mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1119 lines
28 KiB
1119 lines
28 KiB
/*********************************************************************** |
|
* Software License Agreement (BSD License) |
|
* |
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. |
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. |
|
* |
|
* THE BSD LICENSE |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
*************************************************************************/ |
|
|
|
#ifndef KMEANSTREE_H |
|
#define KMEANSTREE_H |
|
|
|
#include <algorithm> |
|
#include <string> |
|
#include <cstdlib> |
|
#include <map> |
|
#include <cassert> |
|
#include <limits> |
|
#include <cmath> |
|
#include "constants.h" |
|
#include "common.h" |
|
#include "heap.h" |
|
#include "allocator.h" |
|
#include "matrix.h" |
|
#include "result_set.h" |
|
#include "random.h" |
|
#include "nn_index.h" |
|
|
|
using namespace std; |
|
|
|
|
|
namespace cvflann |
|
{ |
|
|
|
/** |
|
* Chooses the initial centers in the k-means clustering in a random manner. |
|
* |
|
* Params: |
|
* k = number of centers |
|
* vecs = the dataset of points |
|
* indices = indices in the dataset |
|
* indices_length = length of indices vector |
|
* |
|
*/ |
|
void chooseCentersRandom(int k, const Matrix<float>& vecs, int* indices, int indices_length, float** centers, int& centers_length) |
|
{ |
|
UniqueRandom r(indices_length); |
|
|
|
int index; |
|
for (index=0;index<k;++index) { |
|
bool duplicate = true; |
|
int rnd; |
|
while (duplicate) { |
|
duplicate = false; |
|
rnd = r.next(); |
|
if (rnd<0) { |
|
centers_length = index; |
|
return; |
|
} |
|
|
|
centers[index] = vecs[indices[rnd]]; |
|
|
|
for (int j=0;j<index;++j) { |
|
float sq = flann_dist(centers[index],centers[index]+vecs.cols,centers[j]); |
|
if (sq<1e-16) { |
|
duplicate = true; |
|
} |
|
} |
|
} |
|
} |
|
|
|
centers_length = index; |
|
} |
|
|
|
|
|
/** |
|
* Chooses the initial centers in the k-means using Gonzales' algorithm |
|
* so that the centers are spaced apart from each other. |
|
* |
|
* Params: |
|
* k = number of centers |
|
* vecs = the dataset of points |
|
* indices = indices in the dataset |
|
* Returns: |
|
*/ |
|
void chooseCentersGonzales(int k, const Matrix<float>& vecs, int* indices, int indices_length, float** centers, int& centers_length) |
|
{ |
|
int n = indices_length; |
|
|
|
|
|
int rnd = rand_int(n); |
|
assert(rnd >=0 && rnd < n); |
|
|
|
centers[0] = vecs[indices[rnd]]; |
|
|
|
int index; |
|
for (index=1; index<k; ++index) { |
|
|
|
int best_index = -1; |
|
float best_val = 0; |
|
for (int j=0;j<n;++j) { |
|
float dist = flann_dist(centers[0],centers[0]+vecs.cols,vecs[indices[j]]); |
|
for (int i=1;i<index;++i) { |
|
float tmp_dist = flann_dist(centers[i],centers[i]+vecs.cols,vecs[indices[j]]); |
|
if (tmp_dist<dist) { |
|
dist = tmp_dist; |
|
} |
|
} |
|
if (dist>best_val) { |
|
best_val = dist; |
|
best_index = j; |
|
} |
|
} |
|
if (best_index!=-1) { |
|
centers[index] = vecs[indices[best_index]]; |
|
} |
|
else { |
|
break; |
|
} |
|
} |
|
centers_length = index; |
|
} |
|
|
|
|
|
/** |
|
* Chooses the initial centers in the k-means using the algorithm |
|
* proposed in the KMeans++ paper: |
|
* Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding |
|
* |
|
* Implementation of this function was converted from the one provided in Arthur's code. |
|
* |
|
* Params: |
|
* k = number of centers |
|
* vecs = the dataset of points |
