mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1175 lines
38 KiB
1175 lines
38 KiB
// Copyright 2012 Google Inc. All Rights Reserved. |
|
// |
|
// Use of this source code is governed by a BSD-style license |
|
// that can be found in the COPYING file in the root of the source |
|
// tree. An additional intellectual property rights grant can be found |
|
// in the file PATENTS. All contributing project authors may |
|
// be found in the AUTHORS file in the root of the source tree. |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// main entry for the lossless encoder. |
|
// |
|
// Author: Vikas Arora (vikaas.arora@gmail.com) |
|
// |
|
|
|
#include <assert.h> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
|
|
#include "./backward_references.h" |
|
#include "./vp8enci.h" |
|
#include "./vp8li.h" |
|
#include "../dsp/lossless.h" |
|
#include "../utils/bit_writer.h" |
|
#include "../utils/huffman_encode.h" |
|
#include "../utils/utils.h" |
|
#include "../webp/format_constants.h" |
|
|
|
#if defined(__cplusplus) || defined(c_plusplus) |
|
extern "C" { |
|
#endif |
|
|
|
#define PALETTE_KEY_RIGHT_SHIFT 22 // Key for 1K buffer. |
|
#define MAX_HUFF_IMAGE_SIZE (16 * 1024 * 1024) |
|
#define MAX_COLORS_FOR_GRAPH 64 |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Palette |
|
|
|
static int CompareColors(const void* p1, const void* p2) { |
|
const uint32_t a = *(const uint32_t*)p1; |
|
const uint32_t b = *(const uint32_t*)p2; |
|
assert(a != b); |
|
return (a < b) ? -1 : 1; |
|
} |
|
|
|
// If number of colors in the image is less than or equal to MAX_PALETTE_SIZE, |
|
// creates a palette and returns true, else returns false. |
|
static int AnalyzeAndCreatePalette(const WebPPicture* const pic, |
|
uint32_t palette[MAX_PALETTE_SIZE], |
|
int* const palette_size) { |
|
int i, x, y, key; |
|
int num_colors = 0; |
|
uint8_t in_use[MAX_PALETTE_SIZE * 4] = { 0 }; |
|
uint32_t colors[MAX_PALETTE_SIZE * 4]; |
|
static const uint32_t kHashMul = 0x1e35a7bd; |
|
const uint32_t* argb = pic->argb; |
|
const int width = pic->width; |
|
const int height = pic->height; |
|
uint32_t last_pix = ~argb[0]; // so we're sure that last_pix != argb[0] |
|
|
|
for (y = 0; y < height; ++y) { |
|
for (x = 0; x < width; ++x) { |
|
if (argb[x] == last_pix) { |
|
continue; |
|
} |
|
last_pix = argb[x]; |
|
key = (kHashMul * last_pix) >> PALETTE_KEY_RIGHT_SHIFT; |
|
while (1) { |
|
if (!in_use[key]) { |
|
colors[key] = last_pix; |
|
in_use[key] = 1; |
|
++num_colors; |
|
if (num_colors > MAX_PALETTE_SIZE) { |
|
return 0; |
|
} |
|
break; |
|
} else if (colors[key] == last_pix) { |
|
// The color is already there. |
|
break; |
|
} else { |
|
// Some other color sits there. |
|
// Do linear conflict resolution. |
|
++key; |
|
key &= (MAX_PALETTE_SIZE * 4 - 1); // key mask for 1K buffer. |
|
} |
|
} |
|
} |
|
argb += pic->argb_stride; |
|
} |
|
|
|
// TODO(skal): could we reuse in_use[] to speed up EncodePalette()? |
|
num_colors = 0; |
|
