mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
250 lines
7.9 KiB
250 lines
7.9 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html |
|
|
|
#include "opencv2/imgproc.hpp" |
|
#include "test_precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
namespace opencv_test { namespace { |
|
|
|
//============================================================================== |
|
// Utility |
|
|
|
template <typename T> |
|
inline T sqr(T val) |
|
{ |
|
return val * val; |
|
} |
|
|
|
inline static float calcEMD(Mat w1, Mat w2, Mat& flow, int dist, int dims) |
|
{ |
|
float mass1 = 0.f, mass2 = 0.f, work = 0.f; |
|
for (int i = 0; i < flow.rows; ++i) |
|
{ |
|
mass1 += w1.at<float>(i, 0); |
|
for (int j = 0; j < flow.cols; ++j) |
|
{ |
|
if (i == 0) |
|
mass2 += w2.at<float>(j, 0); |
|
float dist_ = 0.f; |
|
switch (dist) |
|
{ |
|
case DIST_L1: |
|
{ |
|
for (int k = 1; k <= dims; ++k) |
|
{ |
|
dist_ += abs(w1.at<float>(i, k) - w2.at<float>(j, k)); |
|
} |
|
break; |
|
} |
|
case DIST_L2: |
|
{ |
|
for (int k = 1; k <= dims; ++k) |
|
{ |
|
dist_ += sqr(w1.at<float>(i, k) - w2.at<float>(j, k)); |
|
} |
|
dist_ = sqrt(dist_); |
|
break; |
|
} |
|
case DIST_C: |
|
{ |
|
for (int k = 1; k <= dims; ++k) |
|
{ |
|
const float val = abs(w1.at<float>(i, k) - w2.at<float>(j, k)); |
|
if (val > dist_) |
|
dist_ = val; |
|
} |
|
break; |
|
} |
|
} |
|
const float weight = flow.at<float>(i, j); |
|
work += dist_ * weight; |
|
} |
|
} |
|
return work / max(mass1, mass2); |
|
} |
|
|
|
//============================================================================== |
|
|
|
TEST(Imgproc_EMD, regression) |
|
{ |
|
// input data |
|
const float M = 10000; |
|
Matx<float, 4, 1> w1 {50, 60, 50, 50}; |
|
Matx<float, 5, 1> w2 {30, 20, 70, 30, 60}; |
|
Matx<float, 4, 5> cost {16, 16, 13, 22, 17, 14, 14, 13, 19, 15, |
|
19, 19, 20, 23, M, M, 0, M, 0, 0}; |
|
|
|
// expected results |
|
const double emd0 = 2460. / 210; |
|
Matx<float, 4, 5> flow0 {0, 0, 50, 0, 0, 0, 0, 20, 0, 40, 30, 20, 0, 0, 0, 0, 0, 0, 30, 20}; |
|
|
|
// basic call with cost |
|
{ |
|
float emd = 0.f; |
|
ASSERT_NO_THROW(emd = EMD(w1, w2, DIST_USER, cost)); |
|
EXPECT_NEAR(emd, emd0, 1e-6 * emd0); |
|
} |
|
|
|
// basic call with cost and flow output |
|
{ |
|
Mat flow; |
|
float emd = 0.f; |
|
ASSERT_NO_THROW(emd = EMD(w1, w2, DIST_USER, cost, nullptr, flow)); |
|
EXPECT_NEAR(emd, emd0, 1e-6 * emd0); |
|
EXPECT_MAT_NEAR(Mat(flow0), flow, 1e-6); |
|
} |
|
// no cost and DIST_USER - error |
|
{ |
|
Mat flow; |
|
EXPECT_THROW(EMD(w1, w2, DIST_USER, noArray(), nullptr, flow), cv::Exception); |
|
EXPECT_THROW(EMD(w1, w2, DIST_USER), cv::Exception); |
|
} |
|
} |
|
|
|
TEST(Imgproc_EMD, distance_types) |
|
{ |
|
// 1D (sum = 210) |
|
Matx<float, 4, 2> w1 {50, 1, 60, 2, 50, 3, 50, 4}; |
|
Matx<float, 5, 2> w2 {30, 1, 20, 2, 70, 3, 30, 4, 60, 5}; |
|
|
|
// 2D (sum = 210) |
|
Matx<float, 4, 3> w3 {50, 0, 0, 60, 0, 1, 50, 1, 0, 50, 1, 1}; |
|
Matx<float, 5, 3> w4 {20, 0, 1, 70, 1, 0, 30, 1, 1, 60, 2, 2, 30, 3, 3}; |
|
|
|
// basic call with all distance types |
|
{ |
|
const vector<DistanceTypes> good_types {DIST_L1, DIST_L2, DIST_C}; |
|
for (const auto& dt : good_types) |
|
{ |
|
SCOPED_TRACE(cv::format("dt=%d", dt)); |
|
float emd = 0.f; |
|
Mat flow; |
|
// 1D |
|
{ |
|
ASSERT_NO_THROW(emd = EMD(w1, w2, dt, noArray(), nullptr, flow)); |
|
const float emd0 = calcEMD(Mat(w1), Mat(w2), flow, dt, 1); |
|
EXPECT_NEAR(emd0, emd, 1e-6); |
|
} |
|
// 2D |
|
{ |
|
ASSERT_NO_THROW(emd = EMD(w3, w4, dt, noArray(), nullptr, flow)); |
|
const float emd0 = calcEMD(Mat(w3), Mat(w4), flow, dt, 2); |
