mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
545 lines
16 KiB
545 lines
16 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
class CV_FloodFillTest : public cvtest::ArrayTest |
|
{ |
|
public: |
|
CV_FloodFillTest(); |
|
|
|
protected: |
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types ); |
|
double get_success_error_level( int test_case_idx, int i, int j ); |
|
void run_func(); |
|
void prepare_to_validation( int ); |
|
|
|
void fill_array( int test_case_idx, int i, int j, Mat& arr ); |
|
|
|
/*int write_default_params(CvFileStorage* fs); |
|
void get_timing_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types |
|
CvSize** whole_sizes, bool *are_images ); |
|
void print_timing_params( int test_case_idx, char* ptr, int params_left );*/ |
|
CvPoint seed_pt; |
|
CvScalar new_val; |
|
CvScalar l_diff, u_diff; |
|
int connectivity; |
|
bool use_mask, mask_only; |
|
int range_type; |
|
int new_mask_val; |
|
bool test_cpp; |
|
}; |
|
|
|
|
|
CV_FloodFillTest::CV_FloodFillTest() |
|
{ |
|
test_array[INPUT_OUTPUT].push_back(NULL); |
|
test_array[INPUT_OUTPUT].push_back(NULL); |
|
test_array[REF_INPUT_OUTPUT].push_back(NULL); |
|
test_array[REF_INPUT_OUTPUT].push_back(NULL); |
|
test_array[OUTPUT].push_back(NULL); |
|
test_array[REF_OUTPUT].push_back(NULL); |
|
optional_mask = false; |
|
element_wise_relative_error = true; |
|
|
|
test_cpp = false; |
|
} |
|
|
|
|
|
void CV_FloodFillTest::get_test_array_types_and_sizes( int test_case_idx, |
|
vector<vector<Size> >& sizes, |
|
vector<vector<int> >& types ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int depth, cn; |
|
int i; |
|
double buff[8]; |
|
cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); |
|
|
|
depth = cvtest::randInt(rng) % 3; |
|
depth = depth == 0 ? CV_8U : depth == 1 ? CV_32S : CV_32F; |
|
cn = cvtest::randInt(rng) & 1 ? 3 : 1; |
|
|
|
use_mask = (cvtest::randInt(rng) & 1) != 0; |
|
connectivity = (cvtest::randInt(rng) & 1) ? 4 : 8; |
|
mask_only = use_mask && (cvtest::randInt(rng) & 1) != 0; |
|
new_mask_val = cvtest::randInt(rng) & 255; |
|
range_type = cvtest::randInt(rng) % 3; |
|
|
|
types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = CV_MAKETYPE(depth, cn); |
|
types[INPUT_OUTPUT][1] = types[REF_INPUT_OUTPUT][1] = CV_8UC1; |
|
types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_64FC1; |
|
sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(9,1); |
|
|
|
if( !use_mask ) |
|
sizes[INPUT_OUTPUT][1] = sizes[REF_INPUT_OUTPUT][1] = cvSize(0,0); |
|
else |
|
{ |
|
CvSize sz = sizes[INPUT_OUTPUT][0]; |
|
sizes[INPUT_OUTPUT][1] = sizes[REF_INPUT_OUTPUT][1] = cvSize(sz.width+2,sz.height+2); |
