mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
4158 lines
120 KiB
4158 lines
120 KiB
|
|
/* pngrutil.c - utilities to read a PNG file |
|
* |
|
* Last changed in libpng 1.5.9 [February 18, 2012] |
|
* Copyright (c) 1998-2012 Glenn Randers-Pehrson |
|
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) |
|
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) |
|
* |
|
* This code is released under the libpng license. |
|
* For conditions of distribution and use, see the disclaimer |
|
* and license in png.h |
|
* |
|
* This file contains routines that are only called from within |
|
* libpng itself during the course of reading an image. |
|
*/ |
|
|
|
#include "pngpriv.h" |
|
|
|
#ifdef PNG_READ_SUPPORTED |
|
|
|
#define png_strtod(p,a,b) strtod(a,b) |
|
|
|
png_uint_32 PNGAPI |
|
png_get_uint_31(png_structp png_ptr, png_const_bytep buf) |
|
{ |
|
png_uint_32 uval = png_get_uint_32(buf); |
|
|
|
if (uval > PNG_UINT_31_MAX) |
|
png_error(png_ptr, "PNG unsigned integer out of range"); |
|
|
|
return (uval); |
|
} |
|
|
|
#if defined(PNG_READ_gAMA_SUPPORTED) || defined(PNG_READ_cHRM_SUPPORTED) |
|
/* The following is a variation on the above for use with the fixed |
|
* point values used for gAMA and cHRM. Instead of png_error it |
|
* issues a warning and returns (-1) - an invalid value because both |
|
* gAMA and cHRM use *unsigned* integers for fixed point values. |
|
*/ |
|
#define PNG_FIXED_ERROR (-1) |
|
|
|
static png_fixed_point /* PRIVATE */ |
|
png_get_fixed_point(png_structp png_ptr, png_const_bytep buf) |
|
{ |
|
png_uint_32 uval = png_get_uint_32(buf); |
|
|
|
if (uval <= PNG_UINT_31_MAX) |
|
return (png_fixed_point)uval; /* known to be in range */ |
|
|
|
/* The caller can turn off the warning by passing NULL. */ |
|
if (png_ptr != NULL) |
|
png_warning(png_ptr, "PNG fixed point integer out of range"); |
|
|
|
return PNG_FIXED_ERROR; |
|
} |
|
#endif |
|
|
|
#ifdef PNG_READ_INT_FUNCTIONS_SUPPORTED |
|
/* NOTE: the read macros will obscure these definitions, so that if |
|
* PNG_USE_READ_MACROS is set the library will not use them internally, |
|
* but the APIs will still be available externally. |
|
* |
|
* The parentheses around "PNGAPI function_name" in the following three |
|
* functions are necessary because they allow the macros to co-exist with |
|
* these (unused but exported) functions. |
|
*/ |
|
|
|
/* Grab an unsigned 32-bit integer from a buffer in big-endian format. */ |
|
png_uint_32 (PNGAPI |
|
png_get_uint_32)(png_const_bytep buf) |
|
{ |
|
png_uint_32 uval = |
|
((png_uint_32)(*(buf )) << 24) + |
|
((png_uint_32)(*(buf + 1)) << 16) + |
|
((png_uint_32)(*(buf + 2)) << 8) + |
|
((png_uint_32)(*(buf + 3)) ) ; |
|
|
|
return uval; |
|
} |
|
|
|
/* Grab a signed 32-bit integer from a buffer in big-endian format. The |
|
* data is stored in the PNG file in two's complement format and there |
|
* is no guarantee that a 'png_int_32' is exactly 32 bits, therefore |
|
* the following code does a two's complement to native conversion. |
|
*/ |
|
png_int_32 (PNGAPI |
|
png_get_int_32)(png_const_bytep buf) |
|
{ |
|
png_uint_32 uval = png_get_uint_32(buf); |
|
if ((uval & 0x80000000) == 0) /* non-negative */ |
|
return uval; |
|
|
|
uval = (uval ^ 0xffffffff) + 1; /* 2's complement: -x = ~x+1 */ |
|
return -(png_int_32)uval; |
|
} |
|
|
|
/* Grab an unsigned 16-bit integer from a buffer in big-endian format. */ |
|
png_uint_16 (PNGAPI |
|
png_get_uint_16)(png_const_bytep buf) |
|
{ |
|
/* ANSI-C requires an int value to accomodate at least 16 bits so this |
|
* works and allows the compiler not to worry about possible narrowing |
|
* on 32 bit systems. (Pre-ANSI systems did not make integers smaller |
|
* than 16 bits either.) |
|
*/ |
|
unsigned int val = |
|
((unsigned int)(*buf) << 8) + |
|
((unsigned int)(*(buf + 1))); |
|
|
|
return (png_uint_16)val; |
|
} |
|
|
|
#endif /* PNG_READ_INT_FUNCTIONS_SUPPORTED */ |
|
|
|
/* Read and check the PNG file signature */ |
|
void /* PRIVATE */ |
|
png_read_sig(png_structp png_ptr, png_infop info_ptr) |
|
{ |
|
png_size_t num_checked, num_to_check; |
|
|
|
/* Exit if the user application does not expect a signature. */ |
|
if (png_ptr->sig_bytes >= 8) |
|
return; |
|
|
|
num_checked = png_ptr->sig_bytes; |
|
num_to_check = 8 - num_checked; |
|
|
|
#ifdef PNG_IO_STATE_SUPPORTED |
|
png_ptr->io_state = PNG_IO_READING | PNG_IO_SIGNATURE; |
|
#endif |
|
|
|
/* The signature must be serialized in a single I/O call. */ |
|
png_read_data(png_ptr, &(info_ptr->signature[num_checked]), num_to_check); |
|
png_ptr->sig_bytes = 8; |
|
|
|
if (png_sig_cmp(info_ptr->signature, num_checked, num_to_check)) |
|
{ |
|
if (num_checked < 4 && |
|
png_sig_cmp(info_ptr->signature, num_checked, num_to_check - 4)) |
|
png_error(png_ptr, "Not a PNG file"); |
|
else |
|
png_error(png_ptr, "PNG file corrupted by ASCII conversion"); |
|
} |
|
if (num_checked < 3) |
|
png_ptr->mode |= PNG_HAVE_PNG_SIGNATURE; |
|
} |
|
|
|
/* Read the chunk header (length + type name). |
|
* Put the type name into png_ptr->chunk_name, and return the length. |
|
*/ |
|
png_uint_32 /* PRIVATE */ |
|
png_read_chunk_header(png_structp png_ptr) |
|
{ |
|
png_byte buf[8]; |
|
png_uint_32 length; |
|
|
|
#ifdef PNG_IO_STATE_SUPPORTED |
|
png_ptr->io_state = PNG_IO_READING | PNG_IO_CHUNK_HDR; |
|
#endif |
|
|
|
/* Read the length and the chunk name. |
|
* This must be performed in a single I/O call. |
|
*/ |
|
png_read_data(png_ptr, buf, 8); |
|
length = png_get_uint_31(png_ptr, buf); |
|
|
|
/* Put the chunk name into png_ptr->chunk_name. */ |
|
png_ptr->chunk_name = PNG_CHUNK_FROM_STRING(buf+4); |
|
|
|
png_debug2(0, "Reading %lx chunk, length = %lu", |
|
(unsigned long)png_ptr->chunk_name, (unsigned long)length); |
|
|
|
/* Reset the crc and run it over the chunk name. */ |
|
png_reset_crc(png_ptr); |
|
png_calculate_crc(png_ptr, buf + 4, 4); |
|
|
|
/* Check to see if chunk name is valid. */ |
|
png_check_chunk_name(png_ptr, png_ptr->chunk_name); |
|
|
|
#ifdef PNG_IO_STATE_SUPPORTED |
|
png_ptr->io_state = PNG_IO_READING | PNG_IO_CHUNK_DATA; |
|
#endif |
|
|
|
return length; |
|
} |
|
|
|
/* Read data, and (optionally) run it through the CRC. */ |
|
void /* PRIVATE */ |
|
png_crc_read(png_structp png_ptr, png_bytep buf, png_size_t length) |
|
{ |
|
if (png_ptr == NULL) |
|
return; |
|
|
|
png_read_data(png_ptr, buf, length); |
|
png_calculate_crc(png_ptr, buf, length); |
|
} |
|
|
|
/* Optionally skip data and then check the CRC. Depending on whether we |
|
* are reading a ancillary or critical chunk, and how the program has set |
|
* things up, we may calculate the CRC on the data and print a message. |
|
* Returns '1' if there was a CRC error, '0' otherwise. |
|
*/ |
|
int /* PRIVATE */ |
|
png_crc_finish(png_structp png_ptr, png_uint_32 skip) |
|
{ |
|
png_size_t i; |
|
png_size_t istop = png_ptr->zbuf_size; |
|
|
|
for (i = (png_size_t)skip; i > istop; i -= istop) |
|
{ |
|
png_crc_read(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size); |
|
} |
|
|
|
if (i) |
|
{ |
|
png_crc_read(png_ptr, png_ptr->zbuf, i); |
|
} |
|
|
|
if (png_crc_error(png_ptr)) |
|
{ |
|
if (PNG_CHUNK_ANCILLIARY(png_ptr->chunk_name) ? |
|
!(png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_NOWARN) : |
|
(png_ptr->flags & PNG_FLAG_CRC_CRITICAL_USE)) |
|
{ |
|
png_chunk_warning(png_ptr, "CRC error"); |
|
} |
|
|
|
else |
|
{ |
|
png_chunk_benign_error(png_ptr, "CRC error"); |
|
return (0); |
|
} |
|
|
|
return (1); |
|
} |
|
|
|
return (0); |
|
} |
|
|
|
/* Compare the CRC stored in the PNG file with that calculated by libpng from |
|
* the data it has read thus far. |
|
*/ |
|
int /* PRIVATE */ |
|
png_crc_error(png_structp png_ptr) |
|
{ |
|
png_byte crc_bytes[4]; |
|
png_uint_32 crc; |
|
int need_crc = 1; |
|
|
|
if (PNG_CHUNK_ANCILLIARY(png_ptr->chunk_name)) |
|
{ |
|
if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) == |
|
(PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN)) |
|
need_crc = 0; |
|
} |
|
|
|
else /* critical */ |
|
{ |
|
if (png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE) |
|
need_crc = 0; |
|
} |
|
|
|
#ifdef PNG_IO_STATE_SUPPORTED |
|
png_ptr->io_state = PNG_IO_READING | PNG_IO_CHUNK_CRC; |
|
#endif |
|
|
|
/* The chunk CRC must be serialized in a single I/O call. */ |
|
png_read_data(png_ptr, crc_bytes, 4); |
|
|
|
if (need_crc) |
|
{ |
|
crc = png_get_uint_32(crc_bytes); |
|
return ((int)(crc != png_ptr->crc)); |
|
} |
|
|
|
else |
|
return (0); |
|
} |
|
|
|
#ifdef PNG_READ_COMPRESSED_TEXT_SUPPORTED |
|
static png_size_t |
|
png_inflate(png_structp png_ptr, png_bytep data, png_size_t size, |
|
png_bytep output, png_size_t output_size) |
|
{ |
|
png_size_t count = 0; |
|
|
|
/* zlib can't necessarily handle more than 65535 bytes at once (i.e. it can't |
|
* even necessarily handle 65536 bytes) because the type uInt is "16 bits or |
|
* more". Consequently it is necessary to chunk the input to zlib. This |
|
* code uses ZLIB_IO_MAX, from pngpriv.h, as the maximum (the maximum value |
|
* that can be stored in a uInt.) It is possible to set ZLIB_IO_MAX to a |
|
* lower value in pngpriv.h and this may sometimes have a performance |
|
* advantage, because it forces access of the input data to be separated from |
|
* at least some of the use by some period of time. |
|
*/ |
|
png_ptr->zstream.next_in = data; |
|
/* avail_in is set below from 'size' */ |
|
png_ptr->zstream.avail_in = 0; |
|
|
|
while (1) |
|
{ |
|
int ret, avail; |
|
|
|
/* The setting of 'avail_in' used to be outside the loop; by setting it |
|
* inside it is possible to chunk the input to zlib and simply rely on |
|
* zlib to advance the 'next_in' pointer. This allows arbitrary amounts o |
|
* data to be passed through zlib at the unavoidable cost of requiring a |
|
* window save (memcpy of up to 32768 output bytes) every ZLIB_IO_MAX |
|
* input bytes. |
|
*/ |
|
if (png_ptr->zstream.avail_in == 0 && size > 0) |
|
{ |
|
if (size <= ZLIB_IO_MAX) |
|
{ |
|
/* The value is less than ZLIB_IO_MAX so the cast is safe: */ |
|
png_ptr->zstream.avail_in = (uInt)size; |
|
size = 0; |
|
} |
|
|
|
else |
|
{ |
|
png_ptr->zstream.avail_in = ZLIB_IO_MAX; |
|
size -= ZLIB_IO_MAX; |
|
} |
|
} |
|
|
|
/* Reset the output buffer each time round - we empty it |
|
* after every inflate call. |
|
*/ |
|
png_ptr->zstream.next_out = png_ptr->zbuf; |
|
png_ptr->zstream.avail_out = png_ptr->zbuf_size; |
|
|
|
ret = inflate(&png_ptr->zstream, Z_NO_FLUSH); |
|
avail = png_ptr->zbuf_size - png_ptr->zstream.avail_out; |
|
|
|
/* First copy/count any new output - but only if we didn't |
|
* get an error code. |
|
*/ |
|
if ((ret == Z_OK || ret == Z_STREAM_END) && avail > 0) |
|
{ |
|
png_size_t space = avail; /* > 0, see above */ |
|
|
|
if (output != 0 && output_size > count) |
|
{ |
|
png_size_t copy = output_size - count; |
|
|
|
if (space < copy) |
|
copy = space; |
|
|
|
png_memcpy(output + count, png_ptr->zbuf, copy); |
|
} |
|
count += space; |
|
} |
|
|
|
if (ret == Z_OK) |
|
continue; |
|
|
|
/* Termination conditions - always reset the zstream, it |
|
* must be left in inflateInit state. |
|
*/ |
|
png_ptr->zstream.avail_in = 0; |
|
inflateReset(&png_ptr->zstream); |
|
|
|
if (ret == Z_STREAM_END) |
|
return count; /* NOTE: may be zero. */ |
|
|
|
/* Now handle the error codes - the API always returns 0 |
|
* and the error message is dumped into the uncompressed |
|
* buffer if available. |
|
*/ |
|
# ifdef PNG_WARNINGS_SUPPORTED |
|
{ |
|
png_const_charp msg; |
|
|
|
if (png_ptr->zstream.msg != 0) |
|
msg = png_ptr->zstream.msg; |
|
|
|
else switch (ret) |
|
{ |
|
case Z_BUF_ERROR: |
|
msg = "Buffer error in compressed datastream"; |
|
break; |
|
|
|
case Z_DATA_ERROR: |
|
msg = "Data error in compressed datastream"; |
|
break; |
|
|
|
default: |
|
msg = "Incomplete compressed datastream"; |
|
break; |
|
} |
|
|
|
png_chunk_warning(png_ptr, msg); |
|
} |
|
# endif |
|
|
|
/* 0 means an error - notice that this code simply ignores |
|
* zero length compressed chunks as a result. |
|
*/ |
|
return 0; |
|
} |
|
} |
|
|
|
/* |
|
* Decompress trailing data in a chunk. The assumption is that chunkdata |
|
* points at an allocated area holding the contents of a chunk with a |
|
* trailing compressed part. What we get back is an allocated area |
|
* holding the original prefix part and an uncompressed version of the |
|
* trailing part (the malloc area passed in is freed). |
|
*/ |
|
void /* PRIVATE */ |
|
png_decompress_chunk(png_structp png_ptr, int comp_type, |
|
png_size_t chunklength, |
|
png_size_t prefix_size, png_size_t *newlength) |
|
{ |
|
/* The caller should guarantee this */ |
|
if (prefix_size > chunklength) |
|
{ |
|
/* The recovery is to delete the chunk. */ |
|
png_warning(png_ptr, "invalid chunklength"); |
|
prefix_size = 0; /* To delete everything */ |
|
} |
|
|
|
else if (comp_type == PNG_COMPRESSION_TYPE_BASE) |
|
{ |
|
png_size_t expanded_size = png_inflate(png_ptr, |
|
(png_bytep)(png_ptr->chunkdata + prefix_size), |
|
chunklength - prefix_size, |
|
0, /* output */ |
|
0); /* output size */ |
|
|
|
/* Now check the limits on this chunk - if the limit fails the |
|
* compressed data will be removed, the prefix will remain. |
|
*/ |
|
if (prefix_size >= (~(png_size_t)0) - 1 || |
|
expanded_size >= (~(png_size_t)0) - 1 - prefix_size |
|
#ifdef PNG_SET_CHUNK_MALLOC_LIMIT_SUPPORTED |
|
|| (png_ptr->user_chunk_malloc_max && |
|
(prefix_size + expanded_size >= png_ptr->user_chunk_malloc_max - 1)) |
|
#else |
|
# ifdef PNG_USER_CHUNK_MALLOC_MAX |
|
|| ((PNG_USER_CHUNK_MALLOC_MAX > 0) && |
|
prefix_size + expanded_size >= PNG_USER_CHUNK_MALLOC_MAX - 1) |
|
# endif |
|
#endif |
|
) |
|
png_warning(png_ptr, "Exceeded size limit while expanding chunk"); |
|
|
|
/* If the size is zero either there was an error and a message |
|
* has already been output (warning) or the size really is zero |
|
* and we have nothing to do - the code will exit through the |
|
* error case below. |
|
*/ |
|
else if (expanded_size > 0) |
|
{ |
|
/* Success (maybe) - really uncompress the chunk. */ |
|
png_size_t new_size = 0; |
|
png_charp text = (png_charp)png_malloc_warn(png_ptr, |
|
prefix_size + expanded_size + 1); |
|
|
|
if (text != NULL) |
|
{ |
|
png_memcpy(text, png_ptr->chunkdata, prefix_size); |
|
new_size = png_inflate(png_ptr, |
|
(png_bytep)(png_ptr->chunkdata + prefix_size), |
|
chunklength - prefix_size, |
|
(png_bytep)(text + prefix_size), expanded_size); |
|