for (i = 0; i < (int)(sizeof(in_use) / sizeof(in_use[0])); ++i) { |
|
if (in_use[i]) { |
|
palette[num_colors] = colors[i]; |
|
++num_colors; |
|
} |
|
} |
|
|
|
qsort(palette, num_colors, sizeof(*palette), CompareColors); |
|
*palette_size = num_colors; |
|
return 1; |
|
} |
|
|
|
static int AnalyzeEntropy(const uint32_t* argb, |
|
int width, int height, int argb_stride, |
|
double* const nonpredicted_bits, |
|
double* const predicted_bits) { |
|
int x, y; |
|
const uint32_t* last_line = NULL; |
|
uint32_t last_pix = argb[0]; // so we're sure that pix_diff == 0 |
|
|
|
VP8LHistogram* nonpredicted = NULL; |
|
VP8LHistogram* predicted = |
|
(VP8LHistogram*)malloc(2 * sizeof(*predicted)); |
|
if (predicted == NULL) return 0; |
|
nonpredicted = predicted + 1; |
|
|
|
VP8LHistogramInit(predicted, 0); |
|
VP8LHistogramInit(nonpredicted, 0); |
|
for (y = 0; y < height; ++y) { |
|
for (x = 0; x < width; ++x) { |
|
const uint32_t pix = argb[x]; |
|
const uint32_t pix_diff = VP8LSubPixels(pix, last_pix); |
|
if (pix_diff == 0) continue; |
|
if (last_line != NULL && pix == last_line[x]) { |
|
continue; |
|
} |
|
last_pix = pix; |
|
{ |
|
const PixOrCopy pix_token = PixOrCopyCreateLiteral(pix); |
|
const PixOrCopy pix_diff_token = PixOrCopyCreateLiteral(pix_diff); |
|
VP8LHistogramAddSinglePixOrCopy(nonpredicted, &pix_token); |
|
VP8LHistogramAddSinglePixOrCopy(predicted, &pix_diff_token); |
|
} |
|
} |
|
last_line = argb; |
|
argb += argb_stride; |
|
} |
|
*nonpredicted_bits = VP8LHistogramEstimateBitsBulk(nonpredicted); |
|
*predicted_bits = VP8LHistogramEstimateBitsBulk(predicted); |
|
free(predicted); |
|
return 1; |
|
} |
|
|
|
static int VP8LEncAnalyze(VP8LEncoder* const enc, WebPImageHint image_hint) { |
|
const WebPPicture* const pic = enc->pic_; |
|
assert(pic != NULL && pic->argb != NULL); |
|
|
|
enc->use_palette_ = |
|
AnalyzeAndCreatePalette(pic, enc->palette_, &enc->palette_size_); |
|
|
|
if (image_hint == WEBP_HINT_GRAPH) { |
|
if (enc->use_palette_ && enc->palette_size_ < MAX_COLORS_FOR_GRAPH) { |
|
enc->use_palette_ = 0; |
|
} |
|
} |
|
|
|
if (!enc->use_palette_) { |
|
if (image_hint == WEBP_HINT_PHOTO) { |
|
enc->use_predict_ = 1; |
|
enc->use_cross_color_ = 1; |
|
} else { |
|
double non_pred_entropy, pred_entropy; |
|
if (!AnalyzeEntropy(pic->argb, pic->width, pic->height, pic->argb_stride, |
|
&non_pred_entropy, &pred_entropy)) { |
|
return 0; |
|
} |
|
if (pred_entropy < 0.95 * non_pred_entropy) { |
|
enc->use_predict_ = 1; |
|
// TODO(vikasa): Observed some correlation of cross_color transform with |
|
// predict. Need to investigate this further and add separate heuristic |
|
// for setting use_cross_color flag. |
|
enc->use_cross_color_ = 1; |
|
} |
|
} |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
static int GetHuffBitLengthsAndCodes( |
|
const VP8LHistogramSet* const histogram_image, |
|
HuffmanTreeCode* const huffman_codes) { |
|
int i, k; |
|
int ok = 1; |
|
uint64_t total_length_size = 0; |
|
uint8_t* mem_buf = NULL; |
|
const int histogram_image_size = histogram_image->size; |
