Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

612 lines
21 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
void cv::gpu::merge(const GpuMat*, size_t, OutputArray, Stream&) { throw_no_cuda(); }
void cv::gpu::merge(const std::vector<GpuMat>&, OutputArray, Stream&) { throw_no_cuda(); }
void cv::gpu::split(InputArray, GpuMat*, Stream&) { throw_no_cuda(); }
void cv::gpu::split(InputArray, std::vector<GpuMat>&, Stream&) { throw_no_cuda(); }
void cv::gpu::transpose(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
void cv::gpu::flip(InputArray, OutputArray, int, Stream&) { throw_no_cuda(); }
Ptr<LookUpTable> cv::gpu::createLookUpTable(InputArray) { throw_no_cuda(); return Ptr<LookUpTable>(); }
void cv::gpu::copyMakeBorder(InputArray, OutputArray, int, int, int, int, int, Scalar, Stream&) { throw_no_cuda(); }
#else /* !defined (HAVE_CUDA) */
////////////////////////////////////////////////////////////////////////
// merge/split
namespace cv { namespace gpu { namespace cudev
{
namespace split_merge
{
void merge(const PtrStepSzb* src, PtrStepSzb& dst, int total_channels, size_t elem_size, const cudaStream_t& stream);
void split(const PtrStepSzb& src, PtrStepSzb* dst, int num_channels, size_t elem_size1, const cudaStream_t& stream);
}
}}}
namespace
{
void merge_caller(const GpuMat* src, size_t n, OutputArray _dst, Stream& stream)
{
CV_Assert( src != 0 );
CV_Assert( n > 0 && n <= 4 );
const int depth = src[0].depth();
const Size size = src[0].size();
for (size_t i = 0; i < n; ++i)
{
CV_Assert( src[i].size() == size );
CV_Assert( src[i].depth() == depth );
CV_Assert( src[i].channels() == 1 );
}
if (depth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(cv::Error::StsUnsupportedFormat, "The device doesn't support double");
}
if (n == 1)
{
src[0].copyTo(_dst, stream);
}
else
{
_dst.create(size, CV_MAKE_TYPE(depth, (int)n));
GpuMat dst = _dst.getGpuMat();
PtrStepSzb src_as_devmem[4];
for(size_t i = 0; i < n; ++i)
src_as_devmem[i] = src[i];
PtrStepSzb dst_as_devmem(dst);
cv::gpu::cudev::split_merge::merge(src_as_devmem, dst_as_devmem, (int)n, CV_ELEM_SIZE(depth), StreamAccessor::getStream(stream));
}
}
void split_caller(const GpuMat& src, GpuMat* dst, Stream& stream)
{
CV_Assert( dst != 0 );
const int depth = src.depth();
const int num_channels = src.channels();
CV_Assert( num_channels <= 4 );
if (depth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(cv::Error::StsUnsupportedFormat, "The device doesn't support double");
}
if (num_channels == 1)
{
src.copyTo(dst[0], stream);
return;
}
for (int i = 0; i < num_channels; ++i)
dst[i].create(src.size(), depth);
PtrStepSzb dst_as_devmem[4];
for (int i = 0; i < num_channels; ++i)
dst_as_devmem[i] = dst[i];
PtrStepSzb src_as_devmem(src);
cv::gpu::cudev::split_merge::split(src_as_devmem, dst_as_devmem, num_channels, src.elemSize1(), StreamAccessor::getStream(stream));
}
}
void cv::gpu::merge(const GpuMat* src, size_t n, OutputArray dst, Stream& stream)
{
merge_caller(src, n, dst, stream);
}
void cv::gpu::merge(const std::vector<GpuMat>& src, OutputArray dst, Stream& stream)
{
merge_caller(&src[0], src.size(), dst, stream);
}
