mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
612 lines
21 KiB
612 lines
21 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::gpu; |
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) |
|
|
|
void cv::gpu::merge(const GpuMat*, size_t, OutputArray, Stream&) { throw_no_cuda(); } |
|
void cv::gpu::merge(const std::vector<GpuMat>&, OutputArray, Stream&) { throw_no_cuda(); } |
|
|
|
void cv::gpu::split(InputArray, GpuMat*, Stream&) { throw_no_cuda(); } |
|
void cv::gpu::split(InputArray, std::vector<GpuMat>&, Stream&) { throw_no_cuda(); } |
|
|
|
void cv::gpu::transpose(InputArray, OutputArray, Stream&) { throw_no_cuda(); } |
|
|
|
void cv::gpu::flip(InputArray, OutputArray, int, Stream&) { throw_no_cuda(); } |
|
|
|
Ptr<LookUpTable> cv::gpu::createLookUpTable(InputArray) { throw_no_cuda(); return Ptr<LookUpTable>(); } |
|
|
|
void cv::gpu::copyMakeBorder(InputArray, OutputArray, int, int, int, int, int, Scalar, Stream&) { throw_no_cuda(); } |
|
|
|
#else /* !defined (HAVE_CUDA) */ |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// merge/split |
|
|
|
namespace cv { namespace gpu { namespace cudev |
|
{ |
|
namespace split_merge |
|
{ |
|
void merge(const PtrStepSzb* src, PtrStepSzb& dst, int total_channels, size_t elem_size, const cudaStream_t& stream); |
|
void split(const PtrStepSzb& src, PtrStepSzb* dst, int num_channels, size_t elem_size1, const cudaStream_t& stream); |
|
} |
|
}}} |
|
|
|
namespace |
|
{ |
|
void merge_caller(const GpuMat* src, size_t n, OutputArray _dst, Stream& stream) |
|
{ |
|
CV_Assert( src != 0 ); |
|
CV_Assert( n > 0 && n <= 4 ); |
|
|
|
const int depth = src[0].depth(); |
|
const Size size = src[0].size(); |
|
|
|
for (size_t i = 0; i < n; ++i) |
|
{ |
|
CV_Assert( src[i].size() == size ); |
|
CV_Assert( src[i].depth() == depth ); |
|
CV_Assert( src[i].channels() == 1 ); |
|
} |
|
|
|
if (depth == CV_64F) |
|
{ |
|
if (!deviceSupports(NATIVE_DOUBLE)) |
|
CV_Error(cv::Error::StsUnsupportedFormat, "The device doesn't support double"); |
|
} |
|
|
|
if (n == 1) |
|
{ |
|
src[0].copyTo(_dst, stream); |
|
} |
|
else |
|
{ |
|
_dst.create(size, CV_MAKE_TYPE(depth, (int)n)); |
|
GpuMat dst = _dst.getGpuMat(); |
|
|
|
PtrStepSzb src_as_devmem[4]; |
|
for(size_t i = 0; i < n; ++i) |
|
src_as_devmem[i] = src[i]; |
|
|
|
PtrStepSzb dst_as_devmem(dst); |
|
cv::gpu::cudev::split_merge::merge(src_as_devmem, dst_as_devmem, (int)n, CV_ELEM_SIZE(depth), StreamAccessor::getStream(stream)); |
|
} |
|
} |
|
|
|
void split_caller(const GpuMat& src, GpuMat* dst, Stream& stream) |
|
{ |
|
CV_Assert( dst != 0 ); |
|
|
|
const int depth = src.depth(); |
|
const int num_channels = src.channels(); |
|
|
|
CV_Assert( num_channels <= 4 ); |
|
|
|
if (depth == CV_64F) |
|
{ |
|
if (!deviceSupports(NATIVE_DOUBLE)) |
|
CV_Error(cv::Error::StsUnsupportedFormat, "The device doesn't support double"); |
|
} |
|
|
|
if (num_channels == 1) |
|
{ |
|
src.copyTo(dst[0], stream); |
|
return; |
|
} |
|
|
|