|
|
|
// Iterate over all histograms and get the aggregate number of codes used. |
|
for (i = 0; i < histogram_image_size; ++i) { |
|
const VP8LHistogram* const histo = histogram_image->histograms[i]; |
|
HuffmanTreeCode* const codes = &huffman_codes[5 * i]; |
|
for (k = 0; k < 5; ++k) { |
|
const int num_symbols = (k == 0) ? VP8LHistogramNumCodes(histo) |
|
: (k == 4) ? NUM_DISTANCE_CODES |
|
: 256; |
|
codes[k].num_symbols = num_symbols; |
|
total_length_size += num_symbols; |
|
} |
|
} |
|
|
|
// Allocate and Set Huffman codes. |
|
{ |
|
uint16_t* codes; |
|
uint8_t* lengths; |
|
mem_buf = (uint8_t*)WebPSafeCalloc(total_length_size, |
|
sizeof(*lengths) + sizeof(*codes)); |
|
if (mem_buf == NULL) { |
|
ok = 0; |
|
goto End; |
|
} |
|
codes = (uint16_t*)mem_buf; |
|
lengths = (uint8_t*)&codes[total_length_size]; |
|
for (i = 0; i < 5 * histogram_image_size; ++i) { |
|
const int bit_length = huffman_codes[i].num_symbols; |
|
huffman_codes[i].codes = codes; |
|
huffman_codes[i].code_lengths = lengths; |
|
codes += bit_length; |
|
lengths += bit_length; |
|
} |
|
} |
|
|
|
// Create Huffman trees. |
|
for (i = 0; ok && (i < histogram_image_size); ++i) { |
|
HuffmanTreeCode* const codes = &huffman_codes[5 * i]; |
|
VP8LHistogram* const histo = histogram_image->histograms[i]; |
|
ok = ok && VP8LCreateHuffmanTree(histo->literal_, 15, codes + 0); |
|
ok = ok && VP8LCreateHuffmanTree(histo->red_, 15, codes + 1); |
|
ok = ok && VP8LCreateHuffmanTree(histo->blue_, 15, codes + 2); |
|
ok = ok && VP8LCreateHuffmanTree(histo->alpha_, 15, codes + 3); |
|
ok = ok && VP8LCreateHuffmanTree(histo->distance_, 15, codes + 4); |
|
} |
|
|
|
End: |
|
if (!ok) { |
|
free(mem_buf); |
|
// If one VP8LCreateHuffmanTree() above fails, we need to clean up behind. |
|
memset(huffman_codes, 0, 5 * histogram_image_size * sizeof(*huffman_codes)); |
|
} |
|
return ok; |
|
} |
|
|
|
static void StoreHuffmanTreeOfHuffmanTreeToBitMask( |
|
VP8LBitWriter* const bw, const uint8_t* code_length_bitdepth) { |
|
// RFC 1951 will calm you down if you are worried about this funny sequence. |
|
// This sequence is tuned from that, but more weighted for lower symbol count, |
|
// and more spiking histograms. |
|
static const uint8_t kStorageOrder[CODE_LENGTH_CODES] = { |
|
17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 |
|
}; |
|
int i; |
|
// Throw away trailing zeros: |
|
int codes_to_store = CODE_LENGTH_CODES; |
|
for (; codes_to_store > 4; --codes_to_store) { |
|
if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) { |
|
break; |
|
} |
|
} |
|
VP8LWriteBits(bw, 4, codes_to_store - 4); |
|
for (i = 0; i < codes_to_store; ++i) { |
|
VP8LWriteBits(bw, 3, code_length_bitdepth[kStorageOrder[i]]); |
|
} |
|
} |
|
|
|
static void ClearHuffmanTreeIfOnlyOneSymbol( |
|
HuffmanTreeCode* const huffman_code) { |
|
int k; |
|
int count = 0; |
|
for (k = 0; k < huffman_code->num_symbols; ++k) { |
|
if (huffman_code->code_lengths[k] != 0) { |
|
++count; |
|