|
} |
|
|
|
seed_pt.x = cvtest::randInt(rng) % sizes[INPUT_OUTPUT][0].width; |
|
seed_pt.y = cvtest::randInt(rng) % sizes[INPUT_OUTPUT][0].height; |
|
|
|
if( range_type == 0 ) |
|
l_diff = u_diff = Scalar::all(0.); |
|
else |
|
{ |
|
Mat m( 1, 8, CV_16S, buff ); |
|
rng.fill( m, RNG::NORMAL, Scalar::all(0), Scalar::all(32) ); |
|
for( i = 0; i < 4; i++ ) |
|
{ |
|
l_diff.val[i] = fabs(m.at<short>(i)/16.); |
|
u_diff.val[i] = fabs(m.at<short>(i+4)/16.); |
|
} |
|
} |
|
|
|
new_val = Scalar::all(0.); |
|
for( i = 0; i < cn; i++ ) |
|
new_val.val[i] = cvtest::randReal(rng)*255; |
|
|
|
test_cpp = (cvtest::randInt(rng) & 256) == 0; |
|
} |
|
|
|
|
|
double CV_FloodFillTest::get_success_error_level( int /*test_case_idx*/, int i, int j ) |
|
{ |
|
return i == OUTPUT ? FLT_EPSILON : j == 0 ? FLT_EPSILON : 0; |
|
} |
|
|
|
|
|
void CV_FloodFillTest::fill_array( int test_case_idx, int i, int j, Mat& arr ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
|
|
if( i != INPUT && i != INPUT_OUTPUT ) |
|
{ |
|
cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr ); |
|
return; |
|
} |
|
|
|
if( j == 0 ) |
|
{ |
|
Mat tmp = arr; |
|
Scalar m = Scalar::all(128); |
|
Scalar s = Scalar::all(10); |
|
|
|
if( arr.depth() == CV_32FC1 ) |
|
tmp.create(arr.size(), CV_MAKETYPE(CV_8U, arr.channels())); |
|
|
|
if( range_type == 0 ) |
|
s = Scalar::all(2); |
|
|
|
rng.fill(tmp, RNG::NORMAL, m, s ); |
|
if( arr.data != tmp.data ) |
|
cvtest::convert(tmp, arr, arr.type()); |
|
} |
|
else |
|
{ |
|
Scalar l = Scalar::all(-2); |
|
Scalar u = Scalar::all(2); |
|
cvtest::randUni(rng, arr, l, u ); |
|
rectangle( arr, Point(0,0), Point(arr.cols-1,arr.rows-1), Scalar::all(1), 1, 8, 0 ); |
|
} |
|
} |
|
|
|
|
|
void CV_FloodFillTest::run_func() |
|
{ |
|
int flags = connectivity + (mask_only ? CV_FLOODFILL_MASK_ONLY : 0) + |
|
(range_type == 1 ? CV_FLOODFILL_FIXED_RANGE : 0) + (new_mask_val << 8); |
|
double* odata = test_mat[OUTPUT][0].ptr<double>(); |
|
|
|
if(!test_cpp) |
|
{ |
|
CvConnectedComp comp; |
|
cvFloodFill( test_array[INPUT_OUTPUT][0], seed_pt, new_val, l_diff, u_diff, &comp, |
|
flags, test_array[INPUT_OUTPUT][1] ); |
|
odata[0] = comp.area; |
|
odata[1] = comp.rect.x; |
|
odata[2] = comp.rect.y; |
|
odata[3] = comp.rect.width; |
|
odata[4] = comp.rect.height; |
|
odata[5] = comp.value.val[0]; |
|
odata[6] = comp.value.val[1]; |
|
odata[7] = comp.value.val[2]; |
|
odata[8] = comp.value.val[3]; |
|
} |
|
else |
|
{ |
|
cv::Mat img = cv::cvarrToMat(test_array[INPUT_OUTPUT][0]), |
|
mask = test_array[INPUT_OUTPUT][1] ? cv::cvarrToMat(test_array[INPUT_OUTPUT][1]) : cv::Mat(); |