for (int i = 0; i < num_channels; ++i) |
|
dst[i].create(src.size(), depth); |
|
|
|
PtrStepSzb dst_as_devmem[4]; |
|
for (int i = 0; i < num_channels; ++i) |
|
dst_as_devmem[i] = dst[i]; |
|
|
|
PtrStepSzb src_as_devmem(src); |
|
cv::gpu::cudev::split_merge::split(src_as_devmem, dst_as_devmem, num_channels, src.elemSize1(), StreamAccessor::getStream(stream)); |
|
} |
|
} |
|
|
|
void cv::gpu::merge(const GpuMat* src, size_t n, OutputArray dst, Stream& stream) |
|
{ |
|
merge_caller(src, n, dst, stream); |
|
} |
|
|
|
|
|
void cv::gpu::merge(const std::vector<GpuMat>& src, OutputArray dst, Stream& stream) |
|
{ |
|
merge_caller(&src[0], src.size(), dst, stream); |
|
} |
|
|
|
void cv::gpu::split(InputArray _src, GpuMat* dst, Stream& stream) |
|
{ |
|
GpuMat src = _src.getGpuMat(); |
|
split_caller(src, dst, stream); |
|
} |
|
|
|
void cv::gpu::split(InputArray _src, std::vector<GpuMat>& dst, Stream& stream) |
|
{ |
|
GpuMat src = _src.getGpuMat(); |
|
dst.resize(src.channels()); |
|
if(src.channels() > 0) |
|
split_caller(src, &dst[0], stream); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// transpose |
|
|
|
namespace arithm |
|
{ |
|
template <typename T> void transpose(PtrStepSz<T> src, PtrStepSz<T> dst, cudaStream_t stream); |
|
} |
|
|
|
void cv::gpu::transpose(InputArray _src, OutputArray _dst, Stream& _stream) |
|
{ |
|
GpuMat src = _src.getGpuMat(); |
|
|
|
CV_Assert( src.elemSize() == 1 || src.elemSize() == 4 || src.elemSize() == 8 ); |
|
|
|
_dst.create( src.cols, src.rows, src.type() ); |
|
GpuMat dst = _dst.getGpuMat(); |
|
|
|
cudaStream_t stream = StreamAccessor::getStream(_stream); |
|
|
|
if (src.elemSize() == 1) |
|
{ |
|
NppStreamHandler h(stream); |
|
|
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
nppSafeCall( nppiTranspose_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step), |
|
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz) ); |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
else if (src.elemSize() == 4) |
|
{ |
|
arithm::transpose<int>(src, dst, stream); |
|
} |
|
else // if (src.elemSize() == 8) |
|
{ |
|
if (!deviceSupports(NATIVE_DOUBLE)) |
|
CV_Error(cv::Error::StsUnsupportedFormat, "The device doesn't support double"); |
|
|
|
arithm::transpose<double>(src, dst, stream); |
|
} |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// flip |
|
|
|
namespace |
|
{ |
|
template<int DEPTH> struct NppTypeTraits; |
|
template<> struct NppTypeTraits<CV_8U> { typedef Npp8u npp_t; }; |
|
template<> struct NppTypeTraits<CV_8S> { typedef Npp8s npp_t; }; |
|
template<> struct NppTypeTraits<CV_16U> { typedef Npp16u npp_t; }; |
|
template<> struct NppTypeTraits<CV_16S> { typedef Npp16s npp_t; }; |
|
template<> struct NppTypeTraits<CV_32S> { typedef Npp32s npp_t; }; |
|
template<> struct NppTypeTraits<CV_32F> { typedef Npp32f npp_t; }; |
|
template<> struct NppTypeTraits<CV_64F> { typedef Npp64f npp_t; }; |
|
|
|
template <int DEPTH> struct NppMirrorFunc |
|
{ |
|