if (count > 1) return; |
|
} |
|
} |
|
for (k = 0; k < huffman_code->num_symbols; ++k) { |
|
huffman_code->code_lengths[k] = 0; |
|
huffman_code->codes[k] = 0; |
|
} |
|
} |
|
|
|
static void StoreHuffmanTreeToBitMask( |
|
VP8LBitWriter* const bw, |
|
const HuffmanTreeToken* const tokens, const int num_tokens, |
|
const HuffmanTreeCode* const huffman_code) { |
|
int i; |
|
for (i = 0; i < num_tokens; ++i) { |
|
const int ix = tokens[i].code; |
|
const int extra_bits = tokens[i].extra_bits; |
|
VP8LWriteBits(bw, huffman_code->code_lengths[ix], huffman_code->codes[ix]); |
|
switch (ix) { |
|
case 16: |
|
VP8LWriteBits(bw, 2, extra_bits); |
|
break; |
|
case 17: |
|
VP8LWriteBits(bw, 3, extra_bits); |
|
break; |
|
case 18: |
|
VP8LWriteBits(bw, 7, extra_bits); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
static int StoreFullHuffmanCode(VP8LBitWriter* const bw, |
|
const HuffmanTreeCode* const tree) { |
|
int ok = 0; |
|
uint8_t code_length_bitdepth[CODE_LENGTH_CODES] = { 0 }; |
|
uint16_t code_length_bitdepth_symbols[CODE_LENGTH_CODES] = { 0 }; |
|
const int max_tokens = tree->num_symbols; |
|
int num_tokens; |
|
HuffmanTreeCode huffman_code; |
|
HuffmanTreeToken* const tokens = |
|
(HuffmanTreeToken*)WebPSafeMalloc((uint64_t)max_tokens, sizeof(*tokens)); |
|
if (tokens == NULL) return 0; |
|
|
|
huffman_code.num_symbols = CODE_LENGTH_CODES; |
|
huffman_code.code_lengths = code_length_bitdepth; |
|
huffman_code.codes = code_length_bitdepth_symbols; |
|
|
|
VP8LWriteBits(bw, 1, 0); |
|
num_tokens = VP8LCreateCompressedHuffmanTree(tree, tokens, max_tokens); |
|
{ |
|
int histogram[CODE_LENGTH_CODES] = { 0 }; |
|
int i; |
|
for (i = 0; i < num_tokens; ++i) { |
|
++histogram[tokens[i].code]; |
|
} |
|
|
|
if (!VP8LCreateHuffmanTree(histogram, 7, &huffman_code)) { |
|
goto End; |
|
} |
|
} |
|
|
|
StoreHuffmanTreeOfHuffmanTreeToBitMask(bw, code_length_bitdepth); |
|
ClearHuffmanTreeIfOnlyOneSymbol(&huffman_code); |
|
{ |
|
int trailing_zero_bits = 0; |
|
int trimmed_length = num_tokens; |
|
int write_trimmed_length; |
|
int length; |
|
int i = num_tokens; |
|
while (i-- > 0) { |
|
const int ix = tokens[i].code; |
|
if (ix == 0 || ix == 17 || ix == 18) { |
|
--trimmed_length; // discount trailing zeros |
|
trailing_zero_bits += code_length_bitdepth[ix]; |
|
if (ix == 17) { |
|
trailing_zero_bits += 3; |
|
} else if (ix == 18) { |
|
trailing_zero_bits += 7; |
|
} |
|
} else { |
|
break; |
|
} |
|
} |
|
write_trimmed_length = (trimmed_length > 1 && trailing_zero_bits > 12); |
|
length = write_trimmed_length ? trimmed_length : num_tokens; |
|
VP8LWriteBits(bw, 1, write_trimmed_length); |
|
if (write_trimmed_length) { |
|
const int nbits = VP8LBitsLog2Ceiling(trimmed_length - 1); |
|
const int nbitpairs = (nbits == 0) ? 1 : (nbits + 1) / 2; |
|
VP8LWriteBits(bw, 3, nbitpairs - 1); |
|
assert(trimmed_length >= 2); |
|
VP8LWriteBits(bw, nbitpairs * 2, trimmed_length - 2); |
|
} |
|
StoreHuffmanTreeToBitMask(bw, tokens, length, &huffman_code); |
|
} |
|
ok = 1; |
|
