemories>& lowest_lm = lm_pyramid.back(); |
|
|
|
// Compute similarity maps for each modality at lowest pyramid level |
|
std::vector<Mat> similarities(modalities.size()); |
|
int lowest_start = static_cast<int>(tp.size() - modalities.size()); |
|
int lowest_T = T_at_level.back(); |
|
int num_features = 0; |
|
for (int i = 0; i < (int)modalities.size(); ++i) |
|
{ |
|
const Template& templ = tp[lowest_start + i]; |
|
num_features += static_cast<int>(templ.features.size()); |
|
similarity(lowest_lm[i], templ, similarities[i], sizes.back(), lowest_T); |
|
} |
|
|
|
// Combine into overall similarity |
|
/// @todo Support weighting the modalities |
|
Mat total_similarity; |
|
addSimilarities(similarities, total_similarity); |
|
|
|
// Convert user-friendly percentage to raw similarity threshold. The percentage |
|
// threshold scales from half the max response (what you would expect from applying |
|
// the template to a completely random image) to the max response. |
|
// NOTE: This assumes max per-feature response is 4, so we scale between [2*nf, 4*nf]. |
|
int raw_threshold = static_cast<int>(2*num_features + (threshold / 100.f) * (2*num_features) + 0.5f); |
|
|
|
// Find initial matches |
|
std::vector<Match> candidates; |
|
for (int r = 0; r < total_similarity.rows; ++r) |
|
{ |
|
ushort* row = total_similarity.ptr<ushort>(r); |
|
for (int c = 0; c < total_similarity.cols; ++c) |
|
{ |
|
int raw_score = row[c]; |
|
if (raw_score > raw_threshold) |
|
{ |
|
int offset = lowest_T / 2 + (lowest_T % 2 - 1); |
|
int x = c * lowest_T + offset; |
|
int y = r * lowest_T + offset; |
|
float score =(raw_score * 100.f) / (4 * num_features) + 0.5f; |
|
candidates.push_back(Match(x, y, score, class_id, static_cast<int>(template_id))); |
|
} |
|
} |
|
} |
|
|
|
// Locally refine each match by marching up the pyramid |
|
for (int l = pyramid_levels - 2; l >= 0; --l) |
|
{ |
|
const std::vector<LinearMemories>& lms = lm_pyramid[l]; |
|
int T = T_at_level[l]; |
|
int start = static_cast<int>(l * modalities.size()); |
|
Size size = sizes[l]; |
|
int border = 8 * T; |
|
int offset = T / 2 + (T % 2 - 1); |
|
int max_x = size.width - tp[start].width - border; |
|
int max_y = size.height - tp[start].height - border; |
|
|
|
std::vector<Mat> similarities2(modalities.size()); |
|
Mat total_similarity2; |
|
for (int m = 0; m < (int)candidates.size(); ++m) |
|
{ |
|
Match& match2 = candidates[m]; |
|
int x = match2.x * 2 + 1; /// @todo Support other pyramid distance |
|
int y = match2.y * 2 + 1; |
|
|
|
// Require 8 (reduced) row/cols to the up/left |
|
x = std::max(x, border); |
|
y = std::max(y, border); |
|
|
|
// Require 8 (reduced) row/cols to the down/left, plus the template size |
|
x = std::min(x, max_x); |
|
y = std::min(y, max_y); |
|
|
|
// Compute local similarity maps for each modality |
|
int numFeatures = 0; |
|
for (int i = 0; i < (int)modalities.size(); ++i) |
|
{ |
|
const Template& templ = tp[start + i]; |
|
numFeatures += static_cast<int>(templ.features.size()); |
|
similarityLocal(lms[i], templ, similarities2[i], size, T, Point(x, y)); |
|
} |
|
addSimilarities(similarities2, total_similarity2); |
|
|
|
// Find best local adjustment |
|
int best_score = 0; |
|
int best_r = -1, best_c = -1; |
|
for (int r = 0; r < total_similarity2.rows; ++r) |
|
{ |
|
ushort* row = total_similarity2.ptr<ushort>(r); |
|
for (int c = 0; c < total_similarity2.cols; ++c) |
|
{ |
|
int score = row[c]; |
|
if (score > best_score) |
|
{ |
|
best_score = score; |
|
best_r = r; |
|
best_c = c; |
|
} |
|
} |
|
} |
|
// Update current match |
|
match2.x = (x / T - 8 + best_c) * T + offset; |
|
match2.y = (y / T - 8 + best_r) * T + offset; |
|
match2.similarity = (best_score * 100.f) / (4 * numFeatures); |
|
} |
|
|
|
// Filter out any matches that drop below the similarity threshold |
|