void cv::gpu::split(InputArray _src, GpuMat* dst, Stream& stream)
{
GpuMat src = _src.getGpuMat();
split_caller(src, dst, stream);
}
void cv::gpu::split(InputArray _src, std::vector<GpuMat>& dst, Stream& stream)
{
GpuMat src = _src.getGpuMat();
dst.resize(src.channels());
if(src.channels() > 0)
split_caller(src, &dst[0], stream);
}
////////////////////////////////////////////////////////////////////////
// transpose
namespace arithm
{
template <typename T> void transpose(PtrStepSz<T> src, PtrStepSz<T> dst, cudaStream_t stream);
}
void cv::gpu::transpose(InputArray _src, OutputArray _dst, Stream& _stream)
{
GpuMat src = _src.getGpuMat();
CV_Assert( src.elemSize() == 1 || src.elemSize() == 4 || src.elemSize() == 8 );
_dst.create( src.cols, src.rows, src.type() );
GpuMat dst = _dst.getGpuMat();
cudaStream_t stream = StreamAccessor::getStream(_stream);
if (src.elemSize() == 1)
{
NppStreamHandler h(stream);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( nppiTranspose_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step),
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
else if (src.elemSize() == 4)
{
arithm::transpose<int>(src, dst, stream);
}
else // if (src.elemSize() == 8)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(cv::Error::StsUnsupportedFormat, "The device doesn't support double");
arithm::transpose<double>(src, dst, stream);
}
}
////////////////////////////////////////////////////////////////////////
// flip
namespace
{
template<int DEPTH> struct NppTypeTraits;
template<> struct NppTypeTraits<CV_8U> { typedef Npp8u npp_t; };
template<> struct NppTypeTraits<CV_8S> { typedef Npp8s npp_t; };
template<> struct NppTypeTraits<CV_16U> { typedef Npp16u npp_t; };
template<> struct NppTypeTraits<CV_16S> { typedef Npp16s npp_t; };
template<> struct NppTypeTraits<CV_32S> { typedef Npp32s npp_t; };
template<> struct NppTypeTraits<CV_32F> { typedef Npp32f npp_t; };
template<> struct NppTypeTraits<CV_64F> { typedef Npp64f npp_t; };
template <int DEPTH> struct NppMirrorFunc
{
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
typedef NppStatus (*func_t)(const npp_t* pSrc, int nSrcStep, npp_t* pDst, int nDstStep, NppiSize oROI, NppiAxis flip);
};
template <int DEPTH, typename NppMirrorFunc<DEPTH>::func_t func> struct NppMirror
{
typedef typename NppMirrorFunc<DEPTH>::npp_t npp_t;
static void call(const GpuMat& src, GpuMat& dst, int flipCode, cudaStream_t stream)
{
NppStreamHandler h(stream);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( func(src.ptr<npp_t>(), static_cast<int>(src.step),
dst.ptr<npp_t>(), static_cast<int>(dst.step), sz,
(flipCode == 0 ? NPP_HORIZONTAL_AXIS : (flipCode > 0 ? NPP_VERTICAL_AXIS : NPP_BOTH_AXIS))) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
}
void cv::gpu::flip(InputArray _src, OutputArray _dst, int flipCode, Stream& stream)
{
typedef void (*func_t)(const GpuMat& src, GpuMat& dst, int flipCode, cudaStream_t stream);
static const func_t funcs[6][4] =
{
{NppMirror<CV_8U, nppiMirror_8u_C1R>::call, 0, NppMirror<CV_8U, nppiMirror_8u_C3R>::call, NppMirror<CV_8U, nppiMirror_8u_C4R>::call},
{0,0,0,0},
