mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
193 lines
5.6 KiB
193 lines
5.6 KiB
#if defined(__linux__) || defined(LINUX) || defined(__APPLE__) || defined(ANDROID) |
|
|
|
#include <opencv2/core.hpp> |
|
#include <opencv2/core/utility.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/highgui.hpp> |
|
#include <opencv2/objdetect.hpp> |
|
#include "opencv2/contrib/detection_based_tracker.hpp" |
|
|
|
#include <vector> |
|
#include <iostream> |
|
#include <stdio.h> |
|
|
|
#define DEBUGLOGS 1 |
|
|
|
|
|
#ifdef ANDROID |
|
#include <android/log.h> |
|
#define LOG_TAG "DETECTIONBASEDTRACKER__TEST_APPLICAT" |
|
#define LOGD0(...) ((void)__android_log_print(ANDROID_LOG_DEBUG, LOG_TAG, __VA_ARGS__)) |
|
#define LOGI0(...) ((void)__android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)) |
|
#define LOGW0(...) ((void)__android_log_print(ANDROID_LOG_WARN, LOG_TAG, __VA_ARGS__)) |
|
#define LOGE0(...) ((void)__android_log_print(ANDROID_LOG_ERROR, LOG_TAG, __VA_ARGS__)) |
|
#else |
|
|
|
#include <stdio.h> |
|
|
|
#define LOGD0(_str, ...) do{printf(_str , ## __VA_ARGS__); printf("\n");fflush(stdout);} while(0) |
|
#define LOGI0(_str, ...) do{printf(_str , ## __VA_ARGS__); printf("\n");fflush(stdout);} while(0) |
|
#define LOGW0(_str, ...) do{printf(_str , ## __VA_ARGS__); printf("\n");fflush(stdout);} while(0) |
|
#define LOGE0(_str, ...) do{printf(_str , ## __VA_ARGS__); printf("\n");fflush(stdout);} while(0) |
|
#endif |
|
|
|
#if DEBUGLOGS |
|
#define LOGD(_str, ...) LOGD0(_str , ## __VA_ARGS__) |
|
#define LOGI(_str, ...) LOGI0(_str , ## __VA_ARGS__) |
|
#define LOGW(_str, ...) LOGW0(_str , ## __VA_ARGS__) |
|
#define LOGE(_str, ...) LOGE0(_str , ## __VA_ARGS__) |
|
#else |
|
#define LOGD(...) do{} while(0) |
|
#define LOGI(...) do{} while(0) |
|
#define LOGW(...) do{} while(0) |
|
#define LOGE(...) do{} while(0) |
|
#endif |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
#define ORIGINAL 0 |
|
#define SHOULD_USE_EXTERNAL_BUFFERS 1 |
|
|
|
static void usage() |
|
{ |
|
LOGE0("usage: filepattern outfilepattern cascadefile"); |
|
LOGE0("\t where "); |
|
LOGE0("\t filepattern --- pattern for the paths to the source images"); |
|
LOGE0("\t (e.g.\"./Videos/FACESJPG2/Faces2_%%08d.jpg\" "); |
|
LOGE0("\t outfilepattern --- pattern for the paths for images which will be generated"); |
|
LOGE0("\t (e.g.\"./resFaces2_%%08d.jpg\" "); |
|
LOGE0("\t cascadefile --- path to the cascade file"); |
|
LOGE0("\t (e.g.\"opencv/data/lbpcascades/lbpcascade_frontalface.xml\" "); |
|
} |
|
|
|
class CascadeDetectorAdapter: public DetectionBasedTracker::IDetector |
|
{ |
|
public: |
|
CascadeDetectorAdapter(cv::Ptr<cv::CascadeClassifier> detector): |
|
Detector(detector) |
|
{ |
|
CV_Assert(!detector.empty()); |
|
} |
|
|
|
void detect(const cv::Mat &Image, std::vector<cv::Rect> &objects) |
|
{ |
|
Detector->detectMultiScale(Image, objects, 1.1, 3, 0, minObjSize, maxObjSize); |