End: |
|
free(tokens); |
|
return ok; |
|
} |
|
|
|
static int StoreHuffmanCode(VP8LBitWriter* const bw, |
|
const HuffmanTreeCode* const huffman_code) { |
|
int i; |
|
int count = 0; |
|
int symbols[2] = { 0, 0 }; |
|
const int kMaxBits = 8; |
|
const int kMaxSymbol = 1 << kMaxBits; |
|
|
|
// Check whether it's a small tree. |
|
for (i = 0; i < huffman_code->num_symbols && count < 3; ++i) { |
|
if (huffman_code->code_lengths[i] != 0) { |
|
if (count < 2) symbols[count] = i; |
|
++count; |
|
} |
|
} |
|
|
|
if (count == 0) { // emit minimal tree for empty cases |
|
// bits: small tree marker: 1, count-1: 0, large 8-bit code: 0, code: 0 |
|
VP8LWriteBits(bw, 4, 0x01); |
|
return 1; |
|
} else if (count <= 2 && symbols[0] < kMaxSymbol && symbols[1] < kMaxSymbol) { |
|
VP8LWriteBits(bw, 1, 1); // Small tree marker to encode 1 or 2 symbols. |
|
VP8LWriteBits(bw, 1, count - 1); |
|
if (symbols[0] <= 1) { |
|
VP8LWriteBits(bw, 1, 0); // Code bit for small (1 bit) symbol value. |
|
VP8LWriteBits(bw, 1, symbols[0]); |
|
} else { |
|
VP8LWriteBits(bw, 1, 1); |
|
VP8LWriteBits(bw, 8, symbols[0]); |
|
} |
|
if (count == 2) { |
|
VP8LWriteBits(bw, 8, symbols[1]); |
|
} |
|
return 1; |
|
} else { |
|
return StoreFullHuffmanCode(bw, huffman_code); |
|
} |
|
} |
|
|
|
static void WriteHuffmanCode(VP8LBitWriter* const bw, |
|
const HuffmanTreeCode* const code, |
|
int code_index) { |
|
const int depth = code->code_lengths[code_index]; |
|
const int symbol = code->codes[code_index]; |
|
VP8LWriteBits(bw, depth, symbol); |
|
} |
|
|
|
static void StoreImageToBitMask( |
|
VP8LBitWriter* const bw, int width, int histo_bits, |
|
const VP8LBackwardRefs* const refs, |
|
const uint16_t* histogram_symbols, |
|
const HuffmanTreeCode* const huffman_codes) { |
|
// x and y trace the position in the image. |
|
int x = 0; |
|
int y = 0; |
|
const int histo_xsize = histo_bits ? VP8LSubSampleSize(width, histo_bits) : 1; |
|
int i; |
|
for (i = 0; i < refs->size; ++i) { |
|
const PixOrCopy* const v = &refs->refs[i]; |
|
const int histogram_ix = histogram_symbols[histo_bits ? |
|
(y >> histo_bits) * histo_xsize + |
|
(x >> histo_bits) : 0]; |
|
const HuffmanTreeCode* const codes = huffman_codes + 5 * histogram_ix; |
|
if (PixOrCopyIsCacheIdx(v)) { |
|
const int code = PixOrCopyCacheIdx(v); |
|
const int literal_ix = 256 + NUM_LENGTH_CODES + code; |
|
WriteHuffmanCode(bw, codes, literal_ix); |
|
} else if (PixOrCopyIsLiteral(v)) { |
|
static const int order[] = { 1, 2, 0, 3 }; |
|
int k; |
|
for (k = 0; k < 4; ++k) { |
|
const int code = PixOrCopyLiteral(v, order[k]); |
|
WriteHuffmanCode(bw, codes + k, code); |
|
} |
|
} else { |
|
int bits, n_bits; |
|
int code, distance; |
|
|
|
PrefixEncode(v->len, &code, &n_bits, &bits); |
|
WriteHuffmanCode(bw, codes, 256 + code); |
|
VP8LWriteBits(bw, n_bits, bits); |
|
|
|
distance = PixOrCopyDistance(v); |
|
PrefixEncode(distance, &code, &n_bits, &bits); |
|
WriteHuffmanCode(bw, codes + 4, code); |
|
VP8LWriteBits(bw, n_bits, bits); |
|
} |
|