{NppMirror<CV_16U, nppiMirror_16u_C1R>::call, 0, NppMirror<CV_16U, nppiMirror_16u_C3R>::call, NppMirror<CV_16U, nppiMirror_16u_C4R>::call},
{0,0,0,0},
{NppMirror<CV_32S, nppiMirror_32s_C1R>::call, 0, NppMirror<CV_32S, nppiMirror_32s_C3R>::call, NppMirror<CV_32S, nppiMirror_32s_C4R>::call},
{NppMirror<CV_32F, nppiMirror_32f_C1R>::call, 0, NppMirror<CV_32F, nppiMirror_32f_C3R>::call, NppMirror<CV_32F, nppiMirror_32f_C4R>::call}
};
GpuMat src = _src.getGpuMat();
CV_Assert(src.depth() == CV_8U || src.depth() == CV_16U || src.depth() == CV_32S || src.depth() == CV_32F);
CV_Assert(src.channels() == 1 || src.channels() == 3 || src.channels() == 4);
_dst.create(src.size(), src.type());
GpuMat dst = _dst.getGpuMat();
funcs[src.depth()][src.channels() - 1](src, dst, flipCode, StreamAccessor::getStream(stream));
}
////////////////////////////////////////////////////////////////////////
// LUT
#if (CUDA_VERSION >= 5000)
namespace
{
class LookUpTableImpl : public LookUpTable
{
public:
LookUpTableImpl(InputArray lut);
void transform(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
private:
int lut_cn;
int nValues3[3];
const Npp32s* pValues3[3];
const Npp32s* pLevels3[3];
GpuMat d_pLevels;
GpuMat d_nppLut;
GpuMat d_nppLut3[3];
};
LookUpTableImpl::LookUpTableImpl(InputArray _lut)
{
nValues3[0] = nValues3[1] = nValues3[2] = 256;
Npp32s pLevels[256];
for (int i = 0; i < 256; ++i)
pLevels[i] = i;
d_pLevels.upload(Mat(1, 256, CV_32S, pLevels));
pLevels3[0] = pLevels3[1] = pLevels3[2] = d_pLevels.ptr<Npp32s>();
GpuMat lut;
if (_lut.kind() == _InputArray::GPU_MAT)
{
lut = _lut.getGpuMat();
}
else
{
Mat hLut = _lut.getMat();
CV_Assert( hLut.total() == 256 && hLut.isContinuous() );
lut.upload(Mat(1, 256, hLut.type(), hLut.data));
}
lut_cn = lut.channels();
CV_Assert( lut.depth() == CV_8U );
CV_Assert( lut.rows == 1 && lut.cols == 256 );
lut.convertTo(d_nppLut, CV_32S);
if (lut_cn == 1)
{
pValues3[0] = pValues3[1] = pValues3[2] = d_nppLut.ptr<Npp32s>();
}
else
{
gpu::split(d_nppLut, d_nppLut3);
pValues3[0] = d_nppLut3[0].ptr<Npp32s>();
pValues3[1] = d_nppLut3[1].ptr<Npp32s>();
pValues3[2] = d_nppLut3[2].ptr<Npp32s>();
}
}
void LookUpTableImpl::transform(InputArray _src, OutputArray _dst, Stream& _stream)
{
GpuMat src = _src.getGpuMat();
const int cn = src.channels();
CV_Assert( src.type() == CV_8UC1 || src.type() == CV_8UC3 );
CV_Assert( lut_cn == 1 || lut_cn == cn );
_dst.create(src.size(), src.type());
GpuMat dst = _dst.getGpuMat();
cudaStream_t stream = StreamAccessor::getStream(_stream);
NppStreamHandler h(stream);
NppiSize sz;
sz.height = src.rows;
sz.width = src.cols;
if (src.type() == CV_8UC1)
{
nppSafeCall( nppiLUT_Linear_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step),
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, d_nppLut.ptr<Npp32s>(), d_pLevels.ptr<Npp32s>(), 256) );
}
else
{
nppSafeCall( nppiLUT_Linear_8u_C3R(src.ptr<Npp8u>(), static_cast<int>(src.step),
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, pValues3, pLevels3, nValues3) );
}
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
}
#else // (CUDA_VERSION >= 5000)
namespace
{
class LookUpTableImpl : public LookUpTable
{