|
* indices = indices in the dataset |
|
* Returns: |
|
*/ |
|
void chooseCentersKMeanspp(int k, const Matrix<float>& vecs, int* indices, int indices_length, float** centers, int& centers_length) |
|
{ |
|
int n = indices_length; |
|
|
|
double currentPot = 0; |
|
double* closestDistSq = new double[n]; |
|
|
|
// Choose one random center and set the closestDistSq values |
|
int index = rand_int(n); |
|
assert(index >=0 && index < n); |
|
centers[0] = vecs[indices[index]]; |
|
|
|
for (int i = 0; i < n; i++) { |
|
closestDistSq[i] = flann_dist(vecs[indices[i]], vecs[indices[i]] + vecs.cols, vecs[indices[index]]); |
|
currentPot += closestDistSq[i]; |
|
} |
|
|
|
|
|
const int numLocalTries = 1; |
|
|
|
// Choose each center |
|
int centerCount; |
|
for (centerCount = 1; centerCount < k; centerCount++) { |
|
|
|
// Repeat several trials |
|
double bestNewPot = -1; |
|
int bestNewIndex = 0; |
|
for (int localTrial = 0; localTrial < numLocalTries; localTrial++) { |
|
|
|
// Choose our center - have to be slightly careful to return a valid answer even accounting |
|
// for possible rounding errors |
|
double randVal = rand_double(currentPot); |
|
for (index = 0; index < n-1; index++) { |
|
if (randVal <= closestDistSq[index]) |
|
break; |
|
else |
|
randVal -= closestDistSq[index]; |
|
} |
|
|
|
// Compute the new potential |
|
double newPot = 0; |
|
for (int i = 0; i < n; i++) |
|
newPot += min( (double)flann_dist(vecs[indices[i]], vecs[indices[i]] + vecs.cols, vecs[indices[index]]), closestDistSq[i] ); |
|
|
|
// Store the best result |
|
if (bestNewPot < 0 || newPot < bestNewPot) { |
|
bestNewPot = newPot; |
|
bestNewIndex = index; |
|
} |
|
} |
|
|
|
// Add the appropriate center |
|
centers[centerCount] = vecs[indices[bestNewIndex]]; |
|
currentPot = bestNewPot; |
|
for (int i = 0; i < n; i++) |
|
closestDistSq[i] = min( (double)flann_dist(vecs[indices[i]], vecs[indices[i]]+vecs.cols, vecs[indices[bestNewIndex]]), closestDistSq[i] ); |
|
} |
|
|
|
centers_length = centerCount; |
|
|
|
delete[] closestDistSq; |
|
} |
|
|
|
|
|
|
|
|
|
namespace { |
|
|
|
typedef void (*centersAlgFunction)(int, const Matrix<float>&, int*, int, float**, int&); |
|
/** |
|
* Associative array with functions to use for choosing the cluster centers. |
|
*/ |
|
map<flann_centers_init_t,centersAlgFunction> centerAlgs; |
|
/** |
|
* Static initializer. Performs initialization befor the program starts. |
|
*/ |
|
|
|
void centers_init() |
|
{ |
|
centerAlgs[CENTERS_RANDOM] = &chooseCentersRandom; |
|
centerAlgs[CENTERS_GONZALES] = &chooseCentersGonzales; |
|
centerAlgs[CENTERS_KMEANSPP] = &chooseCentersKMeanspp; |
|
} |
|
|
|
struct Init { |
|
Init() { centers_init(); } |
|
}; |
|
Init __init; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
/** |
|
* Hierarchical kmeans index |
|
* |
|
* Contains a tree constructed through a hierarchical kmeans clustering |
|
* and other information for indexing a set of points for nearest-neighbor matching. |
|
*/ |
|
class KMeansIndex : public NNIndex |
|
{ |
|
|
|
/** |
|
* The branching factor used in the hierarchical k-means clustering |
|
*/ |
|
int branching; |
|
|
|
/** |
|
* Maximum number of iterations to use when performing k-means |
|
* clustering |
|
*/ |
|
int max_iter; |
|
|
|
/** |
|
* Cluster border index. This is used in the tree search phase when determining |
|
* the closest cluster to explore next. A zero value takes into account only |
|