x += PixOrCopyLength(v); |
|
while (x >= width) { |
|
x -= width; |
|
++y; |
|
} |
|
} |
|
} |
|
|
|
// Special case of EncodeImageInternal() for cache-bits=0, histo_bits=31 |
|
static int EncodeImageNoHuffman(VP8LBitWriter* const bw, |
|
const uint32_t* const argb, |
|
int width, int height, int quality) { |
|
int i; |
|
int ok = 0; |
|
VP8LBackwardRefs refs; |
|
HuffmanTreeCode huffman_codes[5] = { { 0, NULL, NULL } }; |
|
const uint16_t histogram_symbols[1] = { 0 }; // only one tree, one symbol |
|
VP8LHistogramSet* const histogram_image = VP8LAllocateHistogramSet(1, 0); |
|
if (histogram_image == NULL) return 0; |
|
|
|
// Calculate backward references from ARGB image. |
|
if (!VP8LGetBackwardReferences(width, height, argb, quality, 0, 1, &refs)) { |
|
goto Error; |
|
} |
|
// Build histogram image and symbols from backward references. |
|
VP8LHistogramStoreRefs(&refs, histogram_image->histograms[0]); |
|
|
|
// Create Huffman bit lengths and codes for each histogram image. |
|
assert(histogram_image->size == 1); |
|
if (!GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) { |
|
goto Error; |
|
} |
|
|
|
// No color cache, no Huffman image. |
|
VP8LWriteBits(bw, 1, 0); |
|
|
|
// Store Huffman codes. |
|
for (i = 0; i < 5; ++i) { |
|
HuffmanTreeCode* const codes = &huffman_codes[i]; |
|
if (!StoreHuffmanCode(bw, codes)) { |
|
goto Error; |
|
} |
|
ClearHuffmanTreeIfOnlyOneSymbol(codes); |
|
} |
|
|
|
// Store actual literals. |
|
StoreImageToBitMask(bw, width, 0, &refs, histogram_symbols, huffman_codes); |
|
ok = 1; |
|
|
|
Error: |
|
free(histogram_image); |
|
VP8LClearBackwardRefs(&refs); |
|
free(huffman_codes[0].codes); |
|
return ok; |
|
} |
|
|
|
static int EncodeImageInternal(VP8LBitWriter* const bw, |
|
const uint32_t* const argb, |
|
int width, int height, int quality, |
|
int cache_bits, int histogram_bits) { |
|
int ok = 0; |
|
const int use_2d_locality = 1; |
|
const int use_color_cache = (cache_bits > 0); |
|
const uint32_t histogram_image_xysize = |
|
VP8LSubSampleSize(width, histogram_bits) * |
|
VP8LSubSampleSize(height, histogram_bits); |
|
VP8LHistogramSet* histogram_image = |
|
VP8LAllocateHistogramSet(histogram_image_xysize, 0); |
|
int histogram_image_size = 0; |
|
size_t bit_array_size = 0; |
|
HuffmanTreeCode* huffman_codes = NULL; |
|
VP8LBackwardRefs refs; |
|
uint16_t* const histogram_symbols = |
|
(uint16_t*)WebPSafeMalloc((uint64_t)histogram_image_xysize, |
|
sizeof(*histogram_symbols)); |
|
assert(histogram_bits >= MIN_HUFFMAN_BITS); |
|
assert(histogram_bits <= MAX_HUFFMAN_BITS); |
|
|
|
if (histogram_image == NULL || histogram_symbols == NULL) { |
|
free(histogram_image); |
|
free(histogram_symbols); |
|
return 0; |
|
} |
|
|
|
// Calculate backward references from ARGB image. |
|
if (!VP8LGetBackwardReferences(width, height, argb, quality, cache_bits, |
|
use_2d_locality, &refs)) { |
|
goto Error; |
|
} |
|
// Build histogram image and symbols from backward references. |
|
if (!VP8LGetHistoImageSymbols(width, height, &refs, |