|
EXPECT_NEAR(emd0, emd, 1e-6); |
|
} |
|
} |
|
} |
|
} |
|
|
|
typedef testing::TestWithParam<int> Imgproc_EMD_dist; |
|
|
|
TEST_P(Imgproc_EMD_dist, random_flow_verify) |
|
{ |
|
const int dist = GetParam(); |
|
for (size_t iter = 0; iter < 100; ++iter) |
|
{ |
|
SCOPED_TRACE(cv::format("iter=%zu", iter)); |
|
RNG& rng = TS::ptr()->get_rng(); |
|
const int dims = rng.uniform(1, 10); |
|
Mat w1(rng.uniform(1, 10), dims + 1, CV_32FC1); |
|
Mat w2(rng.uniform(1, 10), dims + 1, CV_32FC1); |
|
|
|
// weights > 0 |
|
{ |
|
Mat w1_weights = w1.col(0); |
|
Mat w2_weights = w2.col(0); |
|
cvtest::randUni(rng, w1_weights, 0, 100); |
|
cvtest::randUni(rng, w2_weights, 0, 100); |
|
} |
|
|
|
// coord |
|
{ |
|
Mat w1_coord = w1.colRange(1, dims + 1); |
|
Mat w2_coord = w2.colRange(1, dims + 1); |
|
cvtest::randUni(rng, w1_coord, -10, +10); |
|
cvtest::randUni(rng, w2_coord, -10, +10); |
|
} |
|
|
|
float emd1 = 0.f, emd2 = 0.f; |
|
const float eps = 1e-5f; |
|
Mat flow; |
|
{ |
|
ASSERT_NO_THROW(emd1 = EMD(w1, w2, dist, noArray(), nullptr, flow)); |
|
const float emd0 = calcEMD(w1, w2, flow, dist, dims); |
|
EXPECT_NEAR(emd0, emd1, eps); |
|
} |
|
{ |
|
ASSERT_NO_THROW(emd2 = EMD(w2, w1, dist, noArray(), nullptr, flow)); |
|
const float emd0 = calcEMD(w2, w1, flow, dist, dims); |
|
EXPECT_NEAR(emd0, emd2, eps); |
|
} |
|
EXPECT_NEAR(emd1, emd2, eps); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(, Imgproc_EMD_dist, testing::Values(DIST_L1, DIST_L2, DIST_C)); |
|
|
|
|
|
TEST(Imgproc_EMD, invalid) |
|
{ |
|
Matx<float, 4, 2> w1 {50, 1, 60, 2, 50, 3, 50, 4}; |
|
Matx<float, 5, 2> w2 {30, 1, 20, 2, 70, 3, 30, 4, 60, 5}; |
|
|
|
// empty signature |
|
{ |
|
Mat empty; |
|
EXPECT_THROW(EMD(empty, w2, DIST_USER), cv::Exception); |
|
EXPECT_THROW(EMD(w1, empty, DIST_USER), cv::Exception); |
|
} |
|
|
|
// zero total weight, negative weight |
|
{ |
|
Matx<float, 3, 1> wz {0, 0, 0}; |
|
Matx<float, 3, 2> wz1 {0, 1, 0, 2, 0, 3}; |
|
Matx<float, 3, 1> wn {0, 3, -2}; |
|
Matx<float, 3, 2> wn1 {0, 1, 3, 2, -2, 3}; |
|
EXPECT_THROW(EMD(wz, w2, DIST_USER), cv::Exception); |
|
EXPECT_THROW(EMD(wz1, w2, DIST_USER), cv::Exception); |
|
EXPECT_THROW(EMD(wn, w2, DIST_USER), cv::Exception); |
|
EXPECT_THROW(EMD(wn1, w2, DIST_USER), cv::Exception); |
|
} |
|
|
|
// user distance type, but no cost matrix provided or is wrong |
|
{ |
|
Mat cost(3, 3, CV_32FC1, Scalar::all(0)), cost8u(4, 5, CV_8UC1, Scalar::all(0)), empty; |
|
EXPECT_THROW(EMD(w1, w2, DIST_USER, noArray()), cv::Exception); |
|
EXPECT_THROW(EMD(w1, w2, DIST_USER, empty), cv::Exception); |
|
EXPECT_THROW(EMD(w1, w2, DIST_USER, cost8u), cv::Exception); |
|
EXPECT_THROW(EMD(w1, w2, DIST_USER, cost), cv::Exception); |
|
} |
|
|
|
// lower_bound is set together with cost |
|
{ |
|
Mat cost(4, 5, CV_32FC1, Scalar::all(0)); |
|
float bound = 0.f; |
|
EXPECT_THROW(EMD(w1, w2, DIST_USER, cost, &bound), cv::Exception); |
|
} |
|
|
|
// zero dimensions with non-user distance type |
|
const vector<DistanceTypes> good_types {DIST_L1, DIST_L2, DIST_C}; |
|
for (const auto& dt : good_types) |
|
{ |
|
SCOPED_TRACE(cv::format("dt=%d", dt)); |
|
Matx<float, 4, 1> w01 {20, 30, 40, 50}; |
|
Matx<float, 5, 1> w02 {20, 30, 40, 50, 10}; |
|
EXPECT_THROW(EMD(w01, w02, dt), cv::Exception); |
|
} |
|
|
|
// wrong distance type |
|
const vector<DistanceTypes> bad_types {DIST_L12, DIST_FAIR, DIST_WELSCH, DIST_HUBER}; |
|
for (const auto& dt : bad_types) |
|
{ |
|
SCOPED_TRACE(cv::format("dt=%d", dt)); |
|
EXPECT_THROW(EMD(w1, w2, dt), cv::Exception); |
|
} |
|
} |
|
|
|
}} // namespace opencv_test
|
|
|