|
cv::Rect rect; |
|
int area; |
|
if( mask.empty() ) |
|
area = cv::floodFill( img, seed_pt, new_val, &rect, l_diff, u_diff, flags ); |
|
else |
|
area = cv::floodFill( img, mask, seed_pt, new_val, &rect, l_diff, u_diff, flags ); |
|
odata[0] = area; |
|
odata[1] = rect.x; |
|
odata[2] = rect.y; |
|
odata[3] = rect.width; |
|
odata[4] = rect.height; |
|
odata[5] = odata[6] = odata[7] = odata[8] = 0; |
|
} |
|
} |
|
|
|
|
|
typedef struct ff_offset_pair_t |
|
{ |
|
int mofs, iofs; |
|
} |
|
ff_offset_pair_t; |
|
|
|
static void |
|
cvTsFloodFill( CvMat* _img, CvPoint seed_pt, CvScalar new_val, |
|
CvScalar l_diff, CvScalar u_diff, CvMat* _mask, |
|
double* comp, int connectivity, int range_type, |
|
int new_mask_val, bool mask_only ) |
|
{ |
|
CvMemStorage* st = cvCreateMemStorage(); |
|
ff_offset_pair_t p0, p; |
|
CvSeq* seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(p0), st ); |
|
CvMat* tmp = _img; |
|
CvMat* mask; |
|
CvRect r = cvRect( 0, 0, -1, -1 ); |
|
int area = 0; |
|
int i, j; |
|
ushort* m; |
|
float* img; |
|
int mstep, step; |
|
int cn = CV_MAT_CN(_img->type); |
|
int mdelta[8], idelta[8], ncount; |
|
int cols = _img->cols, rows = _img->rows; |
|
int u0 = 0, u1 = 0, u2 = 0; |
|
double s0 = 0, s1 = 0, s2 = 0; |
|
|
|
if( CV_MAT_DEPTH(_img->type) == CV_8U || CV_MAT_DEPTH(_img->type) == CV_32S ) |
|
{ |
|
tmp = cvCreateMat( rows, cols, CV_MAKETYPE(CV_32F,CV_MAT_CN(_img->type)) ); |
|
cvtest::convert(cvarrToMat(_img), cvarrToMat(tmp), -1); |
|
} |
|
|
|
mask = cvCreateMat( rows + 2, cols + 2, CV_16UC1 ); |
|
|
|
if( _mask ) |
|
cvtest::convert(cvarrToMat(_mask), cvarrToMat(mask), -1); |
|
else |
|
{ |
|
Mat m_mask = cvarrToMat(mask); |
|
cvtest::set( m_mask, Scalar::all(0), Mat() ); |
|
cvRectangle( mask, cvPoint(0,0), cvPoint(mask->cols-1,mask->rows-1), Scalar::all(1.), 1, 8, 0 ); |
|
} |
|
|
|
new_mask_val = (new_mask_val != 0 ? new_mask_val : 1) << 8; |
|
|
|
m = (ushort*)(mask->data.ptr + mask->step) + 1; |
|
mstep = mask->step / sizeof(m[0]); |
|
img = tmp->data.fl; |
|
step = tmp->step / sizeof(img[0]); |
|
|
|
p0.mofs = seed_pt.y*mstep + seed_pt.x; |
|
p0.iofs = seed_pt.y*step + seed_pt.x*cn; |
|
|
|
if( m[p0.mofs] ) |
|
goto _exit_; |
|
|
|
cvSeqPush( seq, &p0 ); |
|
m[p0.mofs] = (ushort)new_mask_val; |
|
|
|
if( connectivity == 4 ) |
|
{ |
|
ncount = 4; |
|
mdelta[0] = -mstep; idelta[0] = -step; |
|
mdelta[1] = -1; idelta[1] = -cn; |
|
mdelta[2] = 1; idelta[2] = cn; |
|
mdelta[3] = mstep; idelta[3] = step; |
|
} |
|
else |
|
{ |
|
ncount = 8; |
|
mdelta[0] = -mstep-1; mdelta[1] = -mstep; mdelta[2] = -mstep+1; |