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t; |
|
|
|
typedef NppStatus (*func_t)(const npp_t* pSrc, int nSrcStep, npp_t* pDst, int nDstStep, NppiSize oROI, NppiAxis flip); |
|
}; |
|
|
|
template <int DEPTH, typename NppMirrorFunc<DEPTH>::func_t func> struct NppMirror |
|
{ |
|
typedef typename NppMirrorFunc<DEPTH>::npp_t npp_t; |
|
|
|
static void call(const GpuMat& src, GpuMat& dst, int flipCode, cudaStream_t stream) |
|
{ |
|
NppStreamHandler h(stream); |
|
|
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
nppSafeCall( func(src.ptr<npp_t>(), static_cast<int>(src.step), |
|
dst.ptr<npp_t>(), static_cast<int>(dst.step), sz, |
|
(flipCode == 0 ? NPP_HORIZONTAL_AXIS : (flipCode > 0 ? NPP_VERTICAL_AXIS : NPP_BOTH_AXIS))) ); |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
}; |
|
} |
|
|
|
void cv::gpu::flip(InputArray _src, OutputArray _dst, int flipCode, Stream& stream) |
|
{ |
|
typedef void (*func_t)(const GpuMat& src, GpuMat& dst, int flipCode, cudaStream_t stream); |
|
static const func_t funcs[6][4] = |
|
{ |
|
{NppMirror<CV_8U, nppiMirror_8u_C1R>::call, 0, NppMirror<CV_8U, nppiMirror_8u_C3R>::call, NppMirror<CV_8U, nppiMirror_8u_C4R>::call}, |
|
{0,0,0,0}, |
|
{NppMirror<CV_16U, nppiMirror_16u_C1R>::call, 0, NppMirror<CV_16U, nppiMirror_16u_C3R>::call, NppMirror<CV_16U, nppiMirror_16u_C4R>::call}, |
|
{0,0,0,0}, |
|
{NppMirror<CV_32S, nppiMirror_32s_C1R>::call, 0, NppMirror<CV_32S, nppiMirror_32s_C3R>::call, NppMirror<CV_32S, nppiMirror_32s_C4R>::call}, |
|
{NppMirror<CV_32F, nppiMirror_32f_C1R>::call, 0, NppMirror<CV_32F, nppiMirror_32f_C3R>::call, NppMirror<CV_32F, nppiMirror_32f_C4R>::call} |
|
}; |
|
|
|
GpuMat src = _src.getGpuMat(); |
|
|
|
CV_Assert(src.depth() == CV_8U || src.depth() == CV_16U || src.depth() == CV_32S || src.depth() == CV_32F); |
|
CV_Assert(src.channels() == 1 || src.channels() == 3 || src.channels() == 4); |
|
|
|
_dst.create(src.size(), src.type()); |
|
GpuMat dst = _dst.getGpuMat(); |
|
|
|
funcs[src.depth()][src.channels() - 1](src, dst, flipCode, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// LUT |
|
|
|
#if (CUDA_VERSION >= 5000) |
|
|
|
namespace |
|
{ |
|
class LookUpTableImpl : public LookUpTable |
|
{ |
|
public: |
|
LookUpTableImpl(InputArray lut); |
|
|
|
void transform(InputArray src, OutputArray dst, Stream& stream = Stream::Null()); |
|
|
|
private: |
|
int lut_cn; |
|
|
|
int nValues3[3]; |
|
const Npp32s* pValues3[3]; |
|
const Npp32s* pLevels3[3]; |
|
|
|
GpuMat d_pLevels; |
|
GpuMat d_nppLut; |
|
GpuMat d_nppLut3[3]; |
|
}; |
|
|
|
LookUpTableImpl::LookUpTableImpl(InputArray _lut) |
|
{ |
|
nValues3[0] = nValues3[1] = nValues3[2] = 256; |
|
|
|
Npp32s pLevels[256]; |
|
for (int i = 0; i < 256; ++i) |
|
pLevels[i] = i; |
|
|
|
d_pLevels.upload(Mat(1, 256, CV_32S, pLevels)); |
|
pLevels3[0] = pLevels3[1] = pLevels3[2] = d_pLevels.ptr<Npp32s>(); |
|
|
|
GpuMat lut; |
|
if (_lut.kind() == _InputArray::GPU_MAT) |
|
{ |
|
lut = _lut.getGpuMat(); |
|
} |
|
else |
|