* the cluster centers, a value greater then zero also take into account the size |
|
* of the cluster. |
|
*/ |
|
float cb_index; |
|
|
|
/** |
|
* The dataset used by this index |
|
*/ |
|
const Matrix<float> dataset; |
|
|
|
/** |
|
* Number of features in the dataset. |
|
*/ |
|
int size_; |
|
|
|
/** |
|
* Length of each feature. |
|
*/ |
|
int veclen_; |
|
|
|
|
|
/** |
|
* Struture representing a node in the hierarchical k-means tree. |
|
*/ |
|
struct KMeansNodeSt { |
|
/** |
|
* The cluster center. |
|
*/ |
|
float* pivot; |
|
/** |
|
* The cluster radius. |
|
*/ |
|
float radius; |
|
/** |
|
* The cluster mean radius. |
|
*/ |
|
float mean_radius; |
|
/** |
|
* The cluster variance. |
|
*/ |
|
float variance; |
|
/** |
|
* The cluster size (number of points in the cluster) |
|
*/ |
|
int size; |
|
/** |
|
* Child nodes (only for non-terminal nodes) |
|
*/ |
|
KMeansNodeSt** childs; |
|
/** |
|
* Node points (only for terminal nodes) |
|
*/ |
|
int* indices; |
|
/** |
|
* Level |
|
*/ |
|
int level; |
|
}; |
|
typedef KMeansNodeSt* KMeansNode; |
|
|
|
|
|
|
|
/** |
|
* Alias definition for a nicer syntax. |
|
*/ |
|
typedef BranchStruct<KMeansNode> BranchSt; |
|
|
|
/** |
|
* Priority queue storing intermediate branches in the best-bin-first search |
|
*/ |
|
Heap<BranchSt>* heap; |
|
|
|
|
|
|
|
/** |
|
* The root node in the tree. |
|
*/ |
|
KMeansNode root; |
|
|
|
/** |
|
* Array of indices to vectors in the dataset. |
|
*/ |
|
int* indices; |
|
|
|
|
|
/** |
|
* Pooled memory allocator. |
|
* |
|
* Using a pooled memory allocator is more efficient |
|
* than allocating memory directly when there is a large |
|
* number small of memory allocations. |
|
*/ |
|
PooledAllocator pool; |
|
|
|
/** |
|
* Memory occupied by the index. |
|
*/ |
|
int memoryCounter; |
|
|
|
|
|
/** |
|
* The function used for choosing the cluster centers. |
|
*/ |
|
centersAlgFunction chooseCenters; |
|
|
|
|
|
|
|
public: |
|
|
|
|
|
flann_algorithm_t getType() const |
|
{ |
|
return KMEANS; |
|
} |
|
|
|
/** |
|
* Index constructor |
|
* |
|
* Params: |
|
* inputData = dataset with the input features |
|
* params = parameters passed to the hierarchical k-means algorithm |
|
*/ |
|
KMeansIndex(const Matrix<float>& inputData, const KMeansIndexParams& params = KMeansIndexParams() ) |
|
: dataset(inputData), root(NULL), indices(NULL) |
|
{ |
|
memoryCounter = 0; |
|
|
|
size_ = dataset.rows; |
|
veclen_ = dataset.cols; |
|
|
|
branching = params.branching; |
|
max_iter = params.iterations; |
|
if (max_iter<0) { |
|
max_iter = numeric_limits<int>::max(); |
|
} |
|
flann_centers_init_t centersInit = params.centers_init; |
|
|
|
if ( centerAlgs.find(centersInit) != centerAlgs.end() ) { |
|
chooseCenters = centerAlgs[centersInit]; |
|
} |
|
else { |
|
throw FLANNException("Unknown algorithm for choosing initial centers."); |
|
} |
|
cb_index = 0.4f; |
|
|
|
heap = new Heap<BranchSt>(size_); |
|
} |
|
|
|
|
|
/** |
|
* Index destructor. |
|
* |
|
* Release the memory used by the index. |
|
*/ |
|
virtual ~KMeansIndex() |
|
{ |
|
if (root != NULL) { |
|
free_centers(root); |
|
} |
|
delete heap; |
|
if (indices!=NULL) { |
|
delete[] indices; |
|
} |
|
} |
|
|
|
/** |
|
* Returns size of index. |
|
*/ |
|
int size() const |
|
{ |
|
return size_; |
|
} |
|
|
|
/** |
|
* Returns the length of an index feature. |
|
*/ |
|
int veclen() const |
|
{ |
|
return veclen_; |
|
} |
|
|
|
|
|
void set_cb_index( float index) |
|