text[prefix_size + expanded_size] = 0; /* just in case */ |
|
|
|
if (new_size == expanded_size) |
|
{ |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = text; |
|
*newlength = prefix_size + expanded_size; |
|
return; /* The success return! */ |
|
} |
|
|
|
png_warning(png_ptr, "png_inflate logic error"); |
|
png_free(png_ptr, text); |
|
} |
|
|
|
else |
|
png_warning(png_ptr, "Not enough memory to decompress chunk"); |
|
} |
|
} |
|
|
|
else /* if (comp_type != PNG_COMPRESSION_TYPE_BASE) */ |
|
{ |
|
PNG_WARNING_PARAMETERS(p) |
|
png_warning_parameter_signed(p, 1, PNG_NUMBER_FORMAT_d, comp_type); |
|
png_formatted_warning(png_ptr, p, "Unknown compression type @1"); |
|
|
|
/* The recovery is to simply drop the data. */ |
|
} |
|
|
|
/* Generic error return - leave the prefix, delete the compressed |
|
* data, reallocate the chunkdata to remove the potentially large |
|
* amount of compressed data. |
|
*/ |
|
{ |
|
png_charp text = (png_charp)png_malloc_warn(png_ptr, prefix_size + 1); |
|
|
|
if (text != NULL) |
|
{ |
|
if (prefix_size > 0) |
|
png_memcpy(text, png_ptr->chunkdata, prefix_size); |
|
|
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = text; |
|
|
|
/* This is an extra zero in the 'uncompressed' part. */ |
|
*(png_ptr->chunkdata + prefix_size) = 0x00; |
|
} |
|
/* Ignore a malloc error here - it is safe. */ |
|
} |
|
|
|
*newlength = prefix_size; |
|
} |
|
#endif /* PNG_READ_COMPRESSED_TEXT_SUPPORTED */ |
|
|
|
/* Read and check the IDHR chunk */ |
|
void /* PRIVATE */ |
|
png_handle_IHDR(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) |
|
{ |
|
png_byte buf[13]; |
|
png_uint_32 width, height; |
|
int bit_depth, color_type, compression_type, filter_type; |
|
int interlace_type; |
|
|
|
png_debug(1, "in png_handle_IHDR"); |
|
|
|
if (png_ptr->mode & PNG_HAVE_IHDR) |
|
png_error(png_ptr, "Out of place IHDR"); |
|
|
|
/* Check the length */ |
|
if (length != 13) |
|
png_error(png_ptr, "Invalid IHDR chunk"); |
|
|
|
png_ptr->mode |= PNG_HAVE_IHDR; |
|
|
|
png_crc_read(png_ptr, buf, 13); |
|
png_crc_finish(png_ptr, 0); |
|
|
|
width = png_get_uint_31(png_ptr, buf); |
|
height = png_get_uint_31(png_ptr, buf + 4); |
|
bit_depth = buf[8]; |
|
color_type = buf[9]; |
|
compression_type = buf[10]; |
|
filter_type = buf[11]; |
|
interlace_type = buf[12]; |
|
|
|
/* Set internal variables */ |
|
png_ptr->width = width; |
|
png_ptr->height = height; |
|
png_ptr->bit_depth = (png_byte)bit_depth; |
|
png_ptr->interlaced = (png_byte)interlace_type; |
|
png_ptr->color_type = (png_byte)color_type; |
|
#ifdef PNG_MNG_FEATURES_SUPPORTED |
|
png_ptr->filter_type = (png_byte)filter_type; |
|
#endif |
|
png_ptr->compression_type = (png_byte)compression_type; |
|
|
|
/* Find number of channels */ |
|
switch (png_ptr->color_type) |
|
{ |
|
default: /* invalid, png_set_IHDR calls png_error */ |
|
case PNG_COLOR_TYPE_GRAY: |
|
case PNG_COLOR_TYPE_PALETTE: |
|
png_ptr->channels = 1; |
|
break; |
|
|
|
case PNG_COLOR_TYPE_RGB: |
|
png_ptr->channels = 3; |
|
break; |
|
|
|
case PNG_COLOR_TYPE_GRAY_ALPHA: |
|
png_ptr->channels = 2; |
|
break; |
|
|
|
case PNG_COLOR_TYPE_RGB_ALPHA: |
|
png_ptr->channels = 4; |
|
break; |
|
} |
|
|
|
/* Set up other useful info */ |
|
png_ptr->pixel_depth = (png_byte)(png_ptr->bit_depth * |
|
png_ptr->channels); |
|
png_ptr->rowbytes = PNG_ROWBYTES(png_ptr->pixel_depth, png_ptr->width); |
|
png_debug1(3, "bit_depth = %d", png_ptr->bit_depth); |
|
png_debug1(3, "channels = %d", png_ptr->channels); |
|
png_debug1(3, "rowbytes = %lu", (unsigned long)png_ptr->rowbytes); |
|
png_set_IHDR(png_ptr, info_ptr, width, height, bit_depth, |
|
color_type, interlace_type, compression_type, filter_type); |
|
} |
|
|
|
/* Read and check the palette */ |
|
void /* PRIVATE */ |
|
png_handle_PLTE(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) |
|
{ |
|
png_color palette[PNG_MAX_PALETTE_LENGTH]; |
|
int num, i; |
|
#ifdef PNG_POINTER_INDEXING_SUPPORTED |
|
png_colorp pal_ptr; |
|
#endif |
|
|
|
png_debug(1, "in png_handle_PLTE"); |
|
|
|
if (!(png_ptr->mode & PNG_HAVE_IHDR)) |
|
png_error(png_ptr, "Missing IHDR before PLTE"); |
|
|
|
else if (png_ptr->mode & PNG_HAVE_IDAT) |
|
{ |
|
png_warning(png_ptr, "Invalid PLTE after IDAT"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
else if (png_ptr->mode & PNG_HAVE_PLTE) |
|
png_error(png_ptr, "Duplicate PLTE chunk"); |
|
|
|
png_ptr->mode |= PNG_HAVE_PLTE; |
|
|
|
if (!(png_ptr->color_type&PNG_COLOR_MASK_COLOR)) |
|
{ |
|
png_warning(png_ptr, |
|
"Ignoring PLTE chunk in grayscale PNG"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
#ifndef PNG_READ_OPT_PLTE_SUPPORTED |
|
if (png_ptr->color_type != PNG_COLOR_TYPE_PALETTE) |
|
{ |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
#endif |
|
|
|
if (length > 3*PNG_MAX_PALETTE_LENGTH || length % 3) |
|
{ |
|
if (png_ptr->color_type != PNG_COLOR_TYPE_PALETTE) |
|
{ |
|
png_warning(png_ptr, "Invalid palette chunk"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
else |
|
{ |
|
png_error(png_ptr, "Invalid palette chunk"); |
|
} |
|
} |
|
|
|
num = (int)length / 3; |
|
|
|
#ifdef PNG_POINTER_INDEXING_SUPPORTED |
|
for (i = 0, pal_ptr = palette; i < num; i++, pal_ptr++) |
|
{ |
|
png_byte buf[3]; |
|
|
|
png_crc_read(png_ptr, buf, 3); |
|
pal_ptr->red = buf[0]; |
|
pal_ptr->green = buf[1]; |
|
pal_ptr->blue = buf[2]; |
|
} |
|
#else |
|
for (i = 0; i < num; i++) |
|
{ |
|
png_byte buf[3]; |
|
|
|
png_crc_read(png_ptr, buf, 3); |
|
/* Don't depend upon png_color being any order */ |
|
palette[i].red = buf[0]; |
|
palette[i].green = buf[1]; |
|
palette[i].blue = buf[2]; |
|
} |
|
#endif |
|
|
|
/* If we actually need the PLTE chunk (ie for a paletted image), we do |
|
* whatever the normal CRC configuration tells us. However, if we |
|
* have an RGB image, the PLTE can be considered ancillary, so |
|
* we will act as though it is. |
|
*/ |
|
#ifndef PNG_READ_OPT_PLTE_SUPPORTED |
|
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) |
|
#endif |
|
{ |
|
png_crc_finish(png_ptr, 0); |
|
} |
|
|
|
#ifndef PNG_READ_OPT_PLTE_SUPPORTED |
|
else if (png_crc_error(png_ptr)) /* Only if we have a CRC error */ |
|
{ |
|
/* If we don't want to use the data from an ancillary chunk, |
|
* we have two options: an error abort, or a warning and we |
|
* ignore the data in this chunk (which should be OK, since |
|
* it's considered ancillary for a RGB or RGBA image). |
|
*/ |
|
if (!(png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_USE)) |
|
{ |
|
if (png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_NOWARN) |
|
{ |
|
png_chunk_benign_error(png_ptr, "CRC error"); |
|
} |
|
|
|
else |
|
{ |
|
png_chunk_warning(png_ptr, "CRC error"); |
|
return; |
|
} |
|
} |
|
|
|
/* Otherwise, we (optionally) emit a warning and use the chunk. */ |
|
else if (!(png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_NOWARN)) |
|
{ |
|
png_chunk_warning(png_ptr, "CRC error"); |
|
} |
|
} |
|
#endif |
|
|
|
png_set_PLTE(png_ptr, info_ptr, palette, num); |
|
|
|
#ifdef PNG_READ_tRNS_SUPPORTED |
|
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) |
|
{ |
|
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_tRNS)) |
|
{ |
|
if (png_ptr->num_trans > (png_uint_16)num) |
|
{ |
|
png_warning(png_ptr, "Truncating incorrect tRNS chunk length"); |
|
png_ptr->num_trans = (png_uint_16)num; |
|
} |
|
|
|
if (info_ptr->num_trans > (png_uint_16)num) |
|
{ |
|
png_warning(png_ptr, "Truncating incorrect info tRNS chunk length"); |
|
info_ptr->num_trans = (png_uint_16)num; |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
} |
|
|
|
void /* PRIVATE */ |
|
png_handle_IEND(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) |
|
{ |
|
png_debug(1, "in png_handle_IEND"); |
|
|
|
if (!(png_ptr->mode & PNG_HAVE_IHDR) || !(png_ptr->mode & PNG_HAVE_IDAT)) |
|
{ |
|
png_error(png_ptr, "No image in file"); |
|
} |
|
|
|
png_ptr->mode |= (PNG_AFTER_IDAT | PNG_HAVE_IEND); |
|
|
|
if (length != 0) |
|
{ |
|
png_warning(png_ptr, "Incorrect IEND chunk length"); |
|
} |
|
|
|
png_crc_finish(png_ptr, length); |
|
|
|
PNG_UNUSED(info_ptr) /* Quiet compiler warnings about unused info_ptr */ |
|
} |
|
|
|
#ifdef PNG_READ_gAMA_SUPPORTED |
|
void /* PRIVATE */ |
|
png_handle_gAMA(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) |
|
{ |
|
png_fixed_point igamma; |
|
png_byte buf[4]; |
|
|
|
png_debug(1, "in png_handle_gAMA"); |
|
|
|
if (!(png_ptr->mode & PNG_HAVE_IHDR)) |
|
png_error(png_ptr, "Missing IHDR before gAMA"); |
|
|
|
else if (png_ptr->mode & PNG_HAVE_IDAT) |
|
{ |
|
png_warning(png_ptr, "Invalid gAMA after IDAT"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
else if (png_ptr->mode & PNG_HAVE_PLTE) |
|
/* Should be an error, but we can cope with it */ |
|
png_warning(png_ptr, "Out of place gAMA chunk"); |
|
|
|
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_gAMA) |
|
#ifdef PNG_READ_sRGB_SUPPORTED |
|
&& !(info_ptr->valid & PNG_INFO_sRGB) |
|
#endif |
|
) |
|
{ |
|
png_warning(png_ptr, "Duplicate gAMA chunk"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
if (length != 4) |
|
{ |
|
png_warning(png_ptr, "Incorrect gAMA chunk length"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
png_crc_read(png_ptr, buf, 4); |
|
|
|
if (png_crc_finish(png_ptr, 0)) |
|
return; |
|
|
|
igamma = png_get_fixed_point(NULL, buf); |
|
|
|
/* Check for zero gamma or an error. */ |
|
if (igamma <= 0) |
|
{ |
|
png_warning(png_ptr, |
|
"Ignoring gAMA chunk with out of range gamma"); |
|
|
|
return; |
|
} |
|
|
|
# ifdef PNG_READ_sRGB_SUPPORTED |
|
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sRGB)) |
|
{ |
|
if (PNG_OUT_OF_RANGE(igamma, 45500, 500)) |
|
{ |
|
PNG_WARNING_PARAMETERS(p) |
|
png_warning_parameter_signed(p, 1, PNG_NUMBER_FORMAT_fixed, igamma); |
|
png_formatted_warning(png_ptr, p, |
|
"Ignoring incorrect gAMA value @1 when sRGB is also present"); |
|
return; |
|
} |
|
} |
|
# endif /* PNG_READ_sRGB_SUPPORTED */ |
|
|
|
# ifdef PNG_READ_GAMMA_SUPPORTED |
|
/* Gamma correction on read is supported. */ |
|
png_ptr->gamma = igamma; |
|
# endif |
|
/* And set the 'info' structure members. */ |
|
png_set_gAMA_fixed(png_ptr, info_ptr, igamma); |
|
} |
|
#endif |
|
|
|
#ifdef PNG_READ_sBIT_SUPPORTED |
|
void /* PRIVATE */ |
|
png_handle_sBIT(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) |
|
{ |
|
png_size_t truelen; |
|
png_byte buf[4]; |
|
|
|
png_debug(1, "in png_handle_sBIT"); |
|
|
|
buf[0] = buf[1] = buf[2] = buf[3] = 0; |
|
|
|
if (!(png_ptr->mode & PNG_HAVE_IHDR)) |
|
png_error(png_ptr, "Missing IHDR before sBIT"); |
|
|
|
else if (png_ptr->mode & PNG_HAVE_IDAT) |
|
{ |
|
png_warning(png_ptr, "Invalid sBIT after IDAT"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
else if (png_ptr->mode & PNG_HAVE_PLTE) |
|
{ |
|
/* Should be an error, but we can cope with it */ |
|
png_warning(png_ptr, "Out of place sBIT chunk"); |
|
} |
|
|
|
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sBIT)) |
|
{ |
|
png_warning(png_ptr, "Duplicate sBIT chunk"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) |
|
truelen = 3; |
|
|
|
else |
|
truelen = (png_size_t)png_ptr->channels; |
|
|
|
if (length != truelen || length > 4) |
|
{ |
|
png_warning(png_ptr, "Incorrect sBIT chunk length"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
png_crc_read(png_ptr, buf, truelen); |
|
|
|
if (png_crc_finish(png_ptr, 0)) |
|
return; |
|
|
|
if (png_ptr->color_type & PNG_COLOR_MASK_COLOR) |
|
{ |
|
png_ptr->sig_bit.red = buf[0]; |
|
png_ptr->sig_bit.green = buf[1]; |
|
png_ptr->sig_bit.blue = buf[2]; |
|
png_ptr->sig_bit.alpha = buf[3]; |
|
} |
|
|
|
else |
|
{ |
|
png_ptr->sig_bit.gray = buf[0]; |
|
png_ptr->sig_bit.red = buf[0]; |
|
png_ptr->sig_bit.green = buf[0]; |
|
png_ptr->sig_bit.blue = buf[0]; |
|
png_ptr->sig_bit.alpha = buf[1]; |
|
} |
|
|
|
png_set_sBIT(png_ptr, info_ptr, &(png_ptr->sig_bit)); |
|
} |
|
#endif |
|
|
|
#ifdef PNG_READ_cHRM_SUPPORTED |
|
void /* PRIVATE */ |
|
png_handle_cHRM(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) |
|
{ |
|
png_byte buf[32]; |
|
png_fixed_point x_white, y_white, x_red, y_red, x_green, y_green, x_blue, |
|
y_blue; |
|
|
|
png_debug(1, "in png_handle_cHRM"); |
|
|
|
if (!(png_ptr->mode & PNG_HAVE_IHDR)) |
|
png_error(png_ptr, "Missing IHDR before cHRM"); |
|
|
|
else if (png_ptr->mode & PNG_HAVE_IDAT) |
|
{ |
|
png_warning(png_ptr, "Invalid cHRM after IDAT"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
else if (png_ptr->mode & PNG_HAVE_PLTE) |
|
/* Should be an error, but we can cope with it */ |
|
png_warning(png_ptr, "Out of place cHRM chunk"); |
|
|
|
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_cHRM) |
|
# ifdef PNG_READ_sRGB_SUPPORTED |
|
&& !(info_ptr->valid & PNG_INFO_sRGB) |
|
# endif |
|
) |
|
{ |
|
png_warning(png_ptr, "Duplicate cHRM chunk"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
if (length != 32) |
|
{ |
|
png_warning(png_ptr, "Incorrect cHRM chunk length"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
png_crc_read(png_ptr, buf, 32); |
|
|
|
if (png_crc_finish(png_ptr, 0)) |
|
return; |
|
|
|
x_white = png_get_fixed_point(NULL, buf); |
|
y_white = png_get_fixed_point(NULL, buf + 4); |
|
x_red = png_get_fixed_point(NULL, buf + 8); |
|
y_red = png_get_fixed_point(NULL, buf + 12); |
|
x_green = png_get_fixed_point(NULL, buf + 16); |
|
y_green = png_get_fixed_point(NULL, buf + 20); |
|
x_blue = png_get_fixed_point(NULL, buf + 24); |
|
y_blue = png_get_fixed_point(NULL, buf + 28); |
|
|
|
if (x_white == PNG_FIXED_ERROR || |
|
y_white == PNG_FIXED_ERROR || |
|
x_red == PNG_FIXED_ERROR || |
|
y_red == PNG_FIXED_ERROR || |
|
x_green == PNG_FIXED_ERROR || |
|
y_green == PNG_FIXED_ERROR || |
|
x_blue == PNG_FIXED_ERROR || |
|
y_blue == PNG_FIXED_ERROR) |
|
{ |
|
png_warning(png_ptr, "Ignoring cHRM chunk with negative chromaticities"); |
|
return; |
|
} |
|
|
|
#ifdef PNG_READ_sRGB_SUPPORTED |
|
if ((info_ptr != NULL) && (info_ptr->valid & PNG_INFO_sRGB)) |
|
{ |
|
if (PNG_OUT_OF_RANGE(x_white, 31270, 1000) || |
|
PNG_OUT_OF_RANGE(y_white, 32900, 1000) || |
|
PNG_OUT_OF_RANGE(x_red, 64000, 1000) || |
|
PNG_OUT_OF_RANGE(y_red, 33000, 1000) || |
|
PNG_OUT_OF_RANGE(x_green, 30000, 1000) || |
|
PNG_OUT_OF_RANGE(y_green, 60000, 1000) || |
|
PNG_OUT_OF_RANGE(x_blue, 15000, 1000) || |
|
PNG_OUT_OF_RANGE(y_blue, 6000, 1000)) |
|
{ |
|
PNG_WARNING_PARAMETERS(p) |
|
|
|
png_warning_parameter_signed(p, 1, PNG_NUMBER_FORMAT_fixed, x_white); |
|
png_warning_parameter_signed(p, 2, PNG_NUMBER_FORMAT_fixed, y_white); |