{ |
|
Mat hLut = _lut.getMat(); |
|
CV_Assert( hLut.total() == 256 && hLut.isContinuous() ); |
|
lut.upload(Mat(1, 256, hLut.type(), hLut.data)); |
|
} |
|
|
|
lut_cn = lut.channels(); |
|
|
|
CV_Assert( lut.depth() == CV_8U ); |
|
CV_Assert( lut.rows == 1 && lut.cols == 256 ); |
|
|
|
lut.convertTo(d_nppLut, CV_32S); |
|
|
|
if (lut_cn == 1) |
|
{ |
|
pValues3[0] = pValues3[1] = pValues3[2] = d_nppLut.ptr<Npp32s>(); |
|
} |
|
else |
|
{ |
|
gpu::split(d_nppLut, d_nppLut3); |
|
|
|
pValues3[0] = d_nppLut3[0].ptr<Npp32s>(); |
|
pValues3[1] = d_nppLut3[1].ptr<Npp32s>(); |
|
pValues3[2] = d_nppLut3[2].ptr<Npp32s>(); |
|
} |
|
} |
|
|
|
void LookUpTableImpl::transform(InputArray _src, OutputArray _dst, Stream& _stream) |
|
{ |
|
GpuMat src = _src.getGpuMat(); |
|
|
|
const int cn = src.channels(); |
|
|
|
CV_Assert( src.type() == CV_8UC1 || src.type() == CV_8UC3 ); |
|
CV_Assert( lut_cn == 1 || lut_cn == cn ); |
|
|
|
_dst.create(src.size(), src.type()); |
|
GpuMat dst = _dst.getGpuMat(); |
|
|
|
cudaStream_t stream = StreamAccessor::getStream(_stream); |
|
|
|
NppStreamHandler h(stream); |
|
|
|
NppiSize sz; |
|
sz.height = src.rows; |
|
sz.width = src.cols; |
|
|
|
if (src.type() == CV_8UC1) |
|
{ |
|
nppSafeCall( nppiLUT_Linear_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step), |
|
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, d_nppLut.ptr<Npp32s>(), d_pLevels.ptr<Npp32s>(), 256) ); |
|
} |
|
else |
|
{ |
|
nppSafeCall( nppiLUT_Linear_8u_C3R(src.ptr<Npp8u>(), static_cast<int>(src.step), |
|
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, pValues3, pLevels3, nValues3) ); |
|
} |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
} |
|
|
|
#else // (CUDA_VERSION >= 5000) |
|
|
|
namespace |
|
{ |
|
class LookUpTableImpl : public LookUpTable |
|
{ |
|
public: |
|
LookUpTableImpl(InputArray lut); |
|
|
|
void transform(InputArray src, OutputArray dst, Stream& stream = Stream::Null()); |
|
|
|
private: |
|
int lut_cn; |
|
|
|
Npp32s pLevels[256]; |
|
int nValues3[3]; |
|
const Npp32s* pValues3[3]; |
|
const Npp32s* pLevels3[3]; |
|
|
|
Mat nppLut; |
|
Mat nppLut3[3]; |
|
}; |
|
|
|
LookUpTableImpl::LookUpTableImpl(InputArray _lut) |
|
{ |
|
nValues3[0] = nValues3[1] = nValues3[2] = 256; |
|
|
|
for (int i = 0; i < 256; ++i) |
|
pLevels[i] = i; |
|
pLevels3[0] = pLevels3[1] = pLevels3[2] = pLevels; |
|
|
|
Mat lut; |
|
if (_lut.kind() == _InputArray::GPU_MAT) |
|
{ |
|
lut = Mat(_lut.getGpuMat()); |
|
} |
|
else |
|
{ |
|
Mat hLut = _lut.getMat(); |
|
CV_Assert( hLut.total() == 256 && hLut.isContinuous() ); |
|
lut = hLut; |
|
} |
|
|
|
lut_cn = lut.channels(); |
|
|
|
CV_Assert( lut.depth() == CV_8U ); |
|
CV_Assert( lut.rows == 1 && lut.cols == 256 ); |
|
|
|
lut.convertTo(nppLut, CV_32S); |
|
|
|
if (lut_cn == 1) |
|
{ |
|
pValues3[0] = pValues3[1] = pValues3[2] = nppLut.ptr<Npp32s>(); |
|
} |
|
else |
|
{ |
|
cv::split(nppLut, nppLut3); |
|
|
|
pValues3[0] = nppLut3[0].ptr<Npp32s>(); |
|