public:
LookUpTableImpl(InputArray lut);
void transform(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
private:
int lut_cn;
Npp32s pLevels[256];
int nValues3[3];
const Npp32s* pValues3[3];
const Npp32s* pLevels3[3];
Mat nppLut;
Mat nppLut3[3];
};
LookUpTableImpl::LookUpTableImpl(InputArray _lut)
{
nValues3[0] = nValues3[1] = nValues3[2] = 256;
for (int i = 0; i < 256; ++i)
pLevels[i] = i;
pLevels3[0] = pLevels3[1] = pLevels3[2] = pLevels;
Mat lut;
if (_lut.kind() == _InputArray::GPU_MAT)
{
lut = Mat(_lut.getGpuMat());
}
else
{
Mat hLut = _lut.getMat();
CV_Assert( hLut.total() == 256 && hLut.isContinuous() );
lut = hLut;
}
lut_cn = lut.channels();
CV_Assert( lut.depth() == CV_8U );
CV_Assert( lut.rows == 1 && lut.cols == 256 );
lut.convertTo(nppLut, CV_32S);
if (lut_cn == 1)
{
pValues3[0] = pValues3[1] = pValues3[2] = nppLut.ptr<Npp32s>();
}
else
{
cv::split(nppLut, nppLut3);
pValues3[0] = nppLut3[0].ptr<Npp32s>();
pValues3[1] = nppLut3[1].ptr<Npp32s>();
pValues3[2] = nppLut3[2].ptr<Npp32s>();
}
}
void LookUpTableImpl::transform(InputArray _src, OutputArray _dst, Stream& _stream)
{
GpuMat src = _src.getGpuMat();
const int cn = src.channels();
CV_Assert( src.type() == CV_8UC1 || src.type() == CV_8UC3 );
CV_Assert( lut_cn == 1 || lut_cn == cn );
_dst.create(src.size(), src.type());
GpuMat dst = _dst.getGpuMat();
cudaStream_t stream = StreamAccessor::getStream(_stream);
NppStreamHandler h(stream);
NppiSize sz;
sz.height = src.rows;
sz.width = src.cols;
if (src.type() == CV_8UC1)
{
nppSafeCall( nppiLUT_Linear_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step),
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, nppLut.ptr<Npp32s>(), pLevels, 256) );
}
else
{
nppSafeCall( nppiLUT_Linear_8u_C3R(src.ptr<Npp8u>(), static_cast<int>(src.step),
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, pValues3, pLevels3, nValues3) );
}
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
}
#endif // (CUDA_VERSION >= 5000)
Ptr<LookUpTable> cv::gpu::createLookUpTable(InputArray lut)
{
return new LookUpTableImpl(lut);
}
////////////////////////////////////////////////////////////////////////
// copyMakeBorder
namespace cv { namespace gpu { namespace cudev
{
namespace imgproc
{
template <typename T, int cn> void copyMakeBorder_gpu(const PtrStepSzb& src, const PtrStepSzb& dst, int top, int left, int borderMode, const T* borderValue, cudaStream_t stream);
}
}}}
namespace
{
template <typename T, int cn> void copyMakeBorder_caller(const PtrStepSzb& src, const PtrStepSzb& dst, int top, int left, int borderType, const Scalar& value, cudaStream_t stream)
{
using namespace ::cv::gpu::cudev::imgproc;
Scalar_<T> val(saturate_cast<T>(value[0]), saturate_cast<T>(value[1]), saturate_cast<T>(value[2]), saturate_cast<T>(value[3]));
copyMakeBorder_gpu<T, cn>(src, dst, top, left, borderType, val.val, stream);
}
}
#if defined __GNUC__ && __GNUC__ > 2 && __GNUC_MINOR__ > 4
typedef Npp32s __attribute__((__may_alias__)) Npp32s_a;
#else
typedef Npp32s Npp32s_a;
#endif
void cv::gpu::copyMakeBorder(InputArray _src, OutputArray _dst, int top, int bottom, int left, int right, int borderType, Scalar value, Stream& _stream)
