mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
119 lines
3.6 KiB
119 lines
3.6 KiB
#!/usr/bin/env python |
|
|
|
''' This is a sample for histogram plotting for RGB images and grayscale images for better understanding of colour distribution |
|
|
|
Benefit : Learn how to draw histogram of images |
|
Get familier with cv2.calcHist, cv2.equalizeHist,cv2.normalize and some drawing functions |
|
|
|
Level : Beginner or Intermediate |
|
|
|
Functions : 1) hist_curve : returns histogram of an image drawn as curves |
|
2) hist_lines : return histogram of an image drawn as bins ( only for grayscale images ) |
|
|
|
Usage : python hist.py <image_file> |
|
|
|
Abid Rahman 3/14/12 debug Gary Bradski |
|
''' |
|
|
|
# Python 2/3 compatibility |
|
from __future__ import print_function |
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
bins = np.arange(256).reshape(256,1) |
|
|
|
def hist_curve(im): |
|
h = np.zeros((300,256,3)) |
|
if len(im.shape) == 2: |
|
color = [(255,255,255)] |
|
elif im.shape[2] == 3: |
|
color = [ (255,0,0),(0,255,0),(0,0,255) ] |
|
for ch, col in enumerate(color): |
|
hist_item = cv2.calcHist([im],[ch],None,[256],[0,256]) |
|
cv2.normalize(hist_item,hist_item,0,255,cv2.NORM_MINMAX) |
|
hist=np.int32(np.around(hist_item)) |
|
pts = np.int32(np.column_stack((bins,hist))) |
|
cv2.polylines(h,[pts],False,col) |
|
y=np.flipud(h) |
|
return y |
|
|
|
def hist_lines(im): |
|
h = np.zeros((300,256,3)) |
|
if len(im.shape)!=2: |
|
print("hist_lines applicable only for grayscale images") |
|
#print("so converting image to grayscale for representation" |
|
im = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) |
|
hist_item = cv2.calcHist([im],[0],None,[256],[0,256]) |
|
cv2.normalize(hist_item,hist_item,0,255,cv2.NORM_MINMAX) |
|
hist=np.int32(np.around(hist_item)) |
|
for x,y in enumerate(hist): |
|
cv2.line(h,(x,0),(x,y),(255,255,255)) |
|
y = np.flipud(h) |
|
return y |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
import sys |
|
|
|
if len(sys.argv)>1: |
|
fname = sys.argv[1] |
|
else : |
|
fname = '../data/lena.jpg' |
|
print("usage : python hist.py <image_file>") |
|
|
|
im = cv2.imread(fname) |
|
|
|
if im is None: |
|
print('Failed to load image file:', fname) |
|
sys.exit(1) |
|
|
|
gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) |
|
|
|
|
|
print(''' Histogram plotting \n |
|
Keymap :\n |
|
a - show histogram for color image in curve mode \n |
|
b - show histogram in bin mode \n |
|
c - show equalized histogram (always in bin mode) \n |
|
d - show histogram for color image in curve mode \n |
|
e - show histogram for a normalized image in curve mode \n |
|
Esc - exit \n |
|
''') |
|
|
|
cv2.imshow('image',im) |
|
while True: |
|
k = cv2.waitKey(0) |
|
if k == ord('a'): |
|
curve = hist_curve(im) |
|
cv2.imshow('histogram',curve) |
|
cv2.imshow('image',im) |
|
print('a') |
|
elif k == ord('b'): |
|
print('b') |
|
lines = hist_lines(im) |
|
cv2.imshow('histogram',lines) |
|
cv2.imshow('image',gray) |
|
elif k == ord('c'): |
|
print('c') |
|
equ = cv2.equalizeHist(gray) |
|
lines = hist_lines(equ) |
|
cv2.imshow('histogram',lines) |
|
cv2.imshow('image',equ) |
|
elif k == ord('d'): |
|
print('d') |
|
curve = hist_curve(gray) |
|
cv2.imshow('histogram',curve) |
|
cv2.imshow('image',gray) |
|
elif k == ord('e'): |
|
print('e') |
|
norm = cv2.normalize(gray, gray, alpha = 0,beta = 255,norm_type = cv2.NORM_MINMAX) |
|
lines = hist_lines(norm) |
|
cv2.imshow('histogram',lines) |
|
cv2.imshow('image',norm) |
|
elif k == 27: |
|
print('ESC') |
|
cv2.destroyAllWindows() |
|
break |
|
cv2.destroyAllWindows()
|
|
|