pValues3[1] = nppLut3[1].ptr<Npp32s>(); |
|
pValues3[2] = nppLut3[2].ptr<Npp32s>(); |
|
} |
|
} |
|
|
|
void LookUpTableImpl::transform(InputArray _src, OutputArray _dst, Stream& _stream) |
|
{ |
|
GpuMat src = _src.getGpuMat(); |
|
|
|
const int cn = src.channels(); |
|
|
|
CV_Assert( src.type() == CV_8UC1 || src.type() == CV_8UC3 ); |
|
CV_Assert( lut_cn == 1 || lut_cn == cn ); |
|
|
|
_dst.create(src.size(), src.type()); |
|
GpuMat dst = _dst.getGpuMat(); |
|
|
|
cudaStream_t stream = StreamAccessor::getStream(_stream); |
|
|
|
NppStreamHandler h(stream); |
|
|
|
NppiSize sz; |
|
sz.height = src.rows; |
|
sz.width = src.cols; |
|
|
|
if (src.type() == CV_8UC1) |
|
{ |
|
nppSafeCall( nppiLUT_Linear_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step), |
|
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, nppLut.ptr<Npp32s>(), pLevels, 256) ); |
|
} |
|
else |
|
{ |
|
nppSafeCall( nppiLUT_Linear_8u_C3R(src.ptr<Npp8u>(), static_cast<int>(src.step), |
|
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, pValues3, pLevels3, nValues3) ); |
|
} |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
} |
|
|
|
#endif // (CUDA_VERSION >= 5000) |
|
|
|
Ptr<LookUpTable> cv::gpu::createLookUpTable(InputArray lut) |
|
{ |
|
return new LookUpTableImpl(lut); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// copyMakeBorder |
|
|
|
namespace cv { namespace gpu { namespace cudev |
|
{ |
|
namespace imgproc |
|
{ |
|
template <typename T, int cn> void copyMakeBorder_gpu(const PtrStepSzb& src, const PtrStepSzb& dst, int top, int left, int borderMode, const T* borderValue, cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
namespace |
|
{ |
|
template <typename T, int cn> void copyMakeBorder_caller(const PtrStepSzb& src, const PtrStepSzb& dst, int top, int left, int borderType, const Scalar& value, cudaStream_t stream) |
|
{ |
|
using namespace ::cv::gpu::cudev::imgproc; |
|
|
|
Scalar_<T> val(saturate_cast<T>(value[0]), saturate_cast<T>(value[1]), saturate_cast<T>(value[2]), saturate_cast<T>(value[3])); |
|
|
|
copyMakeBorder_gpu<T, cn>(src, dst, top, left, borderType, val.val, stream); |
|
} |
|
} |
|
|
|
#if defined __GNUC__ && __GNUC__ > 2 && __GNUC_MINOR__ > 4 |
|
typedef Npp32s __attribute__((__may_alias__)) Npp32s_a; |
|
#else |
|
typedef Npp32s Npp32s_a; |
|
#endif |
|
|
|
void cv::gpu::copyMakeBorder(InputArray _src, OutputArray _dst, int top, int bottom, int left, int right, int borderType, Scalar value, Stream& _stream) |
|
{ |
|
GpuMat src = _src.getGpuMat(); |
|
|
|
CV_Assert( src.depth() <= CV_32F && src.channels() <= 4 ); |
|
CV_Assert( borderType == BORDER_REFLECT_101 || borderType == BORDER_REPLICATE || borderType == BORDER_CONSTANT || borderType == BORDER_REFLECT || borderType == BORDER_WRAP ); |
|
|
|
_dst.create(src.rows + top + bottom, src.cols + left + right, src.type()); |
|
GpuMat dst = _dst.getGpuMat(); |
|
|
|
cudaStream_t stream = StreamAccessor::getStream(_stream); |
|
|
|