{
GpuMat src = _src.getGpuMat();
CV_Assert( src.depth() <= CV_32F && src.channels() <= 4 );
CV_Assert( borderType == BORDER_REFLECT_101 || borderType == BORDER_REPLICATE || borderType == BORDER_CONSTANT || borderType == BORDER_REFLECT || borderType == BORDER_WRAP );
_dst.create(src.rows + top + bottom, src.cols + left + right, src.type());
GpuMat dst = _dst.getGpuMat();
cudaStream_t stream = StreamAccessor::getStream(_stream);
if (borderType == BORDER_CONSTANT && (src.type() == CV_8UC1 || src.type() == CV_8UC4 || src.type() == CV_32SC1 || src.type() == CV_32FC1))
{
NppiSize srcsz;
srcsz.width = src.cols;
srcsz.height = src.rows;
NppiSize dstsz;
dstsz.width = dst.cols;
dstsz.height = dst.rows;
NppStreamHandler h(stream);
switch (src.type())
{
case CV_8UC1:
{
Npp8u nVal = saturate_cast<Npp8u>(value[0]);
nppSafeCall( nppiCopyConstBorder_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step), srcsz,
dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
break;
}
case CV_8UC4:
{
Npp8u nVal[] = {saturate_cast<Npp8u>(value[0]), saturate_cast<Npp8u>(value[1]), saturate_cast<Npp8u>(value[2]), saturate_cast<Npp8u>(value[3])};
nppSafeCall( nppiCopyConstBorder_8u_C4R(src.ptr<Npp8u>(), static_cast<int>(src.step), srcsz,
dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
break;
}
case CV_32SC1:
{
Npp32s nVal = saturate_cast<Npp32s>(value[0]);
nppSafeCall( nppiCopyConstBorder_32s_C1R(src.ptr<Npp32s>(), static_cast<int>(src.step), srcsz,
dst.ptr<Npp32s>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
break;
}
case CV_32FC1:
{
Npp32f val = saturate_cast<Npp32f>(value[0]);
Npp32s nVal = *(reinterpret_cast<Npp32s_a*>(&val));
nppSafeCall( nppiCopyConstBorder_32s_C1R(src.ptr<Npp32s>(), static_cast<int>(src.step), srcsz,
dst.ptr<Npp32s>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
break;
}
}
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
else
{
typedef void (*caller_t)(const PtrStepSzb& src, const PtrStepSzb& dst, int top, int left, int borderType, const Scalar& value, cudaStream_t stream);
static const caller_t callers[6][4] =
{
{ copyMakeBorder_caller<uchar, 1> , copyMakeBorder_caller<uchar, 2> , copyMakeBorder_caller<uchar, 3> , copyMakeBorder_caller<uchar, 4>},
{0/*copyMakeBorder_caller<schar, 1>*/, 0/*copyMakeBorder_caller<schar, 2>*/ , 0/*copyMakeBorder_caller<schar, 3>*/, 0/*copyMakeBorder_caller<schar, 4>*/},
{ copyMakeBorder_caller<ushort, 1> , 0/*copyMakeBorder_caller<ushort, 2>*/, copyMakeBorder_caller<ushort, 3> , copyMakeBorder_caller<ushort, 4>},
{ copyMakeBorder_caller<short, 1> , 0/*copyMakeBorder_caller<short, 2>*/ , copyMakeBorder_caller<short, 3> , copyMakeBorder_caller<short, 4>},
{0/*copyMakeBorder_caller<int, 1>*/, 0/*copyMakeBorder_caller<int, 2>*/ , 0/*copyMakeBorder_caller<int, 3>*/, 0/*copyMakeBorder_caller<int , 4>*/},
{ copyMakeBorder_caller<float, 1> , 0/*copyMakeBorder_caller<float, 2>*/ , copyMakeBorder_caller<float, 3> , copyMakeBorder_caller<float ,4>}
};
caller_t func = callers[src.depth()][src.channels() - 1];
CV_Assert(func != 0);
func(src, dst, top, left, borderType, value, stream);
}
}
#endif /* !defined (HAVE_CUDA) */