std::vector<Match>::iterator new_end = std::remove_if(candidates.begin(), candidates.end(), |
|
MatchPredicate(threshold)); |
|
candidates.erase(new_end, candidates.end()); |
|
} |
|
|
|
matches.insert(matches.end(), candidates.begin(), candidates.end()); |
|
} |
|
} |
|
|
|
int Detector::addTemplate(const std::vector<Mat>& sources, const std::string& class_id, |
|
const Mat& object_mask, Rect* bounding_box) |
|
{ |
|
int num_modalities = static_cast<int>(modalities.size()); |
|
std::vector<TemplatePyramid>& template_pyramids = class_templates[class_id]; |
|
int template_id = static_cast<int>(template_pyramids.size()); |
|
|
|
TemplatePyramid tp; |
|
tp.resize(num_modalities * pyramid_levels); |
|
|
|
// For each modality... |
|
for (int i = 0; i < num_modalities; ++i) |
|
{ |
|
// Extract a template at each pyramid level |
|
Ptr<QuantizedPyramid> qp = modalities[i]->process(sources[i], object_mask); |
|
for (int l = 0; l < pyramid_levels; ++l) |
|
{ |
|
/// @todo Could do mask subsampling here instead of in pyrDown() |
|
if (l > 0) |
|
qp->pyrDown(); |
|
|
|
bool success = qp->extractTemplate(tp[l*num_modalities + i]); |
|
if (!success) |
|
return -1; |
|
} |
|
} |
|
|
|
Rect bb = cropTemplates(tp); |
|
if (bounding_box) |
|
*bounding_box = bb; |
|
|
|
/// @todo Can probably avoid a copy of tp here with swap |
|
template_pyramids.push_back(tp); |
|
return template_id; |
|
} |
|
|
|
int Detector::addSyntheticTemplate(const std::vector<Template>& templates, const std::string& class_id) |
|
{ |
|
std::vector<TemplatePyramid>& template_pyramids = class_templates[class_id]; |
|
int template_id = static_cast<int>(template_pyramids.size()); |
|
template_pyramids.push_back(templates); |
|
return template_id; |
|
} |
|
|
|
const std::vector<Template>& Detector::getTemplates(const std::string& class_id, int template_id) const |
|
{ |
|
TemplatesMap::const_iterator i = class_templates.find(class_id); |
|
CV_Assert(i != class_templates.end()); |
|
CV_Assert(i->second.size() > size_t(template_id)); |
|
return i->second[template_id]; |
|
} |
|
|
|
int Detector::numTemplates() const |
|
{ |
|
int ret = 0; |
|
TemplatesMap::const_iterator i = class_templates.begin(), iend = class_templates.end(); |
|
for ( ; i != iend; ++i) |
|
ret += static_cast<int>(i->second.size()); |
|
return ret; |
|
} |
|
|
|
int Detector::numTemplates(const std::string& class_id) const |
|
{ |
|
TemplatesMap::const_iterator i = class_templates.find(class_id); |
|
if (i == class_templates.end()) |
|
return 0; |
|
return static_cast<int>(i->second.size()); |
|
} |
|
|
|
std::vector<std::string> Detector::classIds() const |
|
{ |
|
std::vector<std::string> ids; |
|
TemplatesMap::const_iterator i = class_templates.begin(), iend = class_templates.end(); |
|
for ( ; i != iend; ++i) |
|
{ |
|
ids.push_back(i->first); |
|
} |
|
|
|
return ids; |
|
} |
|
|
|
void Detector::read(const FileNode& fn) |
|
{ |
|
class_templates.clear(); |
|
pyramid_levels = fn["pyramid_levels"]; |
|
fn["T"] >> T_at_level; |
|
|
|
modalities.clear(); |
|
FileNode modalities_fn = fn["modalities"]; |
|
FileNodeIterator it = modalities_fn.begin(), it_end = modalities_fn.end(); |
|
for ( ; it != it_end; ++it) |
|
{ |
|
modalities.push_back(Modality::create(*it)); |
|
} |
|
} |
|
|
|
void Detector::write(FileStorage& fs) const |
|
{ |
|
fs << "pyramid_levels" << pyramid_levels; |
|
fs << "T" << T_at_level; |
|
|
|
fs << "modalities" << "["; |
|
for (int i = 0; i < (int)modalities.size(); ++i) |
|
{ |
|
fs << "{"; |
|
modalities[i]->write(fs); |
|
fs << "}"; |
|
} |
|
fs << "]"; // modalities |
|
} |
|
|
|
std::string Detector::readClass(const FileNode& fn, const std::string &class_id_override) |
|
{ |
|
// Verify compatible with Detector settings |
|
FileNode mod_fn = fn["modalities"]; |
|
CV_Assert(mod_fn.size() == modalities.size()); |
|