|
idelta[0] = -step-cn; idelta[1] = -step; idelta[2] = -step+cn; |
|
|
|
mdelta[3] = -1; mdelta[4] = 1; |
|
idelta[3] = -cn; idelta[4] = cn; |
|
|
|
mdelta[5] = mstep-1; mdelta[6] = mstep; mdelta[7] = mstep+1; |
|
idelta[5] = step-cn; idelta[6] = step; idelta[7] = step+cn; |
|
} |
|
|
|
if( cn == 1 ) |
|
{ |
|
float a0 = (float)-l_diff.val[0]; |
|
float b0 = (float)u_diff.val[0]; |
|
|
|
s0 = img[p0.iofs]; |
|
|
|
if( range_type < 2 ) |
|
{ |
|
a0 += (float)s0; b0 += (float)s0; |
|
} |
|
|
|
while( seq->total ) |
|
{ |
|
cvSeqPop( seq, &p0 ); |
|
float a = a0, b = b0; |
|
float* ptr = img + p0.iofs; |
|
ushort* mptr = m + p0.mofs; |
|
|
|
if( range_type == 2 ) |
|
a += ptr[0], b += ptr[0]; |
|
|
|
for( i = 0; i < ncount; i++ ) |
|
{ |
|
int md = mdelta[i], id = idelta[i]; |
|
float v; |
|
if( !mptr[md] && a <= (v = ptr[id]) && v <= b ) |
|
{ |
|
mptr[md] = (ushort)new_mask_val; |
|
p.mofs = p0.mofs + md; |
|
p.iofs = p0.iofs + id; |
|
cvSeqPush( seq, &p ); |
|
} |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
float a0 = (float)-l_diff.val[0]; |
|
float a1 = (float)-l_diff.val[1]; |
|
float a2 = (float)-l_diff.val[2]; |
|
float b0 = (float)u_diff.val[0]; |
|
float b1 = (float)u_diff.val[1]; |
|
float b2 = (float)u_diff.val[2]; |
|
|
|
s0 = img[p0.iofs]; |
|
s1 = img[p0.iofs + 1]; |
|
s2 = img[p0.iofs + 2]; |
|
|
|
if( range_type < 2 ) |
|
{ |
|
a0 += (float)s0; b0 += (float)s0; |
|
a1 += (float)s1; b1 += (float)s1; |
|
a2 += (float)s2; b2 += (float)s2; |
|
} |
|
|
|
while( seq->total ) |
|
{ |
|
cvSeqPop( seq, &p0 ); |
|
float _a0 = a0, _a1 = a1, _a2 = a2; |
|
float _b0 = b0, _b1 = b1, _b2 = b2; |
|
float* ptr = img + p0.iofs; |
|
ushort* mptr = m + p0.mofs; |
|
|
|
if( range_type == 2 ) |
|
{ |
|
_a0 += ptr[0]; _b0 += ptr[0]; |
|
_a1 += ptr[1]; _b1 += ptr[1]; |
|
_a2 += ptr[2]; _b2 += ptr[2]; |
|
} |
|
|
|
for( i = 0; i < ncount; i++ ) |
|
{ |
|
int md = mdelta[i], id = idelta[i]; |
|
float v; |
|
if( !mptr[md] && |
|
_a0 <= (v = ptr[id]) && v <= _b0 && |
|
_a1 <= (v = ptr[id+1]) && v <= _b1 && |
|
_a2 <= (v = ptr[id+2]) && v <= _b2 ) |
|
{ |
|
mptr[md] = (ushort)new_mask_val; |
|
p.mofs = p0.mofs + md; |
|
p.iofs = p0.iofs + id; |
|
cvSeqPush( seq, &p ); |
|
} |
|
} |
|
} |
|
} |
|
|
|
r.x = r.width = seed_pt.x; |
|
r.y = r.height = seed_pt.y; |
|
|
|
if( !mask_only ) |
|
{ |
|
s0 = new_val.val[0]; |
|
s1 = new_val.val[1]; |
|
s2 = new_val.val[2]; |
|
|
|
if( tmp != _img ) |
|
{ |
|
u0 = saturate_cast<uchar>(s0); |
|
u1 = saturate_cast<uchar>(s1); |
|
u2 = saturate_cast<uchar>(s2); |
|
|
|
s0 = u0; |
|
s1 = u1; |
|
s2 = u2; |
|
} |
|
} |
|
else |
|