|
png_warning_parameter_signed(p, 3, PNG_NUMBER_FORMAT_fixed, x_red); |
|
png_warning_parameter_signed(p, 4, PNG_NUMBER_FORMAT_fixed, y_red); |
|
png_warning_parameter_signed(p, 5, PNG_NUMBER_FORMAT_fixed, x_green); |
|
png_warning_parameter_signed(p, 6, PNG_NUMBER_FORMAT_fixed, y_green); |
|
png_warning_parameter_signed(p, 7, PNG_NUMBER_FORMAT_fixed, x_blue); |
|
png_warning_parameter_signed(p, 8, PNG_NUMBER_FORMAT_fixed, y_blue); |
|
|
|
png_formatted_warning(png_ptr, p, |
|
"Ignoring incorrect cHRM white(@1,@2) r(@3,@4)g(@5,@6)b(@7,@8) " |
|
"when sRGB is also present"); |
|
} |
|
return; |
|
} |
|
#endif /* PNG_READ_sRGB_SUPPORTED */ |
|
|
|
#ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED |
|
/* Store the _white values as default coefficients for the rgb to gray |
|
* operation if it is supported. Check if the transform is already set to |
|
* avoid destroying the transform values. |
|
*/ |
|
if (!png_ptr->rgb_to_gray_coefficients_set) |
|
{ |
|
/* png_set_background has not been called and we haven't seen an sRGB |
|
* chunk yet. Find the XYZ of the three end points. |
|
*/ |
|
png_XYZ XYZ; |
|
png_xy xy; |
|
|
|
xy.redx = x_red; |
|
xy.redy = y_red; |
|
xy.greenx = x_green; |
|
xy.greeny = y_green; |
|
xy.bluex = x_blue; |
|
xy.bluey = y_blue; |
|
xy.whitex = x_white; |
|
xy.whitey = y_white; |
|
|
|
if (png_XYZ_from_xy_checked(png_ptr, &XYZ, xy)) |
|
{ |
|
/* The success case, because XYZ_from_xy normalises to a reference |
|
* white Y of 1.0 we just need to scale the numbers. This should |
|
* always work just fine. It is an internal error if this overflows. |
|
*/ |
|
{ |
|
png_fixed_point r, g, b; |
|
if (png_muldiv(&r, XYZ.redY, 32768, PNG_FP_1) && |
|
r >= 0 && r <= 32768 && |
|
png_muldiv(&g, XYZ.greenY, 32768, PNG_FP_1) && |
|
g >= 0 && g <= 32768 && |
|
png_muldiv(&b, XYZ.blueY, 32768, PNG_FP_1) && |
|
b >= 0 && b <= 32768 && |
|
r+g+b <= 32769) |
|
{ |
|
/* We allow 0 coefficients here. r+g+b may be 32769 if two or |
|
* all of the coefficients were rounded up. Handle this by |
|
* reducing the *largest* coefficient by 1; this matches the |
|
* approach used for the default coefficients in pngrtran.c |
|
*/ |
|
int add = 0; |
|
|
|
if (r+g+b > 32768) |
|
add = -1; |
|
else if (r+g+b < 32768) |
|
add = 1; |
|
|
|
if (add != 0) |
|
{ |
|
if (g >= r && g >= b) |
|
g += add; |
|
else if (r >= g && r >= b) |
|
r += add; |
|
else |
|
b += add; |
|
} |
|
|
|
/* Check for an internal error. */ |
|
if (r+g+b != 32768) |
|
png_error(png_ptr, |
|
"internal error handling cHRM coefficients"); |
|
|
|
png_ptr->rgb_to_gray_red_coeff = (png_uint_16)r; |
|
png_ptr->rgb_to_gray_green_coeff = (png_uint_16)g; |
|
} |
|
|
|
/* This is a png_error at present even though it could be ignored - |
|
* it should never happen, but it is important that if it does, the |
|
* bug is fixed. |
|
*/ |
|
else |
|
png_error(png_ptr, "internal error handling cHRM->XYZ"); |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
png_set_cHRM_fixed(png_ptr, info_ptr, x_white, y_white, x_red, y_red, |
|
x_green, y_green, x_blue, y_blue); |
|
} |
|
#endif |
|
|
|
#ifdef PNG_READ_sRGB_SUPPORTED |
|
void /* PRIVATE */ |
|
png_handle_sRGB(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) |
|
{ |
|
int intent; |
|
png_byte buf[1]; |
|
|
|
png_debug(1, "in png_handle_sRGB"); |
|
|
|
if (!(png_ptr->mode & PNG_HAVE_IHDR)) |
|
png_error(png_ptr, "Missing IHDR before sRGB"); |
|
|
|
else if (png_ptr->mode & PNG_HAVE_IDAT) |
|
{ |
|
png_warning(png_ptr, "Invalid sRGB after IDAT"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
else if (png_ptr->mode & PNG_HAVE_PLTE) |
|
/* Should be an error, but we can cope with it */ |
|
png_warning(png_ptr, "Out of place sRGB chunk"); |
|
|
|
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sRGB)) |
|
{ |
|
png_warning(png_ptr, "Duplicate sRGB chunk"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
if (length != 1) |
|
{ |
|
png_warning(png_ptr, "Incorrect sRGB chunk length"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
png_crc_read(png_ptr, buf, 1); |
|
|
|
if (png_crc_finish(png_ptr, 0)) |
|
return; |
|
|
|
intent = buf[0]; |
|
|
|
/* Check for bad intent */ |
|
if (intent >= PNG_sRGB_INTENT_LAST) |
|
{ |
|
png_warning(png_ptr, "Unknown sRGB intent"); |
|
return; |
|
} |
|
|
|
#if defined(PNG_READ_gAMA_SUPPORTED) && defined(PNG_READ_GAMMA_SUPPORTED) |
|
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_gAMA)) |
|
{ |
|
if (PNG_OUT_OF_RANGE(info_ptr->gamma, 45500, 500)) |
|
{ |
|
PNG_WARNING_PARAMETERS(p) |
|
|
|
png_warning_parameter_signed(p, 1, PNG_NUMBER_FORMAT_fixed, |
|
info_ptr->gamma); |
|
|
|
png_formatted_warning(png_ptr, p, |
|
"Ignoring incorrect gAMA value @1 when sRGB is also present"); |
|
} |
|
} |
|
#endif /* PNG_READ_gAMA_SUPPORTED */ |
|
|
|
#ifdef PNG_READ_cHRM_SUPPORTED |
|
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_cHRM)) |
|
if (PNG_OUT_OF_RANGE(info_ptr->x_white, 31270, 1000) || |
|
PNG_OUT_OF_RANGE(info_ptr->y_white, 32900, 1000) || |
|
PNG_OUT_OF_RANGE(info_ptr->x_red, 64000, 1000) || |
|
PNG_OUT_OF_RANGE(info_ptr->y_red, 33000, 1000) || |
|
PNG_OUT_OF_RANGE(info_ptr->x_green, 30000, 1000) || |
|
PNG_OUT_OF_RANGE(info_ptr->y_green, 60000, 1000) || |
|
PNG_OUT_OF_RANGE(info_ptr->x_blue, 15000, 1000) || |
|
PNG_OUT_OF_RANGE(info_ptr->y_blue, 6000, 1000)) |
|
{ |
|
png_warning(png_ptr, |
|
"Ignoring incorrect cHRM value when sRGB is also present"); |
|
} |
|
#endif /* PNG_READ_cHRM_SUPPORTED */ |
|
|
|
/* This is recorded for use when handling the cHRM chunk above. An sRGB |
|
* chunk unconditionally overwrites the coefficients for grayscale conversion |
|
* too. |
|
*/ |
|
png_ptr->is_sRGB = 1; |
|
|
|
# ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED |
|
/* Don't overwrite user supplied values: */ |
|
if (!png_ptr->rgb_to_gray_coefficients_set) |
|
{ |
|
/* These numbers come from the sRGB specification (or, since one has to |
|
* pay much money to get a copy, the wikipedia sRGB page) the |
|
* chromaticity values quoted have been inverted to get the reverse |
|
* transformation from RGB to XYZ and the 'Y' coefficients scaled by |
|
* 32768 (then rounded). |
|
* |
|
* sRGB and ITU Rec-709 both truncate the values for the D65 white |
|
* point to four digits and, even though it actually stores five |
|
* digits, the PNG spec gives the truncated value. |
|
* |
|
* This means that when the chromaticities are converted back to XYZ |
|
* end points we end up with (6968,23435,2366), which, as described in |
|
* pngrtran.c, would overflow. If the five digit precision and up is |
|
* used we get, instead: |
|
* |
|
* 6968*R + 23435*G + 2365*B |
|
* |
|
* (Notice that this rounds the blue coefficient down, rather than the |
|
* choice used in pngrtran.c which is to round the green one down.) |
|
*/ |
|
png_ptr->rgb_to_gray_red_coeff = 6968; /* 0.212639005871510 */ |
|
png_ptr->rgb_to_gray_green_coeff = 23434; /* 0.715168678767756 */ |
|
/* png_ptr->rgb_to_gray_blue_coeff = 2366; 0.072192315360734 */ |
|
|
|
/* The following keeps the cHRM chunk from destroying the |
|
* coefficients again in the event that it follows the sRGB chunk. |
|
*/ |
|
png_ptr->rgb_to_gray_coefficients_set = 1; |
|
} |
|
# endif |
|
|
|
png_set_sRGB_gAMA_and_cHRM(png_ptr, info_ptr, intent); |
|
} |
|
#endif /* PNG_READ_sRGB_SUPPORTED */ |
|
|
|
#ifdef PNG_READ_iCCP_SUPPORTED |
|
void /* PRIVATE */ |
|
png_handle_iCCP(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) |
|
/* Note: this does not properly handle chunks that are > 64K under DOS */ |
|
{ |
|
png_byte compression_type; |
|
png_bytep pC; |
|
png_charp profile; |
|
png_uint_32 skip = 0; |
|
png_uint_32 profile_size; |
|
png_alloc_size_t profile_length; |
|
png_size_t slength, prefix_length, data_length; |
|
|
|
png_debug(1, "in png_handle_iCCP"); |
|
|
|
if (!(png_ptr->mode & PNG_HAVE_IHDR)) |
|
png_error(png_ptr, "Missing IHDR before iCCP"); |
|
|
|
else if (png_ptr->mode & PNG_HAVE_IDAT) |
|
{ |
|
png_warning(png_ptr, "Invalid iCCP after IDAT"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
else if (png_ptr->mode & PNG_HAVE_PLTE) |
|
/* Should be an error, but we can cope with it */ |
|
png_warning(png_ptr, "Out of place iCCP chunk"); |
|
|
|
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_iCCP)) |
|
{ |
|
png_warning(png_ptr, "Duplicate iCCP chunk"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
#ifdef PNG_MAX_MALLOC_64K |
|
if (length > (png_uint_32)65535L) |
|
{ |
|
png_warning(png_ptr, "iCCP chunk too large to fit in memory"); |
|
skip = length - (png_uint_32)65535L; |
|
length = (png_uint_32)65535L; |
|
} |
|
#endif |
|
|
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = (png_charp)png_malloc(png_ptr, length + 1); |
|
slength = length; |
|
png_crc_read(png_ptr, (png_bytep)png_ptr->chunkdata, slength); |
|
|
|
if (png_crc_finish(png_ptr, skip)) |
|
{ |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
return; |
|
} |
|
|
|
png_ptr->chunkdata[slength] = 0x00; |
|
|
|
for (profile = png_ptr->chunkdata; *profile; profile++) |
|
/* Empty loop to find end of name */ ; |
|
|
|
++profile; |
|
|
|
/* There should be at least one zero (the compression type byte) |
|
* following the separator, and we should be on it |
|
*/ |
|
if (profile >= png_ptr->chunkdata + slength - 1) |
|
{ |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
png_warning(png_ptr, "Malformed iCCP chunk"); |
|
return; |
|
} |
|
|
|
/* Compression_type should always be zero */ |
|
compression_type = *profile++; |
|
|
|
if (compression_type) |
|
{ |
|
png_warning(png_ptr, "Ignoring nonzero compression type in iCCP chunk"); |
|
compression_type = 0x00; /* Reset it to zero (libpng-1.0.6 through 1.0.8 |
|
wrote nonzero) */ |
|
} |
|
|
|
prefix_length = profile - png_ptr->chunkdata; |
|
png_decompress_chunk(png_ptr, compression_type, |
|
slength, prefix_length, &data_length); |
|
|
|
profile_length = data_length - prefix_length; |
|
|
|
if (prefix_length > data_length || profile_length < 4) |
|
{ |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
png_warning(png_ptr, "Profile size field missing from iCCP chunk"); |
|
return; |
|
} |
|
|
|
/* Check the profile_size recorded in the first 32 bits of the ICC profile */ |
|
pC = (png_bytep)(png_ptr->chunkdata + prefix_length); |
|
profile_size = ((*(pC )) << 24) | |
|
((*(pC + 1)) << 16) | |
|
((*(pC + 2)) << 8) | |
|
((*(pC + 3)) ); |
|
|
|
/* NOTE: the following guarantees that 'profile_length' fits into 32 bits, |
|
* because profile_size is a 32 bit value. |
|
*/ |
|
if (profile_size < profile_length) |
|
profile_length = profile_size; |
|
|
|
/* And the following guarantees that profile_size == profile_length. */ |
|
if (profile_size > profile_length) |
|
{ |
|
PNG_WARNING_PARAMETERS(p) |
|
|
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
|
|
png_warning_parameter_unsigned(p, 1, PNG_NUMBER_FORMAT_u, profile_size); |
|
png_warning_parameter_unsigned(p, 2, PNG_NUMBER_FORMAT_u, profile_length); |
|
png_formatted_warning(png_ptr, p, |
|
"Ignoring iCCP chunk with declared size = @1 and actual length = @2"); |
|
return; |
|
} |
|
|
|
png_set_iCCP(png_ptr, info_ptr, png_ptr->chunkdata, |
|
compression_type, (png_bytep)png_ptr->chunkdata + prefix_length, |
|
profile_size); |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
} |
|
#endif /* PNG_READ_iCCP_SUPPORTED */ |
|
|
|
#ifdef PNG_READ_sPLT_SUPPORTED |
|
void /* PRIVATE */ |
|
png_handle_sPLT(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) |
|
/* Note: this does not properly handle chunks that are > 64K under DOS */ |
|
{ |
|
png_bytep entry_start; |
|
png_sPLT_t new_palette; |
|
png_sPLT_entryp pp; |
|
png_uint_32 data_length; |
|
int entry_size, i; |
|
png_uint_32 skip = 0; |
|
png_size_t slength; |
|
png_uint_32 dl; |
|
png_size_t max_dl; |
|
|
|
png_debug(1, "in png_handle_sPLT"); |
|
|
|
#ifdef PNG_USER_LIMITS_SUPPORTED |
|
|
|
if (png_ptr->user_chunk_cache_max != 0) |
|
{ |
|
if (png_ptr->user_chunk_cache_max == 1) |
|
{ |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
if (--png_ptr->user_chunk_cache_max == 1) |
|
{ |
|
png_warning(png_ptr, "No space in chunk cache for sPLT"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
} |
|
#endif |
|
|
|
if (!(png_ptr->mode & PNG_HAVE_IHDR)) |
|
png_error(png_ptr, "Missing IHDR before sPLT"); |
|
|
|
else if (png_ptr->mode & PNG_HAVE_IDAT) |
|
{ |
|
png_warning(png_ptr, "Invalid sPLT after IDAT"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
#ifdef PNG_MAX_MALLOC_64K |
|
if (length > (png_uint_32)65535L) |
|
{ |
|
png_warning(png_ptr, "sPLT chunk too large to fit in memory"); |
|
skip = length - (png_uint_32)65535L; |
|
length = (png_uint_32)65535L; |
|
} |
|
#endif |
|
|
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = (png_charp)png_malloc(png_ptr, length + 1); |
|
|
|
/* WARNING: this may break if size_t is less than 32 bits; it is assumed |
|
* that the PNG_MAX_MALLOC_64K test is enabled in this case, but this is a |
|
* potential breakage point if the types in pngconf.h aren't exactly right. |
|
*/ |
|
slength = length; |
|
png_crc_read(png_ptr, (png_bytep)png_ptr->chunkdata, slength); |
|
|
|
if (png_crc_finish(png_ptr, skip)) |
|
{ |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
return; |
|
} |
|
|
|
png_ptr->chunkdata[slength] = 0x00; |
|
|
|
for (entry_start = (png_bytep)png_ptr->chunkdata; *entry_start; |
|
entry_start++) |
|
/* Empty loop to find end of name */ ; |
|
|
|
++entry_start; |
|
|
|
/* A sample depth should follow the separator, and we should be on it */ |
|
if (entry_start > (png_bytep)png_ptr->chunkdata + slength - 2) |
|
{ |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
png_warning(png_ptr, "malformed sPLT chunk"); |
|
return; |
|
} |
|
|
|
new_palette.depth = *entry_start++; |
|
entry_size = (new_palette.depth == 8 ? 6 : 10); |
|
/* This must fit in a png_uint_32 because it is derived from the original |
|
* chunk data length (and use 'length', not 'slength' here for clarity - |
|
* they are guaranteed to be the same, see the tests above.) |
|
*/ |
|
data_length = length - (png_uint_32)(entry_start - |
|
(png_bytep)png_ptr->chunkdata); |
|
|
|
/* Integrity-check the data length */ |
|
if (data_length % entry_size) |
|
{ |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
png_warning(png_ptr, "sPLT chunk has bad length"); |
|
return; |
|
} |
|
|
|
dl = (png_int_32)(data_length / entry_size); |
|
max_dl = PNG_SIZE_MAX / png_sizeof(png_sPLT_entry); |