{ |
|
cb_index = index; |
|
} |
|
|
|
|
|
/** |
|
* Computes the inde memory usage |
|
* Returns: memory used by the index |
|
*/ |
|
int usedMemory() const |
|
{ |
|
return pool.usedMemory+pool.wastedMemory+memoryCounter; |
|
} |
|
|
|
/** |
|
* Builds the index |
|
*/ |
|
void buildIndex() |
|
{ |
|
if (branching<2) { |
|
throw FLANNException("Branching factor must be at least 2"); |
|
} |
|
|
|
indices = new int[size_]; |
|
for (int i=0;i<size_;++i) { |
|
indices[i] = i; |
|
} |
|
|
|
root = pool.allocate<KMeansNodeSt>(); |
|
computeNodeStatistics(root, indices, size_); |
|
computeClustering(root, indices, size_, branching,0); |
|
} |
|
|
|
|
|
void saveIndex(FILE* stream) |
|
{ |
|
save_header(stream, *this); |
|
save_value(stream, branching); |
|
save_value(stream, max_iter); |
|
save_value(stream, memoryCounter); |
|
save_value(stream, cb_index); |
|
save_value(stream, *indices, size_); |
|
|
|
save_tree(stream, root); |
|
|
|
} |
|
|
|
|
|
void loadIndex(FILE* stream) |
|
{ |
|
IndexHeader header = load_header(stream); |
|
|
|
if (header.rows!=size() || header.cols!=veclen()) { |
|
throw FLANNException("The index saved belongs to a different dataset"); |
|
} |
|
load_value(stream, branching); |
|
load_value(stream, max_iter); |
|
load_value(stream, memoryCounter); |
|
load_value(stream, cb_index); |
|
if (indices!=NULL) { |
|
delete[] indices; |
|
} |
|
indices = new int[size_]; |
|
load_value(stream, *indices, size_); |
|
|
|
if (root!=NULL) { |
|
free_centers(root); |
|
} |
|
load_tree(stream, root); |
|
} |
|
|
|
|
|
/** |
|
* Find set of nearest neighbors to vec. Their indices are stored inside |
|
* the result object. |
|
* |
|
* Params: |
|
* result = the result object in which the indices of the nearest-neighbors are stored |
|
* vec = the vector for which to search the nearest neighbors |
|
* searchParams = parameters that influence the search algorithm (checks, cb_index) |
|
*/ |
|
void findNeighbors(ResultSet& result, const float* vec, const SearchParams& searchParams) |
|
{ |
|
int maxChecks = searchParams.checks; |
|
|
|
if (maxChecks<0) { |
|
findExactNN(root, result, vec); |
|
} |
|
else { |
|
heap->clear(); |
|
int checks = 0; |
|
|
|
findNN(root, result, vec, checks, maxChecks); |
|
|
|
BranchSt branch; |
|
while (heap->popMin(branch) && (checks<maxChecks || !result.full())) { |
|
KMeansNode node = branch.node; |
|
findNN(node, result, vec, checks, maxChecks); |
|
} |
|
assert(result.full()); |
|
} |
|
|
|
} |
|
|
|
|
|
/** |
|
* Clustering function that takes a cut in the hierarchical k-means |
|
* tree and return the clusters centers of that clustering. |
|
* Params: |
|
* numClusters = number of clusters to have in the clustering computed |
|
* Returns: number of cluster centers |
|
*/ |
|
int getClusterCenters(Matrix<float>& centers) |
|
{ |
|
int numClusters = centers.rows; |
|
if (numClusters<1) { |
|
throw FLANNException("Number of clusters must be at least 1"); |
|
} |
|
|
|
float variance; |
|
KMeansNode* clusters = new KMeansNode[numClusters]; |
|
|
|
int clusterCount = getMinVarianceClusters(root, clusters, numClusters, variance); |
|
|
|
// logger.info("Clusters requested: %d, returning %d\n",numClusters, clusterCount); |
|
|
|
|
|
for (int i=0;i<clusterCount;++i) { |
|
float* center = clusters[i]->pivot; |
|
for (int j=0;j<veclen_;++j) { |
|
centers[i][j] = center[j]; |
|
} |
|
} |
|
delete[] clusters; |
|
|
|
return clusterCount; |
|
} |
|
|
|
