mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
69 lines
2.2 KiB
69 lines
2.2 KiB
#include "autocalib.hpp" |
|
#include "util.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
void focalsFromHomography(const Mat& H, double &f0, double &f1, bool &f0_ok, bool &f1_ok) |
|
{ |
|
CV_Assert(H.type() == CV_64F && H.size() == Size(3, 3)); |
|
|
|
const double* h = reinterpret_cast<const double*>(H.data); |
|
|
|
double d1, d2; // Denominators |
|
double v1, v2; // Focal squares value candidates |
|
|
|
f1_ok = true; |
|
d1 = h[6] * h[7]; |
|
d2 = (h[7] - h[6]) * (h[7] + h[6]); |
|
v1 = -(h[0] * h[1] + h[3] * h[4]) / d1; |
|
v2 = (h[0] * h[0] + h[3] * h[3] - h[1] * h[1] - h[4] * h[4]) / d2; |
|
if (v1 < v2) swap(v1, v2); |
|
if (v1 > 0 && v2 > 0) f1 = sqrt(abs(d1) > abs(d2) ? v1 : v2); |
|
else if (v1 > 0) f1 = sqrt(v1); |
|
else f1_ok = false; |
|
|
|
f0_ok = true; |
|
d1 = h[0] * h[3] + h[1] * h[4]; |
|
d2 = h[0] * h[0] + h[1] * h[1] - h[3] * h[3] - h[4] * h[4]; |
|
v1 = -h[2] * h[5] / d1; |
|
v2 = (h[5] * h[5] - h[2] * h[2]) / d2; |
|
if (v1 < v2) swap(v1, v2); |
|
if (v1 > 0 && v2 > 0) f0 = sqrt(abs(d1) > abs(d2) ? v1 : v2); |
|
else if (v1 > 0) f0 = sqrt(v1); |
|
else f0_ok = false; |
|
} |
|
|
|
|
|
double estimateFocal(const vector<ImageFeatures> &features, const vector<MatchesInfo> &pairwise_matches) |
|
{ |
|
const int num_images = static_cast<int>(features.size()); |
|
|
|
vector<double> focals; |
|
for (int src_idx = 0; src_idx < num_images; ++src_idx) |
|
{ |
|
for (int dst_idx = 0; dst_idx < num_images; ++dst_idx) |
|
{ |
|
const MatchesInfo &m = pairwise_matches[src_idx*num_images + dst_idx]; |
|
if (m.H.empty()) |
|
continue; |
|
|
|
double f0, f1; |
|
bool f0ok, f1ok; |
|
focalsFromHomography(m.H, f0, f1, f0ok, f1ok); |
|
if (f0ok && f1ok) focals.push_back(sqrt(f0*f1)); |
|
} |
|
} |
|
|
|
if (static_cast<int>(focals.size()) >= 2 * (num_images - 1)) |
|
{ |
|
nth_element(focals.begin(), focals.end(), focals.begin() + focals.size()/2); |
|
return focals[focals.size()/2]; |
|
} |
|
|
|
LOGLN("Can't estimate focal length, will use naive approach"); |
|
double focals_sum = 0; |
|
for (int i = 0; i < num_images; ++i) |
|
focals_sum += features[i].img_size.width + features[i].img_size.height; |
|
return focals_sum / num_images; |
|
}
|
|
|