|
|
|
if (dl > max_dl) |
|
{ |
|
png_warning(png_ptr, "sPLT chunk too long"); |
|
return; |
|
} |
|
|
|
new_palette.nentries = (png_int_32)(data_length / entry_size); |
|
|
|
new_palette.entries = (png_sPLT_entryp)png_malloc_warn( |
|
png_ptr, new_palette.nentries * png_sizeof(png_sPLT_entry)); |
|
|
|
if (new_palette.entries == NULL) |
|
{ |
|
png_warning(png_ptr, "sPLT chunk requires too much memory"); |
|
return; |
|
} |
|
|
|
#ifdef PNG_POINTER_INDEXING_SUPPORTED |
|
for (i = 0; i < new_palette.nentries; i++) |
|
{ |
|
pp = new_palette.entries + i; |
|
|
|
if (new_palette.depth == 8) |
|
{ |
|
pp->red = *entry_start++; |
|
pp->green = *entry_start++; |
|
pp->blue = *entry_start++; |
|
pp->alpha = *entry_start++; |
|
} |
|
|
|
else |
|
{ |
|
pp->red = png_get_uint_16(entry_start); entry_start += 2; |
|
pp->green = png_get_uint_16(entry_start); entry_start += 2; |
|
pp->blue = png_get_uint_16(entry_start); entry_start += 2; |
|
pp->alpha = png_get_uint_16(entry_start); entry_start += 2; |
|
} |
|
|
|
pp->frequency = png_get_uint_16(entry_start); entry_start += 2; |
|
} |
|
#else |
|
pp = new_palette.entries; |
|
|
|
for (i = 0; i < new_palette.nentries; i++) |
|
{ |
|
|
|
if (new_palette.depth == 8) |
|
{ |
|
pp[i].red = *entry_start++; |
|
pp[i].green = *entry_start++; |
|
pp[i].blue = *entry_start++; |
|
pp[i].alpha = *entry_start++; |
|
} |
|
|
|
else |
|
{ |
|
pp[i].red = png_get_uint_16(entry_start); entry_start += 2; |
|
pp[i].green = png_get_uint_16(entry_start); entry_start += 2; |
|
pp[i].blue = png_get_uint_16(entry_start); entry_start += 2; |
|
pp[i].alpha = png_get_uint_16(entry_start); entry_start += 2; |
|
} |
|
|
|
pp[i].frequency = png_get_uint_16(entry_start); entry_start += 2; |
|
} |
|
#endif |
|
|
|
/* Discard all chunk data except the name and stash that */ |
|
new_palette.name = png_ptr->chunkdata; |
|
|
|
png_set_sPLT(png_ptr, info_ptr, &new_palette, 1); |
|
|
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
png_free(png_ptr, new_palette.entries); |
|
} |
|
#endif /* PNG_READ_sPLT_SUPPORTED */ |
|
|
|
#ifdef PNG_READ_tRNS_SUPPORTED |
|
void /* PRIVATE */ |
|
png_handle_tRNS(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) |
|
{ |
|
png_byte readbuf[PNG_MAX_PALETTE_LENGTH]; |
|
|
|
png_debug(1, "in png_handle_tRNS"); |
|
|
|
if (!(png_ptr->mode & PNG_HAVE_IHDR)) |
|
png_error(png_ptr, "Missing IHDR before tRNS"); |
|
|
|
else if (png_ptr->mode & PNG_HAVE_IDAT) |
|
{ |
|
png_warning(png_ptr, "Invalid tRNS after IDAT"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_tRNS)) |
|
{ |
|
png_warning(png_ptr, "Duplicate tRNS chunk"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
if (png_ptr->color_type == PNG_COLOR_TYPE_GRAY) |
|
{ |
|
png_byte buf[2]; |
|
|
|
if (length != 2) |
|
{ |
|
png_warning(png_ptr, "Incorrect tRNS chunk length"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
png_crc_read(png_ptr, buf, 2); |
|
png_ptr->num_trans = 1; |
|
png_ptr->trans_color.gray = png_get_uint_16(buf); |
|
} |
|
|
|
else if (png_ptr->color_type == PNG_COLOR_TYPE_RGB) |
|
{ |
|
png_byte buf[6]; |
|
|
|
if (length != 6) |
|
{ |
|
png_warning(png_ptr, "Incorrect tRNS chunk length"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
png_crc_read(png_ptr, buf, (png_size_t)length); |
|
png_ptr->num_trans = 1; |
|
png_ptr->trans_color.red = png_get_uint_16(buf); |
|
png_ptr->trans_color.green = png_get_uint_16(buf + 2); |
|
png_ptr->trans_color.blue = png_get_uint_16(buf + 4); |
|
} |
|
|
|
else if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) |
|
{ |
|
if (!(png_ptr->mode & PNG_HAVE_PLTE)) |
|
{ |
|
/* Should be an error, but we can cope with it. */ |
|
png_warning(png_ptr, "Missing PLTE before tRNS"); |
|
} |
|
|
|
if (length > (png_uint_32)png_ptr->num_palette || |
|
length > PNG_MAX_PALETTE_LENGTH) |
|
{ |
|
png_warning(png_ptr, "Incorrect tRNS chunk length"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
if (length == 0) |
|
{ |
|
png_warning(png_ptr, "Zero length tRNS chunk"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
png_crc_read(png_ptr, readbuf, (png_size_t)length); |
|
png_ptr->num_trans = (png_uint_16)length; |
|
} |
|
|
|
else |
|
{ |
|
png_warning(png_ptr, "tRNS chunk not allowed with alpha channel"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
if (png_crc_finish(png_ptr, 0)) |
|
{ |
|
png_ptr->num_trans = 0; |
|
return; |
|
} |
|
|
|
png_set_tRNS(png_ptr, info_ptr, readbuf, png_ptr->num_trans, |
|
&(png_ptr->trans_color)); |
|
} |
|
#endif |
|
|
|
#ifdef PNG_READ_bKGD_SUPPORTED |
|
void /* PRIVATE */ |
|
png_handle_bKGD(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) |
|
{ |
|
png_size_t truelen; |
|
png_byte buf[6]; |
|
png_color_16 background; |
|
|
|
png_debug(1, "in png_handle_bKGD"); |
|
|
|
if (!(png_ptr->mode & PNG_HAVE_IHDR)) |
|
png_error(png_ptr, "Missing IHDR before bKGD"); |
|
|
|
else if (png_ptr->mode & PNG_HAVE_IDAT) |
|
{ |
|
png_warning(png_ptr, "Invalid bKGD after IDAT"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
else if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE && |
|
!(png_ptr->mode & PNG_HAVE_PLTE)) |
|
{ |
|
png_warning(png_ptr, "Missing PLTE before bKGD"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_bKGD)) |
|
{ |
|
png_warning(png_ptr, "Duplicate bKGD chunk"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) |
|
truelen = 1; |
|
|
|
else if (png_ptr->color_type & PNG_COLOR_MASK_COLOR) |
|
truelen = 6; |
|
|
|
else |
|
truelen = 2; |
|
|
|
if (length != truelen) |
|
{ |
|
png_warning(png_ptr, "Incorrect bKGD chunk length"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
png_crc_read(png_ptr, buf, truelen); |
|
|
|
if (png_crc_finish(png_ptr, 0)) |
|
return; |
|
|
|
/* We convert the index value into RGB components so that we can allow |
|
* arbitrary RGB values for background when we have transparency, and |
|
* so it is easy to determine the RGB values of the background color |
|
* from the info_ptr struct. |
|
*/ |
|
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) |
|
{ |
|
background.index = buf[0]; |
|
|
|
if (info_ptr && info_ptr->num_palette) |
|
{ |
|
if (buf[0] >= info_ptr->num_palette) |
|
{ |
|
png_warning(png_ptr, "Incorrect bKGD chunk index value"); |
|
return; |
|
} |
|
|
|
background.red = (png_uint_16)png_ptr->palette[buf[0]].red; |
|
background.green = (png_uint_16)png_ptr->palette[buf[0]].green; |
|
background.blue = (png_uint_16)png_ptr->palette[buf[0]].blue; |
|
} |
|
|
|
else |
|
background.red = background.green = background.blue = 0; |
|
|
|
background.gray = 0; |
|
} |
|
|
|
else if (!(png_ptr->color_type & PNG_COLOR_MASK_COLOR)) /* GRAY */ |
|
{ |
|
background.index = 0; |
|
background.red = |
|
background.green = |
|
background.blue = |
|
background.gray = png_get_uint_16(buf); |
|
} |
|
|
|
else |
|
{ |
|
background.index = 0; |
|
background.red = png_get_uint_16(buf); |
|
background.green = png_get_uint_16(buf + 2); |
|
background.blue = png_get_uint_16(buf + 4); |
|
background.gray = 0; |
|
} |
|
|
|
png_set_bKGD(png_ptr, info_ptr, &background); |
|
} |
|
#endif |
|
|
|
#ifdef PNG_READ_hIST_SUPPORTED |
|
void /* PRIVATE */ |
|
png_handle_hIST(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) |
|
{ |
|
unsigned int num, i; |
|
png_uint_16 readbuf[PNG_MAX_PALETTE_LENGTH]; |
|
|
|
png_debug(1, "in png_handle_hIST"); |
|
|
|
if (!(png_ptr->mode & PNG_HAVE_IHDR)) |
|
png_error(png_ptr, "Missing IHDR before hIST"); |
|
|
|
else if (png_ptr->mode & PNG_HAVE_IDAT) |
|
{ |
|
png_warning(png_ptr, "Invalid hIST after IDAT"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
else if (!(png_ptr->mode & PNG_HAVE_PLTE)) |
|
{ |
|
png_warning(png_ptr, "Missing PLTE before hIST"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_hIST)) |
|
{ |
|
png_warning(png_ptr, "Duplicate hIST chunk"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
num = length / 2 ; |
|
|
|
if (num != (unsigned int)png_ptr->num_palette || num > |
|
(unsigned int)PNG_MAX_PALETTE_LENGTH) |
|
{ |
|
png_warning(png_ptr, "Incorrect hIST chunk length"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
for (i = 0; i < num; i++) |
|
{ |
|
png_byte buf[2]; |
|
|
|
png_crc_read(png_ptr, buf, 2); |
|
readbuf[i] = png_get_uint_16(buf); |
|
} |
|
|
|
if (png_crc_finish(png_ptr, 0)) |
|
return; |
|
|
|
png_set_hIST(png_ptr, info_ptr, readbuf); |
|
} |
|
#endif |
|
|
|
#ifdef PNG_READ_pHYs_SUPPORTED |
|
void /* PRIVATE */ |
|
png_handle_pHYs(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) |
|
{ |
|
png_byte buf[9]; |
|
png_uint_32 res_x, res_y; |
|
int unit_type; |
|
|
|
png_debug(1, "in png_handle_pHYs"); |
|
|
|
if (!(png_ptr->mode & PNG_HAVE_IHDR)) |
|
png_error(png_ptr, "Missing IHDR before pHYs"); |
|
|
|
else if (png_ptr->mode & PNG_HAVE_IDAT) |
|
{ |
|
png_warning(png_ptr, "Invalid pHYs after IDAT"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_pHYs)) |
|
{ |
|
png_warning(png_ptr, "Duplicate pHYs chunk"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
if (length != 9) |
|
{ |
|
png_warning(png_ptr, "Incorrect pHYs chunk length"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
png_crc_read(png_ptr, buf, 9); |
|
|
|
if (png_crc_finish(png_ptr, 0)) |
|
return; |
|
|
|
res_x = png_get_uint_32(buf); |
|
res_y = png_get_uint_32(buf + 4); |
|
unit_type = buf[8]; |
|
png_set_pHYs(png_ptr, info_ptr, res_x, res_y, unit_type); |
|
} |
|
#endif |
|
|
|
#ifdef PNG_READ_oFFs_SUPPORTED |
|
void /* PRIVATE */ |
|
png_handle_oFFs(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) |
|
{ |
|
png_byte buf[9]; |
|
png_int_32 offset_x, offset_y; |
|
int unit_type; |
|
|
|
png_debug(1, "in png_handle_oFFs"); |
|
|
|
if (!(png_ptr->mode & PNG_HAVE_IHDR)) |
|
png_error(png_ptr, "Missing IHDR before oFFs"); |
|
|
|
else if (png_ptr->mode & PNG_HAVE_IDAT) |
|
{ |
|
png_warning(png_ptr, "Invalid oFFs after IDAT"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_oFFs)) |
|
{ |
|
png_warning(png_ptr, "Duplicate oFFs chunk"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
if (length != 9) |
|
{ |
|
png_warning(png_ptr, "Incorrect oFFs chunk length"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
png_crc_read(png_ptr, buf, 9); |
|
|
|
if (png_crc_finish(png_ptr, 0)) |
|
return; |
|
|
|
offset_x = png_get_int_32(buf); |
|
offset_y = png_get_int_32(buf + 4); |
|
unit_type = buf[8]; |
|
png_set_oFFs(png_ptr, info_ptr, offset_x, offset_y, unit_type); |
|
} |
|
#endif |
|
|
|
#ifdef PNG_READ_pCAL_SUPPORTED |
|
/* Read the pCAL chunk (described in the PNG Extensions document) */ |
|
void /* PRIVATE */ |
|
png_handle_pCAL(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) |
|
{ |
|
png_int_32 X0, X1; |
|
png_byte type, nparams; |
|
png_charp buf, units, endptr; |
|
png_charpp params; |
|
png_size_t slength; |
|
int i; |
|
|
|
png_debug(1, "in png_handle_pCAL"); |
|
|
|
if (!(png_ptr->mode & PNG_HAVE_IHDR)) |
|
png_error(png_ptr, "Missing IHDR before pCAL"); |
|
|
|
else if (png_ptr->mode & PNG_HAVE_IDAT) |
|
{ |
|
png_warning(png_ptr, "Invalid pCAL after IDAT"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_pCAL)) |
|
{ |
|
png_warning(png_ptr, "Duplicate pCAL chunk"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
png_debug1(2, "Allocating and reading pCAL chunk data (%u bytes)", |
|
length + 1); |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = (png_charp)png_malloc_warn(png_ptr, length + 1); |
|
|
|
if (png_ptr->chunkdata == NULL) |
|
{ |
|
png_warning(png_ptr, "No memory for pCAL purpose"); |
|
return; |
|
} |
|
|
|
slength = length; |
|
png_crc_read(png_ptr, (png_bytep)png_ptr->chunkdata, slength); |
|
|
|
if (png_crc_finish(png_ptr, 0)) |
|
{ |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
return; |
|
} |
|
|
|
png_ptr->chunkdata[slength] = 0x00; /* Null terminate the last string */ |
|
|
|
png_debug(3, "Finding end of pCAL purpose string"); |
|
for (buf = png_ptr->chunkdata; *buf; buf++) |
|
/* Empty loop */ ; |
|
|
|
endptr = png_ptr->chunkdata + slength; |
|
|
|
/* We need to have at least 12 bytes after the purpose string |
|
* in order to get the parameter information. |
|
*/ |
|
if (endptr <= buf + 12) |
|
{ |
|
png_warning(png_ptr, "Invalid pCAL data"); |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
return; |
|
} |
|
|
|
png_debug(3, "Reading pCAL X0, X1, type, nparams, and units"); |
|
X0 = png_get_int_32((png_bytep)buf+1); |
|
X1 = png_get_int_32((png_bytep)buf+5); |
|
type = buf[9]; |
|
nparams = buf[10]; |
|
units = buf + 11; |
|
|
|
png_debug(3, "Checking pCAL equation type and number of parameters"); |
|
/* Check that we have the right number of parameters for known |
|
* equation types. |
|
*/ |
|
if ((type == PNG_EQUATION_LINEAR && nparams != 2) || |
|
(type == PNG_EQUATION_BASE_E && nparams != 3) || |
|
(type == PNG_EQUATION_ARBITRARY && nparams != 3) || |
|
(type == PNG_EQUATION_HYPERBOLIC && nparams != 4)) |
|
{ |
|
png_warning(png_ptr, "Invalid pCAL parameters for equation type"); |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
return; |
|
} |
|
|
|
else if (type >= PNG_EQUATION_LAST) |
|
{ |
|
png_warning(png_ptr, "Unrecognized equation type for pCAL chunk"); |
|
} |
|
|
|
for (buf = units; *buf; buf++) |
|
/* Empty loop to move past the units string. */ ; |
|
|
|
png_debug(3, "Allocating pCAL parameters array"); |
|
|
|
params = (png_charpp)png_malloc_warn(png_ptr, |
|
(png_size_t)(nparams * png_sizeof(png_charp))); |
|
|
|
if (params == NULL) |
|
{ |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
png_warning(png_ptr, "No memory for pCAL params"); |
|
return; |
|
} |
|
|
|
/* Get pointers to the start of each parameter string. */ |
|
for (i = 0; i < (int)nparams; i++) |
|
{ |
|
buf++; /* Skip the null string terminator from previous parameter. */ |
|
|
|
png_debug1(3, "Reading pCAL parameter %d", i); |
|
|
|
for (params[i] = buf; buf <= endptr && *buf != 0x00; buf++) |
|
/* Empty loop to move past each parameter string */ ; |
|
|
|
/* Make sure we haven't run out of data yet */ |
|
if (buf > endptr) |
|
{ |
|
png_warning(png_ptr, "Invalid pCAL data"); |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
png_free(png_ptr, params); |
|
return; |
|
} |
|
} |
|
|
|
png_set_pCAL(png_ptr, info_ptr, png_ptr->chunkdata, X0, X1, type, nparams, |
|
units, params); |
|
|
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
png_free(png_ptr, params); |
|
} |
|
#endif |
|
|
|
#ifdef PNG_READ_sCAL_SUPPORTED |
|
/* Read the sCAL chunk */ |
|
void /* PRIVATE */ |