// Params estimateSearchParams(float precision, Dataset<float>* testset = NULL) |
|
// { |
|
// Params params; |
|
// |
|
// return params; |
|
// } |
|
|
|
|
|
|
|
private: |
|
|
|
|
|
void save_tree(FILE* stream, KMeansNode node) |
|
{ |
|
save_value(stream, *node); |
|
save_value(stream, *(node->pivot), veclen_); |
|
if (node->childs==NULL) { |
|
int indices_offset = node->indices - indices; |
|
save_value(stream, indices_offset); |
|
} |
|
else { |
|
for(int i=0; i<branching; ++i) { |
|
save_tree(stream, node->childs[i]); |
|
} |
|
} |
|
} |
|
|
|
|
|
void load_tree(FILE* stream, KMeansNode& node) |
|
{ |
|
node = pool.allocate<KMeansNodeSt>(); |
|
load_value(stream, *node); |
|
node->pivot = new float[veclen_]; |
|
load_value(stream, *(node->pivot), veclen_); |
|
if (node->childs==NULL) { |
|
int indices_offset; |
|
load_value(stream, indices_offset); |
|
node->indices = indices + indices_offset; |
|
} |
|
else { |
|
node->childs = pool.allocate<KMeansNode>(branching); |
|
for(int i=0; i<branching; ++i) { |
|
load_tree(stream, node->childs[i]); |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Helper function |
|
*/ |
|
void free_centers(KMeansNode node) |
|
{ |
|
delete[] node->pivot; |
|
if (node->childs!=NULL) { |
|
for (int k=0;k<branching;++k) { |
|
free_centers(node->childs[k]); |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Computes the statistics of a node (mean, radius, variance). |
|
* |
|
* Params: |
|
* node = the node to use |
|
* indices = the indices of the points belonging to the node |
|
*/ |
|
void computeNodeStatistics(KMeansNode node, int* indices, int indices_length) { |
|
|
|
float radius = 0; |
|
float variance = 0; |
|
float* mean = new float[veclen_]; |
|
memoryCounter += veclen_*sizeof(float); |
|
|
|
memset(mean,0,veclen_*sizeof(float)); |
|
|
|
for (int i=0;i<size_;++i) { |
|
float* vec = dataset[indices[i]]; |
|
for (int j=0;j<veclen_;++j) { |
|
mean[j] += vec[j]; |
|
} |
|
variance += flann_dist(vec,vec+veclen_,zero); |
|
} |
|
for (int j=0;j<veclen_;++j) { |
|
mean[j] /= size_; |
|
} |
|
variance /= size_; |
|
variance -= flann_dist(mean,mean+veclen_,zero); |
|
|
|
float tmp = 0; |
|
for (int i=0;i<indices_length;++i) { |
|
tmp = flann_dist(mean, mean + veclen_, dataset[indices[i]]); |
|
if (tmp>radius) { |
|
radius = tmp; |
|
} |
|
} |
|
|
|
node->variance = variance; |
|
node->radius = radius; |
|
node->pivot = mean; |
|
} |
|
|
|
|
|
/** |
|
* The method responsible with actually doing the recursive hierarchical |
|
* clustering |
|
* |
|
* Params: |
|
* node = the node to cluster |
|
* indices = indices of the points belonging to the current node |
|
* branching = the branching factor to use in the clustering |
|
* |
|
* TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point) |
|
*/ |
|
void computeClustering(KMeansNode node, int* indices, int indices_length, int branching, int level) |
|
{ |
|
node->size = indices_length; |
|
node->level = level; |
|
|
|
if (indices_length < branching) { |
|
node->indices = indices; |
|
sort(node->indices,node->indices+indices_length); |
|
node->childs = NULL; |
|
return; |
|
} |
|
|
|
float** initial_centers = new float*[branching]; |
|
int centers_length; |
|
chooseCenters(branching, dataset, indices, indices_length, initial_centers, centers_length); |
|
|
|
if (centers_length<branching) { |
|
node->indices = indices; |
|
sort(node->indices,node->indices+indices_length); |
|
node->childs = NULL; |
|
return; |