|
} |
|
virtual ~CascadeDetectorAdapter() |
|
{} |
|
|
|
private: |
|
CascadeDetectorAdapter(); |
|
cv::Ptr<cv::CascadeClassifier> Detector; |
|
}; |
|
|
|
static int test_FaceDetector(int argc, char *argv[]) |
|
{ |
|
if (argc < 4) |
|
{ |
|
usage(); |
|
return -1; |
|
} |
|
|
|
const char* filepattern=argv[1]; |
|
const char* outfilepattern=argv[2]; |
|
const char* cascadefile=argv[3]; |
|
LOGD0("filepattern='%s'", filepattern); |
|
LOGD0("outfilepattern='%s'", outfilepattern); |
|
LOGD0("cascadefile='%s'", cascadefile); |
|
|
|
vector<Mat> images; |
|
{ |
|
char filename[256]; |
|
for(int n=1; ; n++) |
|
{ |
|
snprintf(filename, sizeof(filename), filepattern, n); |
|
LOGD("filename='%s'", filename); |
|
Mat m0; |
|
m0=imread(filename); |
|
if (m0.empty()) |
|
{ |
|
LOGI0("Cannot read the file --- break"); |
|
break; |
|
} |
|
images.push_back(m0); |
|
} |
|
LOGD("read %d images", (int)images.size()); |
|
} |
|
|
|
std::string cascadeFrontalfilename=cascadefile; |
|
cv::Ptr<cv::CascadeClassifier> cascade = new cv::CascadeClassifier(cascadeFrontalfilename); |
|
cv::Ptr<DetectionBasedTracker::IDetector> MainDetector = new CascadeDetectorAdapter(cascade); |
|
|
|
cascade = new cv::CascadeClassifier(cascadeFrontalfilename); |
|
cv::Ptr<DetectionBasedTracker::IDetector> TrackingDetector = new CascadeDetectorAdapter(cascade); |
|
|
|
DetectionBasedTracker::Parameters params; |
|
DetectionBasedTracker fd(MainDetector, TrackingDetector, params); |
|
|
|
fd.run(); |
|
|
|
Mat gray; |
|
Mat m; |
|
|
|
int64 tprev=getTickCount(); |
|
double freq=getTickFrequency(); |
|
|
|
int num_images=images.size(); |
|
for(int n=1; n <= num_images; n++) |
|
{ |
|
int64 tcur=getTickCount(); |
|
int64 dt=tcur-tprev; |
|
tprev=tcur; |
|
double t_ms=((double)dt)/freq * 1000.0; |
|
LOGD("\n\nSTEP n=%d from prev step %f ms\n", n, t_ms); |
|
m=images[n-1]; |
|
CV_Assert(! m.empty()); |
|
cvtColor(m, gray, COLOR_BGR2GRAY); |
|
|
|
fd.process(gray); |
|
|
|
vector<Rect> result; |
|
fd.getObjects(result); |
|
|
|
for(size_t i=0; i < result.size(); i++) |
|
{ |
|
Rect r=result[i]; |
|
CV_Assert(r.area() > 0); |
|
Point tl=r.tl(); |
|
Point br=r.br(); |
|
Scalar color=Scalar(0, 250, 0); |
|
rectangle(m, tl, br, color, 3); |
|
} |
|
} |
|
|
|
char outfilename[256]; |
|
for(int n=1; n <= num_images; n++) |
|
{ |
|
snprintf(outfilename, sizeof(outfilename), outfilepattern, n); |
|
LOGD("outfilename='%s'", outfilename); |
|
m=images[n-1]; |
|
imwrite(outfilename, m); |
|
} |
|
|
|
fd.stop(); |
|
|
|
return 0; |
|
} |
|
|
|
int main(int argc, char *argv[]) |
|
{ |
|
return test_FaceDetector(argc, argv); |
|
} |
|
|
|
#else // #if defined(__linux__) || defined(LINUX) || defined(__APPLE__) || defined(ANDROID) |
|
|
|
#include <stdio.h> |
|
int main() |
|
{ |
|
printf("This sample works for UNIX or ANDROID only\n"); |
|
return 0; |
|
} |
|
|
|
#endif
|
|
|