|
png_handle_sCAL(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) |
|
{ |
|
png_size_t slength, i; |
|
int state; |
|
|
|
png_debug(1, "in png_handle_sCAL"); |
|
|
|
if (!(png_ptr->mode & PNG_HAVE_IHDR)) |
|
png_error(png_ptr, "Missing IHDR before sCAL"); |
|
|
|
else if (png_ptr->mode & PNG_HAVE_IDAT) |
|
{ |
|
png_warning(png_ptr, "Invalid sCAL after IDAT"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sCAL)) |
|
{ |
|
png_warning(png_ptr, "Duplicate sCAL chunk"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
/* Need unit type, width, \0, height: minimum 4 bytes */ |
|
else if (length < 4) |
|
{ |
|
png_warning(png_ptr, "sCAL chunk too short"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
png_debug1(2, "Allocating and reading sCAL chunk data (%u bytes)", |
|
length + 1); |
|
|
|
png_ptr->chunkdata = (png_charp)png_malloc_warn(png_ptr, length + 1); |
|
|
|
if (png_ptr->chunkdata == NULL) |
|
{ |
|
png_warning(png_ptr, "Out of memory while processing sCAL chunk"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
slength = length; |
|
png_crc_read(png_ptr, (png_bytep)png_ptr->chunkdata, slength); |
|
png_ptr->chunkdata[slength] = 0x00; /* Null terminate the last string */ |
|
|
|
if (png_crc_finish(png_ptr, 0)) |
|
{ |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
return; |
|
} |
|
|
|
/* Validate the unit. */ |
|
if (png_ptr->chunkdata[0] != 1 && png_ptr->chunkdata[0] != 2) |
|
{ |
|
png_warning(png_ptr, "Invalid sCAL ignored: invalid unit"); |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
return; |
|
} |
|
|
|
/* Validate the ASCII numbers, need two ASCII numbers separated by |
|
* a '\0' and they need to fit exactly in the chunk data. |
|
*/ |
|
i = 1; |
|
state = 0; |
|
|
|
if (!png_check_fp_number(png_ptr->chunkdata, slength, &state, &i) || |
|
i >= slength || png_ptr->chunkdata[i++] != 0) |
|
png_warning(png_ptr, "Invalid sCAL chunk ignored: bad width format"); |
|
|
|
else if (!PNG_FP_IS_POSITIVE(state)) |
|
png_warning(png_ptr, "Invalid sCAL chunk ignored: non-positive width"); |
|
|
|
else |
|
{ |
|
png_size_t heighti = i; |
|
|
|
state = 0; |
|
if (!png_check_fp_number(png_ptr->chunkdata, slength, &state, &i) || |
|
i != slength) |
|
png_warning(png_ptr, "Invalid sCAL chunk ignored: bad height format"); |
|
|
|
else if (!PNG_FP_IS_POSITIVE(state)) |
|
png_warning(png_ptr, |
|
"Invalid sCAL chunk ignored: non-positive height"); |
|
|
|
else |
|
/* This is the (only) success case. */ |
|
png_set_sCAL_s(png_ptr, info_ptr, png_ptr->chunkdata[0], |
|
png_ptr->chunkdata+1, png_ptr->chunkdata+heighti); |
|
} |
|
|
|
/* Clean up - just free the temporarily allocated buffer. */ |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
} |
|
#endif |
|
|
|
#ifdef PNG_READ_tIME_SUPPORTED |
|
void /* PRIVATE */ |
|
png_handle_tIME(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) |
|
{ |
|
png_byte buf[7]; |
|
png_time mod_time; |
|
|
|
png_debug(1, "in png_handle_tIME"); |
|
|
|
if (!(png_ptr->mode & PNG_HAVE_IHDR)) |
|
png_error(png_ptr, "Out of place tIME chunk"); |
|
|
|
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_tIME)) |
|
{ |
|
png_warning(png_ptr, "Duplicate tIME chunk"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
if (png_ptr->mode & PNG_HAVE_IDAT) |
|
png_ptr->mode |= PNG_AFTER_IDAT; |
|
|
|
if (length != 7) |
|
{ |
|
png_warning(png_ptr, "Incorrect tIME chunk length"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
png_crc_read(png_ptr, buf, 7); |
|
|
|
if (png_crc_finish(png_ptr, 0)) |
|
return; |
|
|
|
mod_time.second = buf[6]; |
|
mod_time.minute = buf[5]; |
|
mod_time.hour = buf[4]; |
|
mod_time.day = buf[3]; |
|
mod_time.month = buf[2]; |
|
mod_time.year = png_get_uint_16(buf); |
|
|
|
png_set_tIME(png_ptr, info_ptr, &mod_time); |
|
} |
|
#endif |
|
|
|
#ifdef PNG_READ_tEXt_SUPPORTED |
|
/* Note: this does not properly handle chunks that are > 64K under DOS */ |
|
void /* PRIVATE */ |
|
png_handle_tEXt(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) |
|
{ |
|
png_textp text_ptr; |
|
png_charp key; |
|
png_charp text; |
|
png_uint_32 skip = 0; |
|
png_size_t slength; |
|
int ret; |
|
|
|
png_debug(1, "in png_handle_tEXt"); |
|
|
|
#ifdef PNG_USER_LIMITS_SUPPORTED |
|
if (png_ptr->user_chunk_cache_max != 0) |
|
{ |
|
if (png_ptr->user_chunk_cache_max == 1) |
|
{ |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
if (--png_ptr->user_chunk_cache_max == 1) |
|
{ |
|
png_warning(png_ptr, "No space in chunk cache for tEXt"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
} |
|
#endif |
|
|
|
if (!(png_ptr->mode & PNG_HAVE_IHDR)) |
|
png_error(png_ptr, "Missing IHDR before tEXt"); |
|
|
|
if (png_ptr->mode & PNG_HAVE_IDAT) |
|
png_ptr->mode |= PNG_AFTER_IDAT; |
|
|
|
#ifdef PNG_MAX_MALLOC_64K |
|
if (length > (png_uint_32)65535L) |
|
{ |
|
png_warning(png_ptr, "tEXt chunk too large to fit in memory"); |
|
skip = length - (png_uint_32)65535L; |
|
length = (png_uint_32)65535L; |
|
} |
|
#endif |
|
|
|
png_free(png_ptr, png_ptr->chunkdata); |
|
|
|
png_ptr->chunkdata = (png_charp)png_malloc_warn(png_ptr, length + 1); |
|
|
|
if (png_ptr->chunkdata == NULL) |
|
{ |
|
png_warning(png_ptr, "No memory to process text chunk"); |
|
return; |
|
} |
|
|
|
slength = length; |
|
png_crc_read(png_ptr, (png_bytep)png_ptr->chunkdata, slength); |
|
|
|
if (png_crc_finish(png_ptr, skip)) |
|
{ |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
return; |
|
} |
|
|
|
key = png_ptr->chunkdata; |
|
|
|
key[slength] = 0x00; |
|
|
|
for (text = key; *text; text++) |
|
/* Empty loop to find end of key */ ; |
|
|
|
if (text != key + slength) |
|
text++; |
|
|
|
text_ptr = (png_textp)png_malloc_warn(png_ptr, |
|
png_sizeof(png_text)); |
|
|
|
if (text_ptr == NULL) |
|
{ |
|
png_warning(png_ptr, "Not enough memory to process text chunk"); |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
return; |
|
} |
|
|
|
text_ptr->compression = PNG_TEXT_COMPRESSION_NONE; |
|
text_ptr->key = key; |
|
text_ptr->lang = NULL; |
|
text_ptr->lang_key = NULL; |
|
text_ptr->itxt_length = 0; |
|
text_ptr->text = text; |
|
text_ptr->text_length = png_strlen(text); |
|
|
|
ret = png_set_text_2(png_ptr, info_ptr, text_ptr, 1); |
|
|
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
png_free(png_ptr, text_ptr); |
|
|
|
if (ret) |
|
png_warning(png_ptr, "Insufficient memory to process text chunk"); |
|
} |
|
#endif |
|
|
|
#ifdef PNG_READ_zTXt_SUPPORTED |
|
/* Note: this does not correctly handle chunks that are > 64K under DOS */ |
|
void /* PRIVATE */ |
|
png_handle_zTXt(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) |
|
{ |
|
png_textp text_ptr; |
|
png_charp text; |
|
int comp_type; |
|
int ret; |
|
png_size_t slength, prefix_len, data_len; |
|
|
|
png_debug(1, "in png_handle_zTXt"); |
|
|
|
#ifdef PNG_USER_LIMITS_SUPPORTED |
|
if (png_ptr->user_chunk_cache_max != 0) |
|
{ |
|
if (png_ptr->user_chunk_cache_max == 1) |
|
{ |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
if (--png_ptr->user_chunk_cache_max == 1) |
|
{ |
|
png_warning(png_ptr, "No space in chunk cache for zTXt"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
} |
|
#endif |
|
|
|
if (!(png_ptr->mode & PNG_HAVE_IHDR)) |
|
png_error(png_ptr, "Missing IHDR before zTXt"); |
|
|
|
if (png_ptr->mode & PNG_HAVE_IDAT) |
|
png_ptr->mode |= PNG_AFTER_IDAT; |
|
|
|
#ifdef PNG_MAX_MALLOC_64K |
|
/* We will no doubt have problems with chunks even half this size, but |
|
* there is no hard and fast rule to tell us where to stop. |
|
*/ |
|
if (length > (png_uint_32)65535L) |
|
{ |
|
png_warning(png_ptr, "zTXt chunk too large to fit in memory"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
#endif |
|
|
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = (png_charp)png_malloc_warn(png_ptr, length + 1); |
|
|
|
if (png_ptr->chunkdata == NULL) |
|
{ |
|
png_warning(png_ptr, "Out of memory processing zTXt chunk"); |
|
return; |
|
} |
|
|
|
slength = length; |
|
png_crc_read(png_ptr, (png_bytep)png_ptr->chunkdata, slength); |
|
|
|
if (png_crc_finish(png_ptr, 0)) |
|
{ |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
return; |
|
} |
|
|
|
png_ptr->chunkdata[slength] = 0x00; |
|
|
|
for (text = png_ptr->chunkdata; *text; text++) |
|
/* Empty loop */ ; |
|
|
|
/* zTXt must have some text after the chunkdataword */ |
|
if (text >= png_ptr->chunkdata + slength - 2) |
|
{ |
|
png_warning(png_ptr, "Truncated zTXt chunk"); |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
return; |
|
} |
|
|
|
else |
|
{ |
|
comp_type = *(++text); |
|
|
|
if (comp_type != PNG_TEXT_COMPRESSION_zTXt) |
|
{ |
|
png_warning(png_ptr, "Unknown compression type in zTXt chunk"); |
|
comp_type = PNG_TEXT_COMPRESSION_zTXt; |
|
} |
|
|
|
text++; /* Skip the compression_method byte */ |
|
} |
|
|
|
prefix_len = text - png_ptr->chunkdata; |
|
|
|
png_decompress_chunk(png_ptr, comp_type, |
|
(png_size_t)length, prefix_len, &data_len); |
|
|
|
text_ptr = (png_textp)png_malloc_warn(png_ptr, |
|
png_sizeof(png_text)); |
|
|
|
if (text_ptr == NULL) |
|
{ |
|
png_warning(png_ptr, "Not enough memory to process zTXt chunk"); |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
return; |
|
} |
|
|
|
text_ptr->compression = comp_type; |
|
text_ptr->key = png_ptr->chunkdata; |
|
text_ptr->lang = NULL; |
|
text_ptr->lang_key = NULL; |
|
text_ptr->itxt_length = 0; |
|
text_ptr->text = png_ptr->chunkdata + prefix_len; |
|
text_ptr->text_length = data_len; |
|
|
|
ret = png_set_text_2(png_ptr, info_ptr, text_ptr, 1); |
|
|
|
png_free(png_ptr, text_ptr); |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
|
|
if (ret) |
|
png_error(png_ptr, "Insufficient memory to store zTXt chunk"); |
|
} |
|
#endif |
|
|
|
#ifdef PNG_READ_iTXt_SUPPORTED |
|
/* Note: this does not correctly handle chunks that are > 64K under DOS */ |
|
void /* PRIVATE */ |
|
png_handle_iTXt(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) |
|
{ |
|
png_textp text_ptr; |
|
png_charp key, lang, text, lang_key; |
|
int comp_flag; |
|
int comp_type = 0; |
|
int ret; |
|
png_size_t slength, prefix_len, data_len; |
|
|
|
png_debug(1, "in png_handle_iTXt"); |
|
|
|
#ifdef PNG_USER_LIMITS_SUPPORTED |
|
if (png_ptr->user_chunk_cache_max != 0) |
|
{ |
|
if (png_ptr->user_chunk_cache_max == 1) |
|
{ |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
if (--png_ptr->user_chunk_cache_max == 1) |
|
{ |
|
png_warning(png_ptr, "No space in chunk cache for iTXt"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
} |
|
#endif |
|
|
|
if (!(png_ptr->mode & PNG_HAVE_IHDR)) |
|
png_error(png_ptr, "Missing IHDR before iTXt"); |
|
|
|
if (png_ptr->mode & PNG_HAVE_IDAT) |
|
png_ptr->mode |= PNG_AFTER_IDAT; |
|
|
|
#ifdef PNG_MAX_MALLOC_64K |
|
/* We will no doubt have problems with chunks even half this size, but |
|
* there is no hard and fast rule to tell us where to stop. |
|
*/ |
|
if (length > (png_uint_32)65535L) |
|
{ |
|
png_warning(png_ptr, "iTXt chunk too large to fit in memory"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
#endif |
|
|
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = (png_charp)png_malloc_warn(png_ptr, length + 1); |
|
|
|
if (png_ptr->chunkdata == NULL) |
|
{ |
|
png_warning(png_ptr, "No memory to process iTXt chunk"); |
|
return; |
|
} |
|
|
|
slength = length; |
|
png_crc_read(png_ptr, (png_bytep)png_ptr->chunkdata, slength); |
|
|
|
if (png_crc_finish(png_ptr, 0)) |
|
{ |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
return; |
|
} |
|
|
|
png_ptr->chunkdata[slength] = 0x00; |
|
|
|
for (lang = png_ptr->chunkdata; *lang; lang++) |
|
/* Empty loop */ ; |
|
|
|
lang++; /* Skip NUL separator */ |
|
|
|
/* iTXt must have a language tag (possibly empty), two compression bytes, |
|
* translated keyword (possibly empty), and possibly some text after the |
|
* keyword |
|
*/ |
|
|
|
if (lang >= png_ptr->chunkdata + slength - 3) |
|
{ |
|
png_warning(png_ptr, "Truncated iTXt chunk"); |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
return; |
|
} |
|
|
|
else |
|
{ |
|
comp_flag = *lang++; |
|
comp_type = *lang++; |
|
} |
|
|
|
if (comp_type || (comp_flag && comp_flag != PNG_TEXT_COMPRESSION_zTXt)) |
|
{ |
|
png_warning(png_ptr, "Unknown iTXt compression type or method"); |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
return; |
|
} |
|
|
|
for (lang_key = lang; *lang_key; lang_key++) |
|
/* Empty loop */ ; |
|
|
|
lang_key++; /* Skip NUL separator */ |
|
|
|
if (lang_key >= png_ptr->chunkdata + slength) |
|
{ |
|
png_warning(png_ptr, "Truncated iTXt chunk"); |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
return; |
|
} |
|
|
|
for (text = lang_key; *text; text++) |
|
/* Empty loop */ ; |
|
|
|
text++; /* Skip NUL separator */ |
|
|
|
if (text >= png_ptr->chunkdata + slength) |
|
{ |
|
png_warning(png_ptr, "Malformed iTXt chunk"); |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
return; |
|
} |
|
|
|
prefix_len = text - png_ptr->chunkdata; |
|
|
|
key=png_ptr->chunkdata; |
|
|
|
if (comp_flag) |
|
png_decompress_chunk(png_ptr, comp_type, |
|
(size_t)length, prefix_len, &data_len); |
|
|
|
else |
|
data_len = png_strlen(png_ptr->chunkdata + prefix_len); |
|
|
|
text_ptr = (png_textp)png_malloc_warn(png_ptr, |
|
png_sizeof(png_text)); |
|
|
|
if (text_ptr == NULL) |
|
{ |
|
png_warning(png_ptr, "Not enough memory to process iTXt chunk"); |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
return; |
|
} |
|
|
|
text_ptr->compression = (int)comp_flag + 1; |
|
text_ptr->lang_key = png_ptr->chunkdata + (lang_key - key); |
|
text_ptr->lang = png_ptr->chunkdata + (lang - key); |
|
text_ptr->itxt_length = data_len; |
|
text_ptr->text_length = 0; |
|
text_ptr->key = png_ptr->chunkdata; |
|
text_ptr->text = png_ptr->chunkdata + prefix_len; |
|
|
|
ret = png_set_text_2(png_ptr, info_ptr, text_ptr, 1); |
|
|
|
png_free(png_ptr, text_ptr); |
|
png_free(png_ptr, png_ptr->chunkdata); |
|
png_ptr->chunkdata = NULL; |
|
|
|
if (ret) |
|
png_error(png_ptr, "Insufficient memory to store iTXt chunk"); |
|
} |
|
#endif |
|
|
|
/* This function is called when we haven't found a handler for a |
|
* chunk. If there isn't a problem with the chunk itself (ie bad |
|
* chunk name, CRC, or a critical chunk), the chunk is silently ignored |
|
* -- unless the PNG_FLAG_UNKNOWN_CHUNKS_SUPPORTED flag is on in which |
|
* case it will be saved away to be written out later. |
|
*/ |
|
void /* PRIVATE */ |
|
png_handle_unknown(png_structp png_ptr, png_infop info_ptr, png_uint_32 length) |
|
{ |
|