|
} |
|
|
|
|
|
Matrix<double> dcenters(branching,veclen_); |
|
for (int i=0; i<centers_length; ++i) { |
|
for (int k=0; k<veclen_; ++k) { |
|
dcenters[i][k] = double(initial_centers[i][k]); |
|
} |
|
} |
|
delete[] initial_centers; |
|
|
|
float* radiuses = new float[branching]; |
|
int* count = new int[branching]; |
|
for (int i=0;i<branching;++i) { |
|
radiuses[i] = 0; |
|
count[i] = 0; |
|
} |
|
|
|
// assign points to clusters |
|
int* belongs_to = new int[indices_length]; |
|
for (int i=0;i<indices_length;++i) { |
|
|
|
float sq_dist = flann_dist(dataset[indices[i]], dataset[indices[i]] + veclen_ ,dcenters[0]); |
|
belongs_to[i] = 0; |
|
for (int j=1;j<branching;++j) { |
|
float new_sq_dist = flann_dist(dataset[indices[i]], dataset[indices[i]]+veclen_, dcenters[j]); |
|
if (sq_dist>new_sq_dist) { |
|
belongs_to[i] = j; |
|
sq_dist = new_sq_dist; |
|
} |
|
} |
|
if (sq_dist>radiuses[belongs_to[i]]) { |
|
radiuses[belongs_to[i]] = sq_dist; |
|
} |
|
count[belongs_to[i]]++; |
|
} |
|
|
|
bool converged = false; |
|
int iteration = 0; |
|
while (!converged && iteration<max_iter) { |
|
converged = true; |
|
iteration++; |
|
|
|
// compute the new cluster centers |
|
for (int i=0;i<branching;++i) { |
|
memset(dcenters[i],0,sizeof(double)*veclen_); |
|
radiuses[i] = 0; |
|
} |
|
for (int i=0;i<indices_length;++i) { |
|
float* vec = dataset[indices[i]]; |
|
double* center = dcenters[belongs_to[i]]; |
|
for (int k=0;k<veclen_;++k) { |
|
center[k] += vec[k]; |
|
} |
|
} |
|
for (int i=0;i<branching;++i) { |
|
int cnt = count[i]; |
|
for (int k=0;k<veclen_;++k) { |
|
dcenters[i][k] /= cnt; |
|
} |
|
} |
|
|
|
// reassign points to clusters |
|
for (int i=0;i<indices_length;++i) { |
|
float sq_dist = flann_dist(dataset[indices[i]], dataset[indices[i]]+veclen_ ,dcenters[0]); |
|
int new_centroid = 0; |
|
for (int j=1;j<branching;++j) { |
|
float new_sq_dist = flann_dist(dataset[indices[i]], dataset[indices[i]]+veclen_,dcenters[j]); |
|
if (sq_dist>new_sq_dist) { |
|
new_centroid = j; |
|
sq_dist = new_sq_dist; |
|
} |
|
} |
|
if (sq_dist>radiuses[new_centroid]) { |
|
radiuses[new_centroid] = sq_dist; |
|
} |
|
if (new_centroid != belongs_to[i]) { |
|
count[belongs_to[i]]--; |
|
count[new_centroid]++; |
|
belongs_to[i] = new_centroid; |
|
|
|
converged = false; |
|
} |
|
} |
|
|
|
for (int i=0;i<branching;++i) { |
|
// if one cluster converges to an empty cluster, |
|
// move an element into that cluster |
|
if (count[i]==0) { |
|
int j = (i+1)%branching; |
|
while (count[j]<=1) { |
|
j = (j+1)%branching; |
|
} |
|
|
|
for (int k=0;k<indices_length;++k) { |
|
if (belongs_to[k]==j) { |
|
belongs_to[k] = i; |
|
count[j]--; |
|
count[i]++; |
|
break; |
|
} |
|
} |
|
converged = false; |
|
} |
|
} |
|
|
|
} |
|
|
|
float** centers = new float*[branching]; |
|
|
|
for (int i=0; i<branching; ++i) { |
|
centers[i] = new float[veclen_]; |
|
memoryCounter += veclen_*sizeof(float); |
|
for (int k=0; k<veclen_; ++k) { |
|
centers[i][k] = (float)dcenters[i][k]; |
|
} |
|
} |
|
|
|
|
|
// compute kmeans clustering for each of the resulting clusters |
|
node->childs = pool.allocate<KMeansNode>(branching); |
|
int start = 0; |
|
int end = start; |
|
for (int c=0;c<branching;++c) { |
|
int s = count[c]; |
|
|
|
float variance = 0; |
|
float mean_radius =0; |
|
for (int i=0;i<indices_length;++i) { |
|
if (belongs_to[i]==c) { |
|
float d = flann_dist(dataset[indices[i]],dataset[indices[i]]+veclen_,zero); |
|