if (borderType == BORDER_CONSTANT && (src.type() == CV_8UC1 || src.type() == CV_8UC4 || src.type() == CV_32SC1 || src.type() == CV_32FC1)) |
|
{ |
|
NppiSize srcsz; |
|
srcsz.width = src.cols; |
|
srcsz.height = src.rows; |
|
|
|
NppiSize dstsz; |
|
dstsz.width = dst.cols; |
|
dstsz.height = dst.rows; |
|
|
|
NppStreamHandler h(stream); |
|
|
|
switch (src.type()) |
|
{ |
|
case CV_8UC1: |
|
{ |
|
Npp8u nVal = saturate_cast<Npp8u>(value[0]); |
|
nppSafeCall( nppiCopyConstBorder_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step), srcsz, |
|
dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstsz, top, left, nVal) ); |
|
break; |
|
} |
|
case CV_8UC4: |
|
{ |
|
Npp8u nVal[] = {saturate_cast<Npp8u>(value[0]), saturate_cast<Npp8u>(value[1]), saturate_cast<Npp8u>(value[2]), saturate_cast<Npp8u>(value[3])}; |
|
nppSafeCall( nppiCopyConstBorder_8u_C4R(src.ptr<Npp8u>(), static_cast<int>(src.step), srcsz, |
|
dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstsz, top, left, nVal) ); |
|
break; |
|
} |
|
case CV_32SC1: |
|
{ |
|
Npp32s nVal = saturate_cast<Npp32s>(value[0]); |
|
nppSafeCall( nppiCopyConstBorder_32s_C1R(src.ptr<Npp32s>(), static_cast<int>(src.step), srcsz, |
|
dst.ptr<Npp32s>(), static_cast<int>(dst.step), dstsz, top, left, nVal) ); |
|
break; |
|
} |
|
case CV_32FC1: |
|
{ |
|
Npp32f val = saturate_cast<Npp32f>(value[0]); |
|
Npp32s nVal = *(reinterpret_cast<Npp32s_a*>(&val)); |
|
nppSafeCall( nppiCopyConstBorder_32s_C1R(src.ptr<Npp32s>(), static_cast<int>(src.step), srcsz, |
|
dst.ptr<Npp32s>(), static_cast<int>(dst.step), dstsz, top, left, nVal) ); |
|
break; |
|
} |
|
} |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
else |
|
{ |
|
typedef void (*caller_t)(const PtrStepSzb& src, const PtrStepSzb& dst, int top, int left, int borderType, const Scalar& value, cudaStream_t stream); |
|
static const caller_t callers[6][4] = |
|
{ |
|
{ copyMakeBorder_caller<uchar, 1> , copyMakeBorder_caller<uchar, 2> , copyMakeBorder_caller<uchar, 3> , copyMakeBorder_caller<uchar, 4>}, |
|
{0/*copyMakeBorder_caller<schar, 1>*/, 0/*copyMakeBorder_caller<schar, 2>*/ , 0/*copyMakeBorder_caller<schar, 3>*/, 0/*copyMakeBorder_caller<schar, 4>*/}, |
|
{ copyMakeBorder_caller<ushort, 1> , 0/*copyMakeBorder_caller<ushort, 2>*/, copyMakeBorder_caller<ushort, 3> , copyMakeBorder_caller<ushort, 4>}, |
|
{ copyMakeBorder_caller<short, 1> , 0/*copyMakeBorder_caller<short, 2>*/ , copyMakeBorder_caller<short, 3> , copyMakeBorder_caller<short, 4>}, |
|
{0/*copyMakeBorder_caller<int, 1>*/, 0/*copyMakeBorder_caller<int, 2>*/ , 0/*copyMakeBorder_caller<int, 3>*/, 0/*copyMakeBorder_caller<int , 4>*/}, |
|
{ copyMakeBorder_caller<float, 1> , 0/*copyMakeBorder_caller<float, 2>*/ , copyMakeBorder_caller<float, 3> , copyMakeBorder_caller<float ,4>} |
|
}; |
|
|
|
caller_t func = callers[src.depth()][src.channels() - 1]; |
|
CV_Assert(func != 0); |
|
|
|
func(src, dst, top, left, borderType, value, stream); |
|
} |
|
} |
|
|
|
#endif /* !defined (HAVE_CUDA) */
|
|
|