png_uint_32 skip = 0; |
|
|
|
png_debug(1, "in png_handle_unknown"); |
|
|
|
#ifdef PNG_USER_LIMITS_SUPPORTED |
|
if (png_ptr->user_chunk_cache_max != 0) |
|
{ |
|
if (png_ptr->user_chunk_cache_max == 1) |
|
{ |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
|
|
if (--png_ptr->user_chunk_cache_max == 1) |
|
{ |
|
png_warning(png_ptr, "No space in chunk cache for unknown chunk"); |
|
png_crc_finish(png_ptr, length); |
|
return; |
|
} |
|
} |
|
#endif |
|
|
|
if (png_ptr->mode & PNG_HAVE_IDAT) |
|
{ |
|
if (png_ptr->chunk_name != png_IDAT) |
|
png_ptr->mode |= PNG_AFTER_IDAT; |
|
} |
|
|
|
if (PNG_CHUNK_CRITICAL(png_ptr->chunk_name)) |
|
{ |
|
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED |
|
if (png_chunk_unknown_handling(png_ptr, png_ptr->chunk_name) != |
|
PNG_HANDLE_CHUNK_ALWAYS |
|
#ifdef PNG_READ_USER_CHUNKS_SUPPORTED |
|
&& png_ptr->read_user_chunk_fn == NULL |
|
#endif |
|
) |
|
#endif |
|
png_chunk_error(png_ptr, "unknown critical chunk"); |
|
} |
|
|
|
#ifdef PNG_READ_UNKNOWN_CHUNKS_SUPPORTED |
|
if ((png_ptr->flags & PNG_FLAG_KEEP_UNKNOWN_CHUNKS) |
|
#ifdef PNG_READ_USER_CHUNKS_SUPPORTED |
|
|| (png_ptr->read_user_chunk_fn != NULL) |
|
#endif |
|
) |
|
{ |
|
#ifdef PNG_MAX_MALLOC_64K |
|
if (length > 65535) |
|
{ |
|
png_warning(png_ptr, "unknown chunk too large to fit in memory"); |
|
skip = length - 65535; |
|
length = 65535; |
|
} |
|
#endif |
|
|
|
/* TODO: this code is very close to the unknown handling in pngpread.c, |
|
* maybe it can be put into a common utility routine? |
|
* png_struct::unknown_chunk is just used as a temporary variable, along |
|
* with the data into which the chunk is read. These can be eliminated. |
|
*/ |
|
PNG_CSTRING_FROM_CHUNK(png_ptr->unknown_chunk.name, png_ptr->chunk_name); |
|
png_ptr->unknown_chunk.size = (png_size_t)length; |
|
|
|
if (length == 0) |
|
png_ptr->unknown_chunk.data = NULL; |
|
|
|
else |
|
{ |
|
png_ptr->unknown_chunk.data = (png_bytep)png_malloc(png_ptr, length); |
|
png_crc_read(png_ptr, png_ptr->unknown_chunk.data, length); |
|
} |
|
|
|
#ifdef PNG_READ_USER_CHUNKS_SUPPORTED |
|
if (png_ptr->read_user_chunk_fn != NULL) |
|
{ |
|
/* Callback to user unknown chunk handler */ |
|
int ret; |
|
|
|
ret = (*(png_ptr->read_user_chunk_fn)) |
|
(png_ptr, &png_ptr->unknown_chunk); |
|
|
|
if (ret < 0) |
|
png_chunk_error(png_ptr, "error in user chunk"); |
|
|
|
if (ret == 0) |
|
{ |
|
if (PNG_CHUNK_CRITICAL(png_ptr->chunk_name)) |
|
{ |
|
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED |
|
if (png_chunk_unknown_handling(png_ptr, png_ptr->chunk_name) != |
|
PNG_HANDLE_CHUNK_ALWAYS) |
|
#endif |
|
png_chunk_error(png_ptr, "unknown critical chunk"); |
|
} |
|
|
|
png_set_unknown_chunks(png_ptr, info_ptr, |
|
&png_ptr->unknown_chunk, 1); |
|
} |
|
} |
|
|
|
else |
|
#endif |
|
png_set_unknown_chunks(png_ptr, info_ptr, &png_ptr->unknown_chunk, 1); |
|
|
|
png_free(png_ptr, png_ptr->unknown_chunk.data); |
|
png_ptr->unknown_chunk.data = NULL; |
|
} |
|
|
|
else |
|
#endif |
|
skip = length; |
|
|
|
png_crc_finish(png_ptr, skip); |
|
|
|
#ifndef PNG_READ_USER_CHUNKS_SUPPORTED |
|
PNG_UNUSED(info_ptr) /* Quiet compiler warnings about unused info_ptr */ |
|
#endif |
|
} |
|
|
|
/* This function is called to verify that a chunk name is valid. |
|
* This function can't have the "critical chunk check" incorporated |
|
* into it, since in the future we will need to be able to call user |
|
* functions to handle unknown critical chunks after we check that |
|
* the chunk name itself is valid. |
|
*/ |
|
|
|
/* Bit hacking: the test for an invalid byte in the 4 byte chunk name is: |
|
* |
|
* ((c) < 65 || (c) > 122 || ((c) > 90 && (c) < 97)) |
|
*/ |
|
|
|
void /* PRIVATE */ |
|
png_check_chunk_name(png_structp png_ptr, png_uint_32 chunk_name) |
|
{ |
|
int i; |
|
|
|
png_debug(1, "in png_check_chunk_name"); |
|
|
|
for (i=1; i<=4; ++i) |
|
{ |
|
int c = chunk_name & 0xff; |
|
|
|
if (c < 65 || c > 122 || (c > 90 && c < 97)) |
|
png_chunk_error(png_ptr, "invalid chunk type"); |
|
|
|
chunk_name >>= 8; |
|
} |
|
} |
|
|
|
/* Combines the row recently read in with the existing pixels in the row. This |
|
* routine takes care of alpha and transparency if requested. This routine also |
|
* handles the two methods of progressive display of interlaced images, |
|
* depending on the 'display' value; if 'display' is true then the whole row |
|
* (dp) is filled from the start by replicating the available pixels. If |
|
* 'display' is false only those pixels present in the pass are filled in. |
|
*/ |
|
void /* PRIVATE */ |
|
png_combine_row(png_structp png_ptr, png_bytep dp, int display) |
|
{ |
|
unsigned int pixel_depth = png_ptr->transformed_pixel_depth; |
|
png_const_bytep sp = png_ptr->row_buf + 1; |
|
png_uint_32 row_width = png_ptr->width; |
|
unsigned int pass = png_ptr->pass; |
|
png_bytep end_ptr = 0; |
|
png_byte end_byte = 0; |
|
unsigned int end_mask; |
|
|
|
png_debug(1, "in png_combine_row"); |
|
|
|
/* Added in 1.5.6: it should not be possible to enter this routine until at |
|
* least one row has been read from the PNG data and transformed. |
|
*/ |
|
if (pixel_depth == 0) |
|
png_error(png_ptr, "internal row logic error"); |
|
|
|
/* Added in 1.5.4: the pixel depth should match the information returned by |
|
* any call to png_read_update_info at this point. Do not continue if we got |
|
* this wrong. |
|
*/ |
|
if (png_ptr->info_rowbytes != 0 && png_ptr->info_rowbytes != |
|
PNG_ROWBYTES(pixel_depth, row_width)) |
|
png_error(png_ptr, "internal row size calculation error"); |
|
|
|
/* Don't expect this to ever happen: */ |
|
if (row_width == 0) |
|
png_error(png_ptr, "internal row width error"); |
|
|
|
/* Preserve the last byte in cases where only part of it will be overwritten, |
|
* the multiply below may overflow, we don't care because ANSI-C guarantees |
|
* we get the low bits. |
|
*/ |
|
end_mask = (pixel_depth * row_width) & 7; |
|
if (end_mask != 0) |
|
{ |
|
/* end_ptr == NULL is a flag to say do nothing */ |
|
end_ptr = dp + PNG_ROWBYTES(pixel_depth, row_width) - 1; |
|
end_byte = *end_ptr; |
|
# ifdef PNG_READ_PACKSWAP_SUPPORTED |
|
if (png_ptr->transformations & PNG_PACKSWAP) /* little-endian byte */ |
|
end_mask = 0xff << end_mask; |
|
|
|
else /* big-endian byte */ |
|
# endif |
|
end_mask = 0xff >> end_mask; |
|
/* end_mask is now the bits to *keep* from the destination row */ |
|
} |
|
|
|
/* For non-interlaced images this reduces to a png_memcpy(). A png_memcpy() |
|
* will also happen if interlacing isn't supported or if the application |
|
* does not call png_set_interlace_handling(). In the latter cases the |
|
* caller just gets a sequence of the unexpanded rows from each interlace |
|
* pass. |
|
*/ |
|
#ifdef PNG_READ_INTERLACING_SUPPORTED |
|
if (png_ptr->interlaced && (png_ptr->transformations & PNG_INTERLACE) && |
|
pass < 6 && (display == 0 || |
|
/* The following copies everything for 'display' on passes 0, 2 and 4. */ |
|
(display == 1 && (pass & 1) != 0))) |
|
{ |
|
/* Narrow images may have no bits in a pass; the caller should handle |
|
* this, but this test is cheap: |
|
*/ |
|
if (row_width <= PNG_PASS_START_COL(pass)) |
|
return; |
|
|
|
if (pixel_depth < 8) |
|
{ |
|
/* For pixel depths up to 4 bpp the 8-pixel mask can be expanded to fit |
|
* into 32 bits, then a single loop over the bytes using the four byte |
|
* values in the 32-bit mask can be used. For the 'display' option the |
|
* expanded mask may also not require any masking within a byte. To |
|
* make this work the PACKSWAP option must be taken into account - it |
|
* simply requires the pixels to be reversed in each byte. |
|
* |
|
* The 'regular' case requires a mask for each of the first 6 passes, |
|
* the 'display' case does a copy for the even passes in the range |
|
* 0..6. This has already been handled in the test above. |
|
* |
|
* The masks are arranged as four bytes with the first byte to use in |
|
* the lowest bits (little-endian) regardless of the order (PACKSWAP or |
|
* not) of the pixels in each byte. |
|
* |
|
* NOTE: the whole of this logic depends on the caller of this function |
|
* only calling it on rows appropriate to the pass. This function only |
|
* understands the 'x' logic; the 'y' logic is handled by the caller. |
|
* |
|
* The following defines allow generation of compile time constant bit |
|
* masks for each pixel depth and each possibility of swapped or not |
|
* swapped bytes. Pass 'p' is in the range 0..6; 'x', a pixel index, |
|
* is in the range 0..7; and the result is 1 if the pixel is to be |
|
* copied in the pass, 0 if not. 'S' is for the sparkle method, 'B' |
|
* for the block method. |
|
* |
|
* With some compilers a compile time expression of the general form: |
|
* |
|
* (shift >= 32) ? (a >> (shift-32)) : (b >> shift) |
|
* |
|
* Produces warnings with values of 'shift' in the range 33 to 63 |
|
* because the right hand side of the ?: expression is evaluated by |
|
* the compiler even though it isn't used. Microsoft Visual C (various |
|
* versions) and the Intel C compiler are known to do this. To avoid |
|
* this the following macros are used in 1.5.6. This is a temporary |
|
* solution to avoid destabilizing the code during the release process. |
|
*/ |
|
# if PNG_USE_COMPILE_TIME_MASKS |
|
# define PNG_LSR(x,s) ((x)>>((s) & 0x1f)) |
|
# define PNG_LSL(x,s) ((x)<<((s) & 0x1f)) |
|
# else |
|
# define PNG_LSR(x,s) ((x)>>(s)) |
|
# define PNG_LSL(x,s) ((x)<<(s)) |
|
# endif |
|
# define S_COPY(p,x) (((p)<4 ? PNG_LSR(0x80088822,(3-(p))*8+(7-(x))) :\ |
|
PNG_LSR(0xaa55ff00,(7-(p))*8+(7-(x)))) & 1) |
|
# define B_COPY(p,x) (((p)<4 ? PNG_LSR(0xff0fff33,(3-(p))*8+(7-(x))) :\ |
|
PNG_LSR(0xff55ff00,(7-(p))*8+(7-(x)))) & 1) |
|
|
|
/* Return a mask for pass 'p' pixel 'x' at depth 'd'. The mask is |
|
* little endian - the first pixel is at bit 0 - however the extra |
|
* parameter 's' can be set to cause the mask position to be swapped |
|
* within each byte, to match the PNG format. This is done by XOR of |
|
* the shift with 7, 6 or 4 for bit depths 1, 2 and 4. |
|
*/ |
|
# define PIXEL_MASK(p,x,d,s) \ |
|
(PNG_LSL(((PNG_LSL(1U,(d)))-1),(((x)*(d))^((s)?8-(d):0)))) |
|
|
|
/* Hence generate the appropriate 'block' or 'sparkle' pixel copy mask. |
|
*/ |
|
# define S_MASKx(p,x,d,s) (S_COPY(p,x)?PIXEL_MASK(p,x,d,s):0) |
|
# define B_MASKx(p,x,d,s) (B_COPY(p,x)?PIXEL_MASK(p,x,d,s):0) |
|
|
|
/* Combine 8 of these to get the full mask. For the 1-bpp and 2-bpp |
|
* cases the result needs replicating, for the 4-bpp case the above |
|
* generates a full 32 bits. |
|
*/ |
|
# define MASK_EXPAND(m,d) ((m)*((d)==1?0x01010101:((d)==2?0x00010001:1))) |
|
|
|
# define S_MASK(p,d,s) MASK_EXPAND(S_MASKx(p,0,d,s) + S_MASKx(p,1,d,s) +\ |
|
S_MASKx(p,2,d,s) + S_MASKx(p,3,d,s) + S_MASKx(p,4,d,s) +\ |
|
S_MASKx(p,5,d,s) + S_MASKx(p,6,d,s) + S_MASKx(p,7,d,s), d) |
|
|
|
# define B_MASK(p,d,s) MASK_EXPAND(B_MASKx(p,0,d,s) + B_MASKx(p,1,d,s) +\ |
|
B_MASKx(p,2,d,s) + B_MASKx(p,3,d,s) + B_MASKx(p,4,d,s) +\ |
|
B_MASKx(p,5,d,s) + B_MASKx(p,6,d,s) + B_MASKx(p,7,d,s), d) |
|
|
|
#if PNG_USE_COMPILE_TIME_MASKS |
|
/* Utility macros to construct all the masks for a depth/swap |
|
* combination. The 's' parameter says whether the format is PNG |
|
* (big endian bytes) or not. Only the three odd-numbered passes are |
|
* required for the display/block algorithm. |
|
*/ |
|
# define S_MASKS(d,s) { S_MASK(0,d,s), S_MASK(1,d,s), S_MASK(2,d,s),\ |
|
S_MASK(3,d,s), S_MASK(4,d,s), S_MASK(5,d,s) } |
|
|
|
# define B_MASKS(d,s) { B_MASK(1,d,s), S_MASK(3,d,s), S_MASK(5,d,s) } |
|
|
|
# define DEPTH_INDEX(d) ((d)==1?0:((d)==2?1:2)) |
|
|
|
/* Hence the pre-compiled masks indexed by PACKSWAP (or not), depth and |
|
* then pass: |
|
*/ |
|
static PNG_CONST png_uint_32 row_mask[2/*PACKSWAP*/][3/*depth*/][6] = |
|
{ |
|
/* Little-endian byte masks for PACKSWAP */ |
|
{ S_MASKS(1,0), S_MASKS(2,0), S_MASKS(4,0) }, |
|
/* Normal (big-endian byte) masks - PNG format */ |
|
{ S_MASKS(1,1), S_MASKS(2,1), S_MASKS(4,1) } |
|
}; |
|
|
|
/* display_mask has only three entries for the odd passes, so index by |
|
* pass>>1. |
|
*/ |
|
static PNG_CONST png_uint_32 display_mask[2][3][3] = |
|
{ |
|
/* Little-endian byte masks for PACKSWAP */ |
|
{ B_MASKS(1,0), B_MASKS(2,0), B_MASKS(4,0) }, |
|
/* Normal (big-endian byte) masks - PNG format */ |
|
{ B_MASKS(1,1), B_MASKS(2,1), B_MASKS(4,1) } |
|
}; |
|
|
|
# define MASK(pass,depth,display,png)\ |
|
((display)?display_mask[png][DEPTH_INDEX(depth)][pass>>1]:\ |
|
row_mask[png][DEPTH_INDEX(depth)][pass]) |
|
|
|
#else /* !PNG_USE_COMPILE_TIME_MASKS */ |
|
/* This is the runtime alternative: it seems unlikely that this will |
|
* ever be either smaller or faster than the compile time approach. |
|
*/ |
|
# define MASK(pass,depth,display,png)\ |
|
((display)?B_MASK(pass,depth,png):S_MASK(pass,depth,png)) |
|
#endif /* !PNG_USE_COMPILE_TIME_MASKS */ |
|
|
|
/* Use the appropriate mask to copy the required bits. In some cases |
|
* the byte mask will be 0 or 0xff, optimize these cases. row_width is |
|
* the number of pixels, but the code copies bytes, so it is necessary |
|
* to special case the end. |
|
*/ |
|
png_uint_32 pixels_per_byte = 8 / pixel_depth; |
|
png_uint_32 mask; |
|
|
|
# ifdef PNG_READ_PACKSWAP_SUPPORTED |
|
if (png_ptr->transformations & PNG_PACKSWAP) |
|
mask = MASK(pass, pixel_depth, display, 0); |
|
|
|
else |
|
# endif |
|
mask = MASK(pass, pixel_depth, display, 1); |
|
|
|
for (;;) |
|
{ |
|
png_uint_32 m; |
|
|
|
/* It doesn't matter in the following if png_uint_32 has more than |
|
* 32 bits because the high bits always match those in m<<24; it is, |
|
* however, essential to use OR here, not +, because of this. |
|
*/ |
|
m = mask; |
|
mask = (m >> 8) | (m << 24); /* rotate right to good compilers */ |
|
m &= 0xff; |
|
|
|
if (m != 0) /* something to copy */ |
|
{ |
|
if (m != 0xff) |
|
*dp = (png_byte)((*dp & ~m) | (*sp & m)); |
|
else |
|
*dp = *sp; |
|
} |
|
|
|
/* NOTE: this may overwrite the last byte with garbage if the image |
|
* is not an exact number of bytes wide; libpng has always done |
|
* this. |
|
*/ |
|
if (row_width <= pixels_per_byte) |
|
break; /* May need to restore part of the last byte */ |
|
|
|
row_width -= pixels_per_byte; |
|
++dp; |
|
++sp; |
|
} |
|
} |
|
|
|
else /* pixel_depth >= 8 */ |
|
{ |
|
unsigned int bytes_to_copy, bytes_to_jump; |
|
|
|
/* Validate the depth - it must be a multiple of 8 */ |
|
if (pixel_depth & 7) |