variance += d; |
|
mean_radius += sqrt(d); |
|
swap(indices[i],indices[end]); |
|
swap(belongs_to[i],belongs_to[end]); |
|
end++; |
|
} |
|
} |
|
variance /= s; |
|
mean_radius /= s; |
|
variance -= flann_dist(centers[c],centers[c]+veclen_,zero); |
|
|
|
node->childs[c] = pool.allocate<KMeansNodeSt>(); |
|
node->childs[c]->radius = radiuses[c]; |
|
node->childs[c]->pivot = centers[c]; |
|
node->childs[c]->variance = variance; |
|
node->childs[c]->mean_radius = mean_radius; |
|
node->childs[c]->indices = NULL; |
|
computeClustering(node->childs[c],indices+start, end-start, branching, level+1); |
|
start=end; |
|
} |
|
|
|
delete[] centers; |
|
delete[] radiuses; |
|
delete[] count; |
|
delete[] belongs_to; |
|
} |
|
|
|
|
|
|
|
/** |
|
* Performs one descent in the hierarchical k-means tree. The branches not |
|
* visited are stored in a priority queue. |
|
* |
|
* Params: |
|
* node = node to explore |
|
* result = container for the k-nearest neighbors found |
|
* vec = query points |
|
* checks = how many points in the dataset have been checked so far |
|
* maxChecks = maximum dataset points to checks |
|
*/ |
|
|
|
|
|
void findNN(KMeansNode node, ResultSet& result, const float* vec, int& checks, int maxChecks) |
|
{ |
|
// Ignore those clusters that are too far away |
|
{ |
|
float bsq = flann_dist(vec, vec+veclen_, node->pivot); |
|
float rsq = node->radius; |
|
float wsq = result.worstDist(); |
|
|
|
float val = bsq-rsq-wsq; |
|
float val2 = val*val-4*rsq*wsq; |
|
|
|
//if (val>0) { |
|
if (val>0 && val2>0) { |
|
return; |
|
} |
|
} |
|
|
|
if (node->childs==NULL) { |
|
if (checks>=maxChecks) { |
|
if (result.full()) return; |
|
} |
|
checks += node->size; |
|
for (int i=0;i<node->size;++i) { |
|
result.addPoint(dataset[node->indices[i]], node->indices[i]); |
|
} |
|
} |
|
else { |
|
float* domain_distances = new float[branching]; |
|
int closest_center = exploreNodeBranches(node, vec, domain_distances); |
|
delete[] domain_distances; |
|
findNN(node->childs[closest_center],result,vec, checks, maxChecks); |
|
} |
|
} |
|
|
|
/** |
|
* Helper function that computes the nearest childs of a node to a given query point. |
|
* Params: |
|
* node = the node |
|
* q = the query point |
|
* distances = array with the distances to each child node. |
|
* Returns: |
|
*/ |
|
int exploreNodeBranches(KMeansNode node, const float* q, float* domain_distances) |
|
{ |
|
|
|
int best_index = 0; |
|
domain_distances[best_index] = flann_dist(q,q+veclen_,node->childs[best_index]->pivot); |
|
for (int i=1;i<branching;++i) { |
|
domain_distances[i] = flann_dist(q,q+veclen_,node->childs[i]->pivot); |
|
if (domain_distances[i]<domain_distances[best_index]) { |
|
best_index = i; |
|
} |
|
} |
|
|
|
// float* best_center = node->childs[best_index]->pivot; |
|
for (int i=0;i<branching;++i) { |
|
if (i != best_index) { |
|
domain_distances[i] -= cb_index*node->childs[i]->variance; |
|
|
|
// float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q); |
|
// if (domain_distances[i]<dist_to_border) { |
|
// domain_distances[i] = dist_to_border; |
|
// } |
|
heap->insert(BranchSt::make_branch(node->childs[i],domain_distances[i])); |
|
} |
|
} |
|
|
|
return best_index; |
|
} |
|
|
|
|
|
/** |
|
* Function the performs exact nearest neighbor search by traversing the entire tree. |
|
*/ |
|
void findExactNN(KMeansNode node, ResultSet& result, const float* vec) |
|
{ |
|
// Ignore those clusters that are too far away |
|