|
quality, histogram_bits, cache_bits, |
|
histogram_image, |
|
histogram_symbols)) { |
|
goto Error; |
|
} |
|
// Create Huffman bit lengths and codes for each histogram image. |
|
histogram_image_size = histogram_image->size; |
|
bit_array_size = 5 * histogram_image_size; |
|
huffman_codes = (HuffmanTreeCode*)WebPSafeCalloc(bit_array_size, |
|
sizeof(*huffman_codes)); |
|
if (huffman_codes == NULL || |
|
!GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) { |
|
goto Error; |
|
} |
|
// Free combined histograms. |
|
free(histogram_image); |
|
histogram_image = NULL; |
|
|
|
// Color Cache parameters. |
|
VP8LWriteBits(bw, 1, use_color_cache); |
|
if (use_color_cache) { |
|
VP8LWriteBits(bw, 4, cache_bits); |
|
} |
|
|
|
// Huffman image + meta huffman. |
|
{ |
|
const int write_histogram_image = (histogram_image_size > 1); |
|
VP8LWriteBits(bw, 1, write_histogram_image); |
|
if (write_histogram_image) { |
|
uint32_t* const histogram_argb = |
|
(uint32_t*)WebPSafeMalloc((uint64_t)histogram_image_xysize, |
|
sizeof(*histogram_argb)); |
|
int max_index = 0; |
|
uint32_t i; |
|
if (histogram_argb == NULL) goto Error; |
|
for (i = 0; i < histogram_image_xysize; ++i) { |
|
const int symbol_index = histogram_symbols[i] & 0xffff; |
|
histogram_argb[i] = 0xff000000 | (symbol_index << 8); |
|
if (symbol_index >= max_index) { |
|
max_index = symbol_index + 1; |
|
} |
|
} |
|
histogram_image_size = max_index; |
|
|
|
VP8LWriteBits(bw, 3, histogram_bits - 2); |
|
ok = EncodeImageNoHuffman(bw, histogram_argb, |
|
VP8LSubSampleSize(width, histogram_bits), |
|
VP8LSubSampleSize(height, histogram_bits), |
|
quality); |
|
free(histogram_argb); |
|
if (!ok) goto Error; |
|
} |
|
} |
|
|
|
// Store Huffman codes. |
|
{ |
|
int i; |
|
for (i = 0; i < 5 * histogram_image_size; ++i) { |
|
HuffmanTreeCode* const codes = &huffman_codes[i]; |
|
if (!StoreHuffmanCode(bw, codes)) goto Error; |
|
ClearHuffmanTreeIfOnlyOneSymbol(codes); |
|
} |
|
} |
|
|
|
// Store actual literals. |
|
StoreImageToBitMask(bw, width, histogram_bits, &refs, |
|
histogram_symbols, huffman_codes); |
|
ok = 1; |
|
|
|
Error: |
|
free(histogram_image); |
|
|
|
VP8LClearBackwardRefs(&refs); |
|
if (huffman_codes != NULL) { |
|
free(huffman_codes->codes); |
|
free(huffman_codes); |
|
} |
|
free(histogram_symbols); |
|
return ok; |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Transforms |
|
|
|
// Check if it would be a good idea to subtract green from red and blue. We |
|
// only impact entropy in red/blue components, don't bother to look at others. |
|
static int EvalAndApplySubtractGreen(VP8LEncoder* const enc, |
|
int width, int height, |
|
VP8LBitWriter* const bw) { |
|
if (!enc->use_palette_) { |
|
int i; |
|
const uint32_t* const argb = enc->argb_; |
|
double bit_cost_before, bit_cost_after; |
|
VP8LHistogram* const histo = (VP8LHistogram*)malloc(sizeof(*histo)); |
|
if (histo == NULL) return 0; |
|
|
|
VP8LHistogramInit(histo, 1); |
|
for (i = 0; i < width * height; ++i) { |