s0 = s1 = s2 = 0; |
|
|
|
new_mask_val >>= 8; |
|
|
|
for( i = 0; i < rows; i++ ) |
|
{ |
|
float* ptr = img + i*step; |
|
ushort* mptr = m + i*mstep; |
|
uchar* dmptr = _mask ? _mask->data.ptr + (i+1)*_mask->step + 1 : 0; |
|
double area0 = area; |
|
|
|
for( j = 0; j < cols; j++ ) |
|
{ |
|
if( mptr[j] > 255 ) |
|
{ |
|
if( dmptr ) |
|
dmptr[j] = (uchar)new_mask_val; |
|
if( !mask_only ) |
|
{ |
|
if( cn == 1 ) |
|
ptr[j] = (float)s0; |
|
else |
|
{ |
|
ptr[j*3] = (float)s0; |
|
ptr[j*3+1] = (float)s1; |
|
ptr[j*3+2] = (float)s2; |
|
} |
|
} |
|
else |
|
{ |
|
if( cn == 1 ) |
|
s0 += ptr[j]; |
|
else |
|
{ |
|
s0 += ptr[j*3]; |
|
s1 += ptr[j*3+1]; |
|
s2 += ptr[j*3+2]; |
|
} |
|
} |
|
|
|
area++; |
|
if( r.x > j ) |
|
r.x = j; |
|
if( r.width < j ) |
|
r.width = j; |
|
} |
|
} |
|
|
|
if( area != area0 ) |
|
{ |
|
if( r.y > i ) |
|
r.y = i; |
|
if( r.height < i ) |
|
r.height = i; |
|
} |
|
} |
|
|
|
_exit_: |
|
cvReleaseMat( &mask ); |
|
if( tmp != _img ) |
|
{ |
|
if( !mask_only ) |
|
cvtest::convert(cvarrToMat(tmp), cvarrToMat(_img), -1); |
|
cvReleaseMat( &tmp ); |
|
} |
|
|
|
comp[0] = area; |
|
comp[1] = r.x; |
|
comp[2] = r.y; |
|
comp[3] = r.width - r.x + 1; |
|
comp[4] = r.height - r.y + 1; |
|
#if 0 |
|
if( mask_only ) |
|
{ |
|
double t = area ? 1./area : 0; |
|
s0 *= t; |
|
s1 *= t; |
|
s2 *= t; |
|
} |
|
comp[5] = s0; |
|
comp[6] = s1; |
|
comp[7] = s2; |
|
#else |
|
comp[5] = new_val.val[0]; |
|
comp[6] = new_val.val[1]; |
|
comp[7] = new_val.val[2]; |
|
#endif |
|
comp[8] = 0; |
|
|
|
cvReleaseMemStorage(&st); |
|
} |
|
|
|
|
|
void CV_FloodFillTest::prepare_to_validation( int /*test_case_idx*/ ) |
|
{ |
|
double* comp = test_mat[REF_OUTPUT][0].ptr<double>(); |
|
CvMat _input = test_mat[REF_INPUT_OUTPUT][0]; |
|
CvMat _mask = test_mat[REF_INPUT_OUTPUT][1]; |
|
cvTsFloodFill( &_input, seed_pt, new_val, l_diff, u_diff, |
|
_mask.data.ptr ? &_mask : 0, |
|
comp, connectivity, range_type, |
|
new_mask_val, mask_only ); |
|
if(test_cpp) |
|
comp[5] = comp[6] = comp[7] = comp[8] = 0; |
|
} |
|
|
|
TEST(Imgproc_FloodFill, accuracy) { CV_FloodFillTest test; test.safe_run(); } |
|
|
|
TEST(Imgproc_FloodFill, maskValue) |
|
{ |
|
const int n = 50; |
|
Mat img = Mat::zeros(n, n, CV_8U); |
|
Mat mask = Mat::zeros(n + 2, n + 2, CV_8U); |
|
|
|
circle(img, Point(n/2, n/2), 20, Scalar(100), 4); |
|
|
|
int flags = 4 + CV_FLOODFILL_MASK_ONLY; |
|
floodFill(img, mask, Point(n/2 + 13, n/2), Scalar(100), NULL, Scalar(), Scalar(), flags); |
|
|
|
ASSERT_EQ(1, cvtest::norm(mask.rowRange(1, n-1).colRange(1, n-1), NORM_INF)); |
|
} |
|
|
|
}} // namespace |
|
/* End of file. */
|
|
|