{ |
|
float bsq = flann_dist(vec, vec+veclen_, node->pivot); |
|
float rsq = node->radius; |
|
float wsq = result.worstDist(); |
|
|
|
float val = bsq-rsq-wsq; |
|
float val2 = val*val-4*rsq*wsq; |
|
|
|
// if (val>0) { |
|
if (val>0 && val2>0) { |
|
return; |
|
} |
|
} |
|
|
|
|
|
if (node->childs==NULL) { |
|
for (int i=0;i<node->size;++i) { |
|
result.addPoint(dataset[node->indices[i]], node->indices[i]); |
|
} |
|
} |
|
else { |
|
int* sort_indices = new int[branching]; |
|
|
|
getCenterOrdering(node, vec, sort_indices); |
|
|
|
for (int i=0; i<branching; ++i) { |
|
findExactNN(node->childs[sort_indices[i]],result,vec); |
|
} |
|
|
|
delete[] sort_indices; |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Helper function. |
|
* |
|
* I computes the order in which to traverse the child nodes of a particular node. |
|
*/ |
|
void getCenterOrdering(KMeansNode node, const float* q, int* sort_indices) |
|
{ |
|
float* domain_distances = new float[branching]; |
|
for (int i=0;i<branching;++i) { |
|
float dist = flann_dist(q, q+veclen_, node->childs[i]->pivot); |
|
|
|
int j=0; |
|
while (domain_distances[j]<dist && j<i) j++; |
|
for (int k=i;k>j;--k) { |
|
domain_distances[k] = domain_distances[k-1]; |
|
sort_indices[k] = sort_indices[k-1]; |
|
} |
|
domain_distances[j] = dist; |
|
sort_indices[j] = i; |
|
} |
|
delete[] domain_distances; |
|
} |
|
|
|
/** |
|
* Method that computes the squared distance from the query point q |
|
* from inside region with center c to the border between this |
|
* region and the region with center p |
|
*/ |
|
float getDistanceToBorder(float* p, float* c, float* q) |
|
{ |
|
float sum = 0; |
|
float sum2 = 0; |
|
|
|
for (int i=0;i<veclen_; ++i) { |
|
float t = c[i]-p[i]; |
|
sum += t*(q[i]-(c[i]+p[i])/2); |
|
sum2 += t*t; |
|
} |
|
|
|
return sum*sum/sum2; |
|
} |
|
|
|
|
|
/** |
|
* Helper function the descends in the hierarchical k-means tree by spliting those clusters that minimize |
|
* the overall variance of the clustering. |
|
* Params: |
|
* root = root node |
|
* clusters = array with clusters centers (return value) |
|
* varianceValue = variance of the clustering (return value) |
|
* Returns: |
|
*/ |
|
int getMinVarianceClusters(KMeansNode root, KMeansNode* clusters, int clusters_length, float& varianceValue) |
|
{ |
|
int clusterCount = 1; |
|
clusters[0] = root; |
|
|
|
float meanVariance = root->variance*root->size; |
|
|
|
while (clusterCount<clusters_length) { |
|
float minVariance = numeric_limits<float>::max(); |
|
int splitIndex = -1; |
|
|
|
for (int i=0;i<clusterCount;++i) { |
|
if (clusters[i]->childs != NULL) { |
|
|
|
float variance = meanVariance - clusters[i]->variance*clusters[i]->size; |
|
|
|
for (int j=0;j<branching;++j) { |
|
variance += clusters[i]->childs[j]->variance*clusters[i]->childs[j]->size; |
|
} |
|
if (variance<minVariance) { |
|
minVariance = variance; |
|
splitIndex = i; |
|
} |
|
} |
|
} |
|
|
|
if (splitIndex==-1) break; |
|
if ( (branching+clusterCount-1) > clusters_length) break; |
|
|
|
meanVariance = minVariance; |
|
|
|
// split node |
|
KMeansNode toSplit = clusters[splitIndex]; |
|
clusters[splitIndex] = toSplit->childs[0]; |
|
for (int i=1;i<branching;++i) { |
|
clusters[clusterCount++] = toSplit->childs[i]; |
|
} |
|
} |
|
|
|
varianceValue = meanVariance/root->size; |
|
return clusterCount; |
|
} |
|
}; |
|
|
|
|
|
|
|
//register_index(KMEANS,KMeansTree) |
|
|
|
} |
|
|
|
#endif //KMEANSTREE_H
|
|
|