|
png_error(png_ptr, "invalid user transform pixel depth"); |
|
|
|
pixel_depth >>= 3; /* now in bytes */ |
|
row_width *= pixel_depth; |
|
|
|
/* Regardless of pass number the Adam 7 interlace always results in a |
|
* fixed number of pixels to copy then to skip. There may be a |
|
* different number of pixels to skip at the start though. |
|
*/ |
|
{ |
|
unsigned int offset = PNG_PASS_START_COL(pass) * pixel_depth; |
|
|
|
row_width -= offset; |
|
dp += offset; |
|
sp += offset; |
|
} |
|
|
|
/* Work out the bytes to copy. */ |
|
if (display) |
|
{ |
|
/* When doing the 'block' algorithm the pixel in the pass gets |
|
* replicated to adjacent pixels. This is why the even (0,2,4,6) |
|
* passes are skipped above - the entire expanded row is copied. |
|
*/ |
|
bytes_to_copy = (1<<((6-pass)>>1)) * pixel_depth; |
|
|
|
/* But don't allow this number to exceed the actual row width. */ |
|
if (bytes_to_copy > row_width) |
|
bytes_to_copy = row_width; |
|
} |
|
|
|
else /* normal row; Adam7 only ever gives us one pixel to copy. */ |
|
bytes_to_copy = pixel_depth; |
|
|
|
/* In Adam7 there is a constant offset between where the pixels go. */ |
|
bytes_to_jump = PNG_PASS_COL_OFFSET(pass) * pixel_depth; |
|
|
|
/* And simply copy these bytes. Some optimization is possible here, |
|
* depending on the value of 'bytes_to_copy'. Special case the low |
|
* byte counts, which we know to be frequent. |
|
* |
|
* Notice that these cases all 'return' rather than 'break' - this |
|
* avoids an unnecessary test on whether to restore the last byte |
|
* below. |
|
*/ |
|
switch (bytes_to_copy) |
|
{ |
|
case 1: |
|
for (;;) |
|
{ |
|
*dp = *sp; |
|
|
|
if (row_width <= bytes_to_jump) |
|
return; |
|
|
|
dp += bytes_to_jump; |
|
sp += bytes_to_jump; |
|
row_width -= bytes_to_jump; |
|
} |
|
|
|
case 2: |
|
/* There is a possibility of a partial copy at the end here; this |
|
* slows the code down somewhat. |
|
*/ |
|
do |
|
{ |
|
dp[0] = sp[0], dp[1] = sp[1]; |
|
|
|
if (row_width <= bytes_to_jump) |
|
return; |
|
|
|
sp += bytes_to_jump; |
|
dp += bytes_to_jump; |
|
row_width -= bytes_to_jump; |
|
} |
|
while (row_width > 1); |
|
|
|
/* And there can only be one byte left at this point: */ |
|
*dp = *sp; |
|
return; |
|
|
|
case 3: |
|
/* This can only be the RGB case, so each copy is exactly one |
|
* pixel and it is not necessary to check for a partial copy. |
|
*/ |
|
for(;;) |
|
{ |
|
dp[0] = sp[0], dp[1] = sp[1], dp[2] = sp[2]; |
|
|
|
if (row_width <= bytes_to_jump) |
|
return; |
|
|
|
sp += bytes_to_jump; |
|
dp += bytes_to_jump; |
|
row_width -= bytes_to_jump; |
|
} |
|
|
|
default: |
|
#if PNG_ALIGN_TYPE != PNG_ALIGN_NONE |
|
/* Check for double byte alignment and, if possible, use a |
|
* 16-bit copy. Don't attempt this for narrow images - ones that |
|
* are less than an interlace panel wide. Don't attempt it for |
|
* wide bytes_to_copy either - use the png_memcpy there. |
|
*/ |
|
if (bytes_to_copy < 16 /*else use png_memcpy*/ && |
|
png_isaligned(dp, png_uint_16) && |
|
png_isaligned(sp, png_uint_16) && |
|
bytes_to_copy % sizeof (png_uint_16) == 0 && |
|
bytes_to_jump % sizeof (png_uint_16) == 0) |
|
{ |
|
/* Everything is aligned for png_uint_16 copies, but try for |
|
* png_uint_32 first. |
|
*/ |
|
if (png_isaligned(dp, png_uint_32) && |
|
png_isaligned(sp, png_uint_32) && |
|
bytes_to_copy % sizeof (png_uint_32) == 0 && |
|
bytes_to_jump % sizeof (png_uint_32) == 0) |
|
{ |
|
png_uint_32p dp32 = (png_uint_32p)dp; |
|
png_const_uint_32p sp32 = (png_const_uint_32p)sp; |
|
unsigned int skip = (bytes_to_jump-bytes_to_copy) / |
|
sizeof (png_uint_32); |
|
|
|
do |
|
{ |
|
size_t c = bytes_to_copy; |
|
do |
|
{ |
|
*dp32++ = *sp32++; |
|
c -= sizeof (png_uint_32); |
|
} |
|
while (c > 0); |
|
|
|
if (row_width <= bytes_to_jump) |
|
return; |
|
|
|
dp32 += skip; |
|
sp32 += skip; |
|
row_width -= bytes_to_jump; |
|
} |
|
while (bytes_to_copy <= row_width); |
|
|
|
/* Get to here when the row_width truncates the final copy. |
|
* There will be 1-3 bytes left to copy, so don't try the |
|
* 16-bit loop below. |
|
*/ |
|
dp = (png_bytep)dp32; |
|
sp = (png_const_bytep)sp32; |
|
do |
|
*dp++ = *sp++; |
|
while (--row_width > 0); |
|
return; |
|
} |
|
|
|
/* Else do it in 16-bit quantities, but only if the size is |
|
* not too large. |
|
*/ |
|
else |
|
{ |
|
png_uint_16p dp16 = (png_uint_16p)dp; |
|
png_const_uint_16p sp16 = (png_const_uint_16p)sp; |
|
unsigned int skip = (bytes_to_jump-bytes_to_copy) / |
|
sizeof (png_uint_16); |
|
|
|
do |
|
{ |
|
size_t c = bytes_to_copy; |
|
do |
|
{ |
|
*dp16++ = *sp16++; |
|
c -= sizeof (png_uint_16); |
|
} |
|
while (c > 0); |
|
|
|
if (row_width <= bytes_to_jump) |
|
return; |
|
|
|
dp16 += skip; |
|
sp16 += skip; |
|
row_width -= bytes_to_jump; |
|
} |
|
while (bytes_to_copy <= row_width); |
|
|
|
/* End of row - 1 byte left, bytes_to_copy > row_width: */ |
|
dp = (png_bytep)dp16; |
|
sp = (png_const_bytep)sp16; |
|
do |
|
*dp++ = *sp++; |
|
while (--row_width > 0); |
|
return; |
|
} |
|
} |
|
#endif /* PNG_ALIGN_ code */ |
|
|
|
/* The true default - use a png_memcpy: */ |
|
for (;;) |
|
{ |
|
png_memcpy(dp, sp, bytes_to_copy); |
|
|
|
if (row_width <= bytes_to_jump) |
|
return; |
|
|
|
sp += bytes_to_jump; |
|
dp += bytes_to_jump; |
|
row_width -= bytes_to_jump; |
|
if (bytes_to_copy > row_width) |
|
bytes_to_copy = row_width; |
|
} |
|
} |
|
|
|
/* NOT REACHED*/ |
|
} /* pixel_depth >= 8 */ |
|
|
|
/* Here if pixel_depth < 8 to check 'end_ptr' below. */ |
|
} |
|
else |
|
#endif |
|
|
|
/* If here then the switch above wasn't used so just png_memcpy the whole row |
|
* from the temporary row buffer (notice that this overwrites the end of the |
|
* destination row if it is a partial byte.) |
|
*/ |
|
png_memcpy(dp, sp, PNG_ROWBYTES(pixel_depth, row_width)); |
|
|
|
/* Restore the overwritten bits from the last byte if necessary. */ |
|
if (end_ptr != NULL) |
|
*end_ptr = (png_byte)((end_byte & end_mask) | (*end_ptr & ~end_mask)); |
|
} |
|
|
|
#ifdef PNG_READ_INTERLACING_SUPPORTED |
|
void /* PRIVATE */ |
|
png_do_read_interlace(png_row_infop row_info, png_bytep row, int pass, |
|
png_uint_32 transformations /* Because these may affect the byte layout */) |
|
{ |
|
/* Arrays to facilitate easy interlacing - use pass (0 - 6) as index */ |
|
/* Offset to next interlace block */ |
|
static PNG_CONST int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1}; |
|
|
|
png_debug(1, "in png_do_read_interlace"); |
|
if (row != NULL && row_info != NULL) |
|
{ |
|
png_uint_32 final_width; |
|
|
|
final_width = row_info->width * png_pass_inc[pass]; |
|
|
|
switch (row_info->pixel_depth) |
|
{ |
|
case 1: |
|
{ |
|
png_bytep sp = row + (png_size_t)((row_info->width - 1) >> 3); |
|
png_bytep dp = row + (png_size_t)((final_width - 1) >> 3); |
|
int sshift, dshift; |
|
int s_start, s_end, s_inc; |
|
int jstop = png_pass_inc[pass]; |
|
png_byte v; |
|
png_uint_32 i; |
|
int j; |
|
|
|
#ifdef PNG_READ_PACKSWAP_SUPPORTED |
|
if (transformations & PNG_PACKSWAP) |
|
{ |
|
sshift = (int)((row_info->width + 7) & 0x07); |
|
dshift = (int)((final_width + 7) & 0x07); |
|
s_start = 7; |
|
s_end = 0; |
|
s_inc = -1; |
|
} |
|
|
|
else |
|
#endif |
|
{ |
|
sshift = 7 - (int)((row_info->width + 7) & 0x07); |
|
dshift = 7 - (int)((final_width + 7) & 0x07); |
|
s_start = 0; |
|
s_end = 7; |
|
s_inc = 1; |
|
} |
|
|
|
for (i = 0; i < row_info->width; i++) |
|
{ |
|
v = (png_byte)((*sp >> sshift) & 0x01); |
|
for (j = 0; j < jstop; j++) |
|
{ |
|
*dp &= (png_byte)((0x7f7f >> (7 - dshift)) & 0xff); |
|
*dp |= (png_byte)(v << dshift); |
|
|
|
if (dshift == s_end) |
|
{ |
|
dshift = s_start; |
|
dp--; |
|
} |
|
|
|
else |
|
dshift += s_inc; |
|
} |
|
|
|
if (sshift == s_end) |
|
{ |
|
sshift = s_start; |
|
sp--; |
|
} |
|
|
|
else |
|
sshift += s_inc; |
|
} |
|
break; |
|
} |
|
|
|
case 2: |
|
{ |
|
png_bytep sp = row + (png_uint_32)((row_info->width - 1) >> 2); |
|
png_bytep dp = row + (png_uint_32)((final_width - 1) >> 2); |
|
int sshift, dshift; |
|
int s_start, s_end, s_inc; |
|
int jstop = png_pass_inc[pass]; |
|
png_uint_32 i; |
|
|
|
#ifdef PNG_READ_PACKSWAP_SUPPORTED |
|
if (transformations & PNG_PACKSWAP) |
|
{ |
|
sshift = (int)(((row_info->width + 3) & 0x03) << 1); |
|
dshift = (int)(((final_width + 3) & 0x03) << 1); |
|
s_start = 6; |
|
s_end = 0; |
|
s_inc = -2; |
|
} |
|
|
|
else |
|
#endif |
|
{ |
|
sshift = (int)((3 - ((row_info->width + 3) & 0x03)) << 1); |
|
dshift = (int)((3 - ((final_width + 3) & 0x03)) << 1); |
|
s_start = 0; |
|
s_end = 6; |
|
s_inc = 2; |
|
} |
|
|
|
for (i = 0; i < row_info->width; i++) |
|
{ |
|
png_byte v; |
|
int j; |
|
|
|
v = (png_byte)((*sp >> sshift) & 0x03); |
|
for (j = 0; j < jstop; j++) |
|
{ |
|
*dp &= (png_byte)((0x3f3f >> (6 - dshift)) & 0xff); |
|
*dp |= (png_byte)(v << dshift); |
|
|
|
if (dshift == s_end) |
|
{ |
|
dshift = s_start; |
|
dp--; |
|
} |
|
|
|
else |
|
dshift += s_inc; |
|
} |
|
|
|
if (sshift == s_end) |
|
{ |
|
sshift = s_start; |
|
sp--; |
|
} |
|
|
|
else |
|
sshift += s_inc; |
|
} |
|
break; |
|
} |
|
|
|
case 4: |
|
{ |
|
png_bytep sp = row + (png_size_t)((row_info->width - 1) >> 1); |
|
png_bytep dp = row + (png_size_t)((final_width - 1) >> 1); |
|
int sshift, dshift; |
|
int s_start, s_end, s_inc; |
|
png_uint_32 i; |
|
int jstop = png_pass_inc[pass]; |
|
|
|
#ifdef PNG_READ_PACKSWAP_SUPPORTED |
|
if (transformations & PNG_PACKSWAP) |
|
{ |
|
sshift = (int)(((row_info->width + 1) & 0x01) << 2); |
|
dshift = (int)(((final_width + 1) & 0x01) << 2); |
|
s_start = 4; |
|
s_end = 0; |
|
s_inc = -4; |
|
} |
|
|
|
else |
|
#endif |
|
{ |
|
sshift = (int)((1 - ((row_info->width + 1) & 0x01)) << 2); |
|
dshift = (int)((1 - ((final_width + 1) & 0x01)) << 2); |
|
s_start = 0; |
|
s_end = 4; |
|
s_inc = 4; |
|
} |
|
|
|
for (i = 0; i < row_info->width; i++) |
|
{ |
|
png_byte v = (png_byte)((*sp >> sshift) & 0x0f); |
|
int j; |
|
|
|
for (j = 0; j < jstop; j++) |
|
{ |
|
*dp &= (png_byte)((0xf0f >> (4 - dshift)) & 0xff); |
|
*dp |= (png_byte)(v << dshift); |
|
|
|
if (dshift == s_end) |
|
{ |
|
dshift = s_start; |
|
dp--; |
|
} |
|
|
|
else |
|
dshift += s_inc; |
|
} |
|
|
|
if (sshift == s_end) |
|
{ |
|
sshift = s_start; |
|
sp--; |
|
} |
|
|
|
else |
|
sshift += s_inc; |
|
} |
|
break; |
|
} |
|
|
|
default: |
|
{ |
|
png_size_t pixel_bytes = (row_info->pixel_depth >> 3); |
|
|
|
png_bytep sp = row + (png_size_t)(row_info->width - 1) |
|
* pixel_bytes; |
|
|
|
png_bytep dp = row + (png_size_t)(final_width - 1) * pixel_bytes; |
|
|
|
int jstop = png_pass_inc[pass]; |
|
png_uint_32 i; |
|
|
|
for (i = 0; i < row_info->width; i++) |
|
{ |
|
png_byte v[8]; |
|
int j; |
|
|
|
png_memcpy(v, sp, pixel_bytes); |
|
|
|
for (j = 0; j < jstop; j++) |
|
{ |
|
png_memcpy(dp, v, pixel_bytes); |
|
dp -= pixel_bytes; |
|
} |
|
|
|
sp -= pixel_bytes; |
|
} |
|
break; |
|
} |
|
} |
|
|
|
row_info->width = final_width; |
|
row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth, final_width); |
|
} |
|
#ifndef PNG_READ_PACKSWAP_SUPPORTED |
|
PNG_UNUSED(transformations) /* Silence compiler warning */ |
|
#endif |
|
} |
|
#endif /* PNG_READ_INTERLACING_SUPPORTED */ |
|
|
|
static void |
|
png_read_filter_row_sub(png_row_infop row_info, png_bytep row, |
|
png_const_bytep prev_row) |
|
{ |
|
png_size_t i; |
|
png_size_t istop = row_info->rowbytes; |
|
unsigned int bpp = (row_info->pixel_depth + 7) >> 3; |
|
png_bytep rp = row + bpp; |
|
|
|
PNG_UNUSED(prev_row) |
|
|
|
for (i = bpp; i < istop; i++) |
|
{ |
|
*rp = (png_byte)(((int)(*rp) + (int)(*(rp-bpp))) & 0xff); |
|
rp++; |
|
} |
|
} |
|
|
|
static void |
|
png_read_filter_row_up(png_row_infop row_info, png_bytep row, |
|
png_const_bytep prev_row) |
|
{ |
|
png_size_t i; |
|
png_size_t istop = row_info->rowbytes; |
|
png_bytep rp = row; |
|
png_const_bytep pp = prev_row; |
|
|
|
for (i = 0; i < istop; i++) |
|
{ |
|
*rp = (png_byte)(((int)(*rp) + (int)(*pp++)) & 0xff); |
|
rp++; |
|
} |
|
} |
|
|
|
static void |
|
png_read_filter_row_avg(png_row_infop row_info, png_bytep row, |
|
png_const_bytep prev_row) |
|
{ |
|
png_size_t i; |
|
png_bytep rp = row; |
|
png_const_bytep pp = prev_row; |
|
unsigned int bpp = (row_info->pixel_depth + 7) >> 3; |
|
png_size_t istop = row_info->rowbytes - bpp; |
|
|
|
for (i = 0; i < bpp; i++) |
|
{ |
|
*rp = (png_byte)(((int)(*rp) + |
|
((int)(*pp++) / 2 )) & 0xff); |
|
|
|
rp++; |
|
} |
|
|
|
for (i = 0; i < istop; i++) |
|
{ |
|
*rp = (png_byte)(((int)(*rp) + |
|
(int)(*pp++ + *(rp-bpp)) / 2 ) & 0xff); |
|
|
|
rp++; |
|
} |
|
} |
|
|
|
static void |
|
png_read_filter_row_paeth_1byte_pixel(png_row_infop row_info, png_bytep row, |
|
png_const_bytep prev_row) |
|
{ |
|
png_bytep rp_end = row + row_info->rowbytes; |
|
int a, c; |
|
|
|
/* First pixel/byte */ |
|
c = *prev_row++; |
|
a = *row + c; |
|
*row++ = (png_byte)a; |
|
|
|
/* Remainder */ |
|
while (row < rp_end) |
|
{ |
|
int b, pa, pb, pc, p; |
|
|
|
a &= 0xff; /* From previous iteration or start */ |
|
b = *prev_row++; |
|
|
|
p = b - c; |
|
pc = a - c; |
|
|
|
# ifdef PNG_USE_ABS |
|
pa = abs(p); |
|
pb = abs(pc); |
|
pc = abs(p + pc); |
|
# else |
|
pa = p < 0 ? -p : p; |
|
pb = pc < 0 ? -pc : pc; |
|
pc = (p + pc) < 0 ? -(p + pc) : p + pc; |
|
# endif |
|
|
|
/* Find the best predictor, the least of pa, pb, pc favoring the earlier |
|
* ones in the case of a tie. |
|
*/ |
|
if (pb < pa) pa = pb, a = b; |
|
if (pc < pa) a = c; |
|
|
|
/* Calculate the current pixel in a, and move the previous row pixel to c |
|
* for the next time round the loop |
|
*/ |
|
c = b; |
|
a += *row; |
|
*row++ = (png_byte)a; |
|
} |
|
} |
|
|
|
static void |
|
png_read_filter_row_paeth_multibyte_pixel(png_row_infop row_info, png_bytep row, |
|
png_const_bytep prev_row) |
|
{ |
|
int bpp = (row_info->pixel_depth + 7) >> 3; |
|
png_bytep rp_end = row + bpp; |
|
|
|
/* Process the first pixel in the row completely (this is the same as 'up' |
|
* because there is only one candidate predictor for the first row). |
|
*/ |
|
while (row < rp_end) |
|
{ |
|
int a = *row + *prev_row++; |
|
*row++ = (png_byte)a; |
|
} |
|
|
|
/* Remainder */ |
|
rp_end += row_info->rowbytes - bpp; |
|
|
|
while (row < rp_end) |
|
{ |
|
int a, b, c, pa, pb, pc, p; |
|
|
|
c = *(prev_row - bpp); |
|
a = *(row - bpp); |
|
b = *prev_row++; |
|
|
|
p = b - c; |
|
pc = a - c; |
|
|
|
# ifdef PNG_USE_ABS |
|
pa = abs(p); |
|
pb = abs(pc); |
|
pc = abs(p + pc); |
|
# else |
|
pa = p < 0 ? -p : p; |
|
pb = pc < 0 ? -pc : pc; |