FileNodeIterator mod_it = mod_fn.begin(), mod_it_end = mod_fn.end(); |
|
int i = 0; |
|
for ( ; mod_it != mod_it_end; ++mod_it, ++i) |
|
CV_Assert(modalities[i]->name() == (std::string)(*mod_it)); |
|
CV_Assert((int)fn["pyramid_levels"] == pyramid_levels); |
|
|
|
// Detector should not already have this class |
|
std::string class_id; |
|
if (class_id_override.empty()) |
|
{ |
|
std::string class_id_tmp = fn["class_id"]; |
|
CV_Assert(class_templates.find(class_id_tmp) == class_templates.end()); |
|
class_id = class_id_tmp; |
|
} |
|
else |
|
{ |
|
class_id = class_id_override; |
|
} |
|
|
|
TemplatesMap::value_type v(class_id, std::vector<TemplatePyramid>()); |
|
std::vector<TemplatePyramid>& tps = v.second; |
|
int expected_id = 0; |
|
|
|
FileNode tps_fn = fn["template_pyramids"]; |
|
tps.resize(tps_fn.size()); |
|
FileNodeIterator tps_it = tps_fn.begin(), tps_it_end = tps_fn.end(); |
|
for ( ; tps_it != tps_it_end; ++tps_it, ++expected_id) |
|
{ |
|
int template_id = (*tps_it)["template_id"]; |
|
CV_Assert(template_id == expected_id); |
|
FileNode templates_fn = (*tps_it)["templates"]; |
|
tps[template_id].resize(templates_fn.size()); |
|
|
|
FileNodeIterator templ_it = templates_fn.begin(), templ_it_end = templates_fn.end(); |
|
int idx = 0; |
|
for ( ; templ_it != templ_it_end; ++templ_it) |
|
{ |
|
tps[template_id][idx++].read(*templ_it); |
|
} |
|
} |
|
|
|
class_templates.insert(v); |
|
return class_id; |
|
} |
|
|
|
void Detector::writeClass(const std::string& class_id, FileStorage& fs) const |
|
{ |
|
TemplatesMap::const_iterator it = class_templates.find(class_id); |
|
CV_Assert(it != class_templates.end()); |
|
const std::vector<TemplatePyramid>& tps = it->second; |
|
|
|
fs << "class_id" << it->first; |
|
fs << "modalities" << "[:"; |
|
for (size_t i = 0; i < modalities.size(); ++i) |
|
fs << modalities[i]->name(); |
|
fs << "]"; // modalities |
|
fs << "pyramid_levels" << pyramid_levels; |
|
fs << "template_pyramids" << "["; |
|
for (size_t i = 0; i < tps.size(); ++i) |
|
{ |
|
const TemplatePyramid& tp = tps[i]; |
|
fs << "{"; |
|
fs << "template_id" << int(i); //TODO is this cast correct? won't be good if rolls over... |
|
fs << "templates" << "["; |
|
for (size_t j = 0; j < tp.size(); ++j) |
|
{ |
|
fs << "{"; |
|
tp[j].write(fs); |
|
fs << "}"; // current template |
|
} |
|
fs << "]"; // templates |
|
fs << "}"; // current pyramid |
|
} |
|
fs << "]"; // pyramids |
|
} |
|
|
|
void Detector::readClasses(const std::vector<std::string>& class_ids, |
|
const std::string& format) |
|
{ |
|
for (size_t i = 0; i < class_ids.size(); ++i) |
|
{ |
|
const std::string& class_id = class_ids[i]; |
|
std::string filename = cv::format(format.c_str(), class_id.c_str()); |
|
FileStorage fs(filename, FileStorage::READ); |
|
readClass(fs.root()); |
|
} |
|
} |
|
|
|
void Detector::writeClasses(const std::string& format) const |
|
{ |
|
TemplatesMap::const_iterator it = class_templates.begin(), it_end = class_templates.end(); |
|
for ( ; it != it_end; ++it) |
|
{ |
|
const std::string& class_id = it->first; |
|
std::string filename = cv::format(format.c_str(), class_id.c_str()); |
|
FileStorage fs(filename, FileStorage::WRITE); |
|
writeClass(class_id, fs); |
|
} |
|
} |
|
|
|
static const int T_DEFAULTS[] = {5, 8}; |
|
|
|
Ptr<Detector> getDefaultLINE() |
|
{ |
|
std::vector< Ptr<Modality> > modalities; |
|
modalities.push_back(new ColorGradient); |
|
return new Detector(modalities, std::vector<int>(T_DEFAULTS, T_DEFAULTS + 2)); |
|
} |
|
|
|
Ptr<Detector> getDefaultLINEMOD() |
|
{ |
|
std::vector< Ptr<Modality> > modalities; |
|
modalities.push_back(new ColorGradient); |
|
modalities.push_back(new DepthNormal); |
|
return new Detector(modalities, std::vector<int>(T_DEFAULTS, T_DEFAULTS + 2)); |
|
} |
|
|
|
} // namespace linemod |
|
} // namespace cv
|
|
|