|
pc = (p + pc) < 0 ? -(p + pc) : p + pc; |
|
# endif |
|
|
|
if (pb < pa) pa = pb, a = b; |
|
if (pc < pa) a = c; |
|
|
|
c = b; |
|
a += *row; |
|
*row++ = (png_byte)a; |
|
} |
|
} |
|
|
|
#ifdef PNG_ARM_NEON |
|
|
|
#ifdef __linux__ |
|
#include <stdio.h> |
|
#include <elf.h> |
|
#include <asm/hwcap.h> |
|
|
|
static int png_have_hwcap(unsigned cap) |
|
{ |
|
FILE *f = fopen("/proc/self/auxv", "r"); |
|
Elf32_auxv_t aux; |
|
int have_cap = 0; |
|
|
|
if (!f) |
|
return 0; |
|
|
|
while (fread(&aux, sizeof(aux), 1, f) > 0) |
|
{ |
|
if (aux.a_type == AT_HWCAP && |
|
aux.a_un.a_val & cap) |
|
{ |
|
have_cap = 1; |
|
break; |
|
} |
|
} |
|
|
|
fclose(f); |
|
|
|
return have_cap; |
|
} |
|
#endif /* __linux__ */ |
|
|
|
static void |
|
png_init_filter_functions_neon(png_structp pp, unsigned int bpp) |
|
{ |
|
#ifdef __linux__ |
|
if (!png_have_hwcap(HWCAP_NEON)) |
|
return; |
|
#endif |
|
|
|
pp->read_filter[PNG_FILTER_VALUE_UP-1] = png_read_filter_row_up_neon; |
|
|
|
if (bpp == 3) |
|
{ |
|
pp->read_filter[PNG_FILTER_VALUE_SUB-1] = png_read_filter_row_sub3_neon; |
|
pp->read_filter[PNG_FILTER_VALUE_AVG-1] = png_read_filter_row_avg3_neon; |
|
pp->read_filter[PNG_FILTER_VALUE_PAETH-1] = |
|
png_read_filter_row_paeth3_neon; |
|
} |
|
|
|
else if (bpp == 4) |
|
{ |
|
pp->read_filter[PNG_FILTER_VALUE_SUB-1] = png_read_filter_row_sub4_neon; |
|
pp->read_filter[PNG_FILTER_VALUE_AVG-1] = png_read_filter_row_avg4_neon; |
|
pp->read_filter[PNG_FILTER_VALUE_PAETH-1] = |
|
png_read_filter_row_paeth4_neon; |
|
} |
|
} |
|
#endif /* PNG_ARM_NEON */ |
|
|
|
static void |
|
png_init_filter_functions(png_structp pp) |
|
{ |
|
unsigned int bpp = (pp->pixel_depth + 7) >> 3; |
|
|
|
pp->read_filter[PNG_FILTER_VALUE_SUB-1] = png_read_filter_row_sub; |
|
pp->read_filter[PNG_FILTER_VALUE_UP-1] = png_read_filter_row_up; |
|
pp->read_filter[PNG_FILTER_VALUE_AVG-1] = png_read_filter_row_avg; |
|
if (bpp == 1) |
|
pp->read_filter[PNG_FILTER_VALUE_PAETH-1] = |
|
png_read_filter_row_paeth_1byte_pixel; |
|
else |
|
pp->read_filter[PNG_FILTER_VALUE_PAETH-1] = |
|
png_read_filter_row_paeth_multibyte_pixel; |
|
|
|
#ifdef PNG_ARM_NEON |
|
png_init_filter_functions_neon(pp, bpp); |
|
#endif |
|
} |
|
|
|
void /* PRIVATE */ |
|
png_read_filter_row(png_structp pp, png_row_infop row_info, png_bytep row, |
|
png_const_bytep prev_row, int filter) |
|
{ |
|
if (pp->read_filter[0] == NULL) |
|
png_init_filter_functions(pp); |
|
if (filter > PNG_FILTER_VALUE_NONE && filter < PNG_FILTER_VALUE_LAST) |
|
pp->read_filter[filter-1](row_info, row, prev_row); |
|
} |
|
|
|
#ifdef PNG_SEQUENTIAL_READ_SUPPORTED |
|
void /* PRIVATE */ |
|
png_read_finish_row(png_structp png_ptr) |
|
{ |
|
#ifdef PNG_READ_INTERLACING_SUPPORTED |
|
/* Arrays to facilitate easy interlacing - use pass (0 - 6) as index */ |
|
|
|
/* Start of interlace block */ |
|
static PNG_CONST png_byte png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0}; |
|
|
|
/* Offset to next interlace block */ |
|
static PNG_CONST png_byte png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1}; |
|
|
|
/* Start of interlace block in the y direction */ |
|
static PNG_CONST png_byte png_pass_ystart[7] = {0, 0, 4, 0, 2, 0, 1}; |
|
|
|
/* Offset to next interlace block in the y direction */ |
|
static PNG_CONST png_byte png_pass_yinc[7] = {8, 8, 8, 4, 4, 2, 2}; |
|
#endif /* PNG_READ_INTERLACING_SUPPORTED */ |
|
|
|
png_debug(1, "in png_read_finish_row"); |
|
png_ptr->row_number++; |
|
if (png_ptr->row_number < png_ptr->num_rows) |
|
return; |
|
|
|
#ifdef PNG_READ_INTERLACING_SUPPORTED |
|
if (png_ptr->interlaced) |
|
{ |
|
png_ptr->row_number = 0; |
|
|
|
/* TO DO: don't do this if prev_row isn't needed (requires |
|
* read-ahead of the next row's filter byte. |
|
*/ |
|
png_memset(png_ptr->prev_row, 0, png_ptr->rowbytes + 1); |
|
|
|
do |
|
{ |
|
png_ptr->pass++; |
|
|
|
if (png_ptr->pass >= 7) |
|
break; |
|
|
|
png_ptr->iwidth = (png_ptr->width + |
|
png_pass_inc[png_ptr->pass] - 1 - |
|
png_pass_start[png_ptr->pass]) / |
|
png_pass_inc[png_ptr->pass]; |
|
|
|
if (!(png_ptr->transformations & PNG_INTERLACE)) |
|
{ |
|
png_ptr->num_rows = (png_ptr->height + |
|
png_pass_yinc[png_ptr->pass] - 1 - |
|
png_pass_ystart[png_ptr->pass]) / |
|
png_pass_yinc[png_ptr->pass]; |
|
} |
|
|
|
else /* if (png_ptr->transformations & PNG_INTERLACE) */ |
|
break; /* libpng deinterlacing sees every row */ |
|
|
|
} while (png_ptr->num_rows == 0 || png_ptr->iwidth == 0); |
|
|
|
if (png_ptr->pass < 7) |
|
return; |
|
} |
|
#endif /* PNG_READ_INTERLACING_SUPPORTED */ |
|
|
|
if (!(png_ptr->flags & PNG_FLAG_ZLIB_FINISHED)) |
|
{ |
|
char extra; |
|
int ret; |
|
|
|
png_ptr->zstream.next_out = (Byte *)&extra; |
|
png_ptr->zstream.avail_out = (uInt)1; |
|
|
|
for (;;) |
|
{ |
|
if (!(png_ptr->zstream.avail_in)) |
|
{ |
|
while (!png_ptr->idat_size) |
|
{ |
|
png_crc_finish(png_ptr, 0); |
|
png_ptr->idat_size = png_read_chunk_header(png_ptr); |
|
if (png_ptr->chunk_name != png_IDAT) |
|
png_error(png_ptr, "Not enough image data"); |
|
} |
|
|
|
png_ptr->zstream.avail_in = (uInt)png_ptr->zbuf_size; |
|
png_ptr->zstream.next_in = png_ptr->zbuf; |
|
|
|
if (png_ptr->zbuf_size > png_ptr->idat_size) |
|
png_ptr->zstream.avail_in = (uInt)png_ptr->idat_size; |
|
|
|
png_crc_read(png_ptr, png_ptr->zbuf, png_ptr->zstream.avail_in); |
|
png_ptr->idat_size -= png_ptr->zstream.avail_in; |
|
} |
|
|
|
ret = inflate(&png_ptr->zstream, Z_PARTIAL_FLUSH); |
|
|
|
if (ret == Z_STREAM_END) |
|
{ |
|
if (!(png_ptr->zstream.avail_out) || png_ptr->zstream.avail_in || |
|
png_ptr->idat_size) |
|
png_warning(png_ptr, "Extra compressed data"); |
|
|
|
png_ptr->mode |= PNG_AFTER_IDAT; |
|
png_ptr->flags |= PNG_FLAG_ZLIB_FINISHED; |
|
break; |
|
} |
|
|
|
if (ret != Z_OK) |
|
png_error(png_ptr, png_ptr->zstream.msg ? png_ptr->zstream.msg : |
|
"Decompression Error"); |
|
|
|
if (!(png_ptr->zstream.avail_out)) |
|
{ |
|
png_warning(png_ptr, "Extra compressed data"); |
|
png_ptr->mode |= PNG_AFTER_IDAT; |
|
png_ptr->flags |= PNG_FLAG_ZLIB_FINISHED; |
|
break; |
|
} |
|
|
|
} |
|
png_ptr->zstream.avail_out = 0; |
|
} |
|
|
|
if (png_ptr->idat_size || png_ptr->zstream.avail_in) |
|
png_warning(png_ptr, "Extra compression data"); |
|
|
|
inflateReset(&png_ptr->zstream); |
|
|
|
png_ptr->mode |= PNG_AFTER_IDAT; |
|
} |
|
#endif /* PNG_SEQUENTIAL_READ_SUPPORTED */ |
|
|
|
void /* PRIVATE */ |
|
png_read_start_row(png_structp png_ptr) |
|
{ |
|
#ifdef PNG_READ_INTERLACING_SUPPORTED |
|
/* Arrays to facilitate easy interlacing - use pass (0 - 6) as index */ |
|
|
|
/* Start of interlace block */ |
|
static PNG_CONST png_byte png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0}; |
|
|
|
/* Offset to next interlace block */ |
|
static PNG_CONST png_byte png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1}; |
|
|
|
/* Start of interlace block in the y direction */ |
|
static PNG_CONST png_byte png_pass_ystart[7] = {0, 0, 4, 0, 2, 0, 1}; |
|
|
|
/* Offset to next interlace block in the y direction */ |
|
static PNG_CONST png_byte png_pass_yinc[7] = {8, 8, 8, 4, 4, 2, 2}; |
|
#endif |
|
|
|
int max_pixel_depth; |
|
png_size_t row_bytes; |
|
|
|
png_debug(1, "in png_read_start_row"); |
|
png_ptr->zstream.avail_in = 0; |
|
#ifdef PNG_READ_TRANSFORMS_SUPPORTED |
|
png_init_read_transformations(png_ptr); |
|
#endif |
|
#ifdef PNG_READ_INTERLACING_SUPPORTED |
|
if (png_ptr->interlaced) |
|
{ |
|
if (!(png_ptr->transformations & PNG_INTERLACE)) |
|
png_ptr->num_rows = (png_ptr->height + png_pass_yinc[0] - 1 - |
|
png_pass_ystart[0]) / png_pass_yinc[0]; |
|
|
|
else |
|
png_ptr->num_rows = png_ptr->height; |
|
|
|
png_ptr->iwidth = (png_ptr->width + |
|
png_pass_inc[png_ptr->pass] - 1 - |
|
png_pass_start[png_ptr->pass]) / |
|
png_pass_inc[png_ptr->pass]; |
|
} |
|
|
|
else |
|
#endif /* PNG_READ_INTERLACING_SUPPORTED */ |
|
{ |
|
png_ptr->num_rows = png_ptr->height; |
|
png_ptr->iwidth = png_ptr->width; |
|
} |
|
|
|
max_pixel_depth = png_ptr->pixel_depth; |
|
|
|
/* WARNING: * png_read_transform_info (pngrtran.c) performs a simpliar set of |
|
* calculations to calculate the final pixel depth, then |
|
* png_do_read_transforms actually does the transforms. This means that the |
|
* code which effectively calculates this value is actually repeated in three |
|
* separate places. They must all match. Innocent changes to the order of |
|
* transformations can and will break libpng in a way that causes memory |
|
* overwrites. |
|
* |
|
* TODO: fix this. |
|
*/ |
|
#ifdef PNG_READ_PACK_SUPPORTED |
|
if ((png_ptr->transformations & PNG_PACK) && png_ptr->bit_depth < 8) |
|
max_pixel_depth = 8; |
|
#endif |
|
|
|
#ifdef PNG_READ_EXPAND_SUPPORTED |
|
if (png_ptr->transformations & PNG_EXPAND) |
|
{ |
|
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) |
|
{ |
|
if (png_ptr->num_trans) |
|
max_pixel_depth = 32; |
|
|
|
else |
|
max_pixel_depth = 24; |
|
} |
|
|
|
else if (png_ptr->color_type == PNG_COLOR_TYPE_GRAY) |
|
{ |
|
if (max_pixel_depth < 8) |
|
max_pixel_depth = 8; |
|
|
|
if (png_ptr->num_trans) |
|
max_pixel_depth *= 2; |
|
} |
|
|
|
else if (png_ptr->color_type == PNG_COLOR_TYPE_RGB) |
|
{ |
|
if (png_ptr->num_trans) |
|
{ |
|
max_pixel_depth *= 4; |
|
max_pixel_depth /= 3; |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
#ifdef PNG_READ_EXPAND_16_SUPPORTED |
|
if (png_ptr->transformations & PNG_EXPAND_16) |
|
{ |
|
# ifdef PNG_READ_EXPAND_SUPPORTED |
|
/* In fact it is an error if it isn't supported, but checking is |
|
* the safe way. |
|
*/ |
|
if (png_ptr->transformations & PNG_EXPAND) |
|
{ |
|
if (png_ptr->bit_depth < 16) |
|
max_pixel_depth *= 2; |
|
} |
|
else |
|
# endif |
|
png_ptr->transformations &= ~PNG_EXPAND_16; |
|
} |
|
#endif |
|
|
|
#ifdef PNG_READ_FILLER_SUPPORTED |
|
if (png_ptr->transformations & (PNG_FILLER)) |
|
{ |
|
if (png_ptr->color_type == PNG_COLOR_TYPE_GRAY) |
|
{ |
|
if (max_pixel_depth <= 8) |
|
max_pixel_depth = 16; |
|
|
|
else |
|
max_pixel_depth = 32; |
|
} |
|
|
|
else if (png_ptr->color_type == PNG_COLOR_TYPE_RGB || |
|
png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) |
|
{ |
|
if (max_pixel_depth <= 32) |
|
max_pixel_depth = 32; |
|
|
|
else |
|
max_pixel_depth = 64; |
|
} |
|
} |
|
#endif |
|
|
|
#ifdef PNG_READ_GRAY_TO_RGB_SUPPORTED |
|
if (png_ptr->transformations & PNG_GRAY_TO_RGB) |
|
{ |
|
if ( |
|
#ifdef PNG_READ_EXPAND_SUPPORTED |
|
(png_ptr->num_trans && (png_ptr->transformations & PNG_EXPAND)) || |
|
#endif |
|
#ifdef PNG_READ_FILLER_SUPPORTED |
|
(png_ptr->transformations & (PNG_FILLER)) || |
|
#endif |
|
png_ptr->color_type == PNG_COLOR_TYPE_GRAY_ALPHA) |
|
{ |
|
if (max_pixel_depth <= 16) |
|
max_pixel_depth = 32; |
|
|
|
else |
|
max_pixel_depth = 64; |
|
} |
|
|
|
else |
|
{ |
|
if (max_pixel_depth <= 8) |
|
{ |
|
if (png_ptr->color_type == PNG_COLOR_TYPE_RGB_ALPHA) |
|
max_pixel_depth = 32; |
|
|
|
else |
|
max_pixel_depth = 24; |
|
} |
|
|
|
else if (png_ptr->color_type == PNG_COLOR_TYPE_RGB_ALPHA) |
|
max_pixel_depth = 64; |
|
|
|
else |
|
max_pixel_depth = 48; |
|
} |
|
} |
|
#endif |
|
|
|
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) && \ |
|
defined(PNG_USER_TRANSFORM_PTR_SUPPORTED) |
|
if (png_ptr->transformations & PNG_USER_TRANSFORM) |
|
{ |
|
int user_pixel_depth = png_ptr->user_transform_depth * |
|
png_ptr->user_transform_channels; |
|
|
|
if (user_pixel_depth > max_pixel_depth) |
|
max_pixel_depth = user_pixel_depth; |
|
} |
|
#endif |
|
|
|
/* This value is stored in png_struct and double checked in the row read |
|
* code. |
|
*/ |
|
png_ptr->maximum_pixel_depth = (png_byte)max_pixel_depth; |
|
png_ptr->transformed_pixel_depth = 0; /* calculated on demand */ |
|
|
|
/* Align the width on the next larger 8 pixels. Mainly used |
|
* for interlacing |
|
*/ |
|
row_bytes = ((png_ptr->width + 7) & ~((png_uint_32)7)); |
|
/* Calculate the maximum bytes needed, adding a byte and a pixel |
|
* for safety's sake |
|
*/ |
|
row_bytes = PNG_ROWBYTES(max_pixel_depth, row_bytes) + |
|
1 + ((max_pixel_depth + 7) >> 3); |
|
|
|
#ifdef PNG_MAX_MALLOC_64K |
|
if (row_bytes > (png_uint_32)65536L) |
|
png_error(png_ptr, "This image requires a row greater than 64KB"); |
|
#endif |
|
|
|
if (row_bytes + 48 > png_ptr->old_big_row_buf_size) |
|
{ |
|
png_free(png_ptr, png_ptr->big_row_buf); |
|
png_free(png_ptr, png_ptr->big_prev_row); |
|
|
|
if (png_ptr->interlaced) |
|
png_ptr->big_row_buf = (png_bytep)png_calloc(png_ptr, |
|
row_bytes + 48); |
|
|
|
else |
|
png_ptr->big_row_buf = (png_bytep)png_malloc(png_ptr, row_bytes + 48); |
|
|
|
png_ptr->big_prev_row = (png_bytep)png_malloc(png_ptr, row_bytes + 48); |
|
|
|
#ifdef PNG_ALIGNED_MEMORY_SUPPORTED |
|
/* Use 16-byte aligned memory for row_buf with at least 16 bytes |
|
* of padding before and after row_buf; treat prev_row similarly. |
|
* NOTE: the alignment is to the start of the pixels, one beyond the start |
|
* of the buffer, because of the filter byte. Prior to libpng 1.5.6 this |
|
* was incorrect; the filter byte was aligned, which had the exact |
|
* opposite effect of that intended. |
|
*/ |
|
{ |
|
png_bytep temp = png_ptr->big_row_buf + 32; |
|
int extra = (int)((temp - (png_bytep)0) & 0x0f); |
|
png_ptr->row_buf = temp - extra - 1/*filter byte*/; |
|
|
|
temp = png_ptr->big_prev_row + 32; |
|
extra = (int)((temp - (png_bytep)0) & 0x0f); |
|
png_ptr->prev_row = temp - extra - 1/*filter byte*/; |
|
} |
|
|
|
#else |
|
/* Use 31 bytes of padding before and 17 bytes after row_buf. */ |
|
png_ptr->row_buf = png_ptr->big_row_buf + 31; |
|
png_ptr->prev_row = png_ptr->big_prev_row + 31; |
|
#endif |
|
png_ptr->old_big_row_buf_size = row_bytes + 48; |
|
} |
|
|
|
#ifdef PNG_MAX_MALLOC_64K |
|
if (png_ptr->rowbytes > 65535) |
|
png_error(png_ptr, "This image requires a row greater than 64KB"); |
|
|
|
#endif |
|
if (png_ptr->rowbytes > (PNG_SIZE_MAX - 1)) |
|
png_error(png_ptr, "Row has too many bytes to allocate in memory"); |
|
|
|
png_memset(png_ptr->prev_row, 0, png_ptr->rowbytes + 1); |
|
|
|
png_debug1(3, "width = %u,", png_ptr->width); |
|
png_debug1(3, "height = %u,", png_ptr->height); |
|
png_debug1(3, "iwidth = %u,", png_ptr->iwidth); |
|
png_debug1(3, "num_rows = %u,", png_ptr->num_rows); |
|
png_debug1(3, "rowbytes = %lu,", (unsigned long)png_ptr->rowbytes); |
|
png_debug1(3, "irowbytes = %lu", |
|
(unsigned long)PNG_ROWBYTES(png_ptr->pixel_depth, png_ptr->iwidth) + 1); |
|
|
|
png_ptr->flags |= PNG_FLAG_ROW_INIT; |
|
} |
|
#endif /* PNG_READ_SUPPORTED */
|
|
|