|
const uint32_t c = argb[i]; |
|
++histo->red_[(c >> 16) & 0xff]; |
|
++histo->blue_[(c >> 0) & 0xff]; |
|
} |
|
bit_cost_before = VP8LHistogramEstimateBits(histo); |
|
|
|
VP8LHistogramInit(histo, 1); |
|
for (i = 0; i < width * height; ++i) { |
|
const uint32_t c = argb[i]; |
|
const int green = (c >> 8) & 0xff; |
|
++histo->red_[((c >> 16) - green) & 0xff]; |
|
++histo->blue_[((c >> 0) - green) & 0xff]; |
|
} |
|
bit_cost_after = VP8LHistogramEstimateBits(histo); |
|
free(histo); |
|
|
|
// Check if subtracting green yields low entropy. |
|
enc->use_subtract_green_ = (bit_cost_after < bit_cost_before); |
|
if (enc->use_subtract_green_) { |
|
VP8LWriteBits(bw, 1, TRANSFORM_PRESENT); |
|
VP8LWriteBits(bw, 2, SUBTRACT_GREEN); |
|
VP8LSubtractGreenFromBlueAndRed(enc->argb_, width * height); |
|
} |
|
} |
|
return 1; |
|
} |
|
|
|
static int ApplyPredictFilter(const VP8LEncoder* const enc, |
|
int width, int height, int quality, |
|
VP8LBitWriter* const bw) { |
|
const int pred_bits = enc->transform_bits_; |
|
const int transform_width = VP8LSubSampleSize(width, pred_bits); |
|
const int transform_height = VP8LSubSampleSize(height, pred_bits); |
|
|
|
VP8LResidualImage(width, height, pred_bits, enc->argb_, enc->argb_scratch_, |
|
enc->transform_data_); |
|
VP8LWriteBits(bw, 1, TRANSFORM_PRESENT); |
|
VP8LWriteBits(bw, 2, PREDICTOR_TRANSFORM); |
|
assert(pred_bits >= 2); |
|
VP8LWriteBits(bw, 3, pred_bits - 2); |
|
if (!EncodeImageNoHuffman(bw, enc->transform_data_, |
|
transform_width, transform_height, quality)) { |
|
return 0; |
|
} |
|
return 1; |
|
} |
|
|
|
static int ApplyCrossColorFilter(const VP8LEncoder* const enc, |
|
int width, int height, int quality, |
|
VP8LBitWriter* const bw) { |
|
const int ccolor_transform_bits = enc->transform_bits_; |
|
const int transform_width = VP8LSubSampleSize(width, ccolor_transform_bits); |
|
const int transform_height = VP8LSubSampleSize(height, ccolor_transform_bits); |
|
const int step = (quality == 0) ? 32 : 8; |
|
|
|
VP8LColorSpaceTransform(width, height, ccolor_transform_bits, step, |
|
enc->argb_, enc->transform_data_); |
|
VP8LWriteBits(bw, 1, TRANSFORM_PRESENT); |
|
VP8LWriteBits(bw, 2, CROSS_COLOR_TRANSFORM); |
|
assert(ccolor_transform_bits >= 2); |
|
VP8LWriteBits(bw, 3, ccolor_transform_bits - 2); |
|
if (!EncodeImageNoHuffman(bw, enc->transform_data_, |
|
transform_width, transform_height, quality)) { |
|
return 0; |
|
} |
|
return 1; |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
|
|
static WebPEncodingError WriteRiffHeader(const WebPPicture* const pic, |
|
size_t riff_size, size_t vp8l_size) { |
|
uint8_t riff[RIFF_HEADER_SIZE + CHUNK_HEADER_SIZE + VP8L_SIGNATURE_SIZE] = { |
|
'R', 'I', 'F', 'F', 0, 0, 0, 0, 'W', 'E', 'B', 'P', |
|
'V', 'P', '8', 'L', 0, 0, 0, 0, VP8L_MAGIC_BYTE, |
|
}; |
|
PutLE32(riff + TAG_SIZE, (uint32_t)riff_size); |
|
PutLE32(riff + RIFF_HEADER_SIZE + TAG_SIZE, (uint32_t)vp8l_size); |
|
if (!pic->writer(riff, sizeof(riff), pic)) { |
|
return VP8_ENC_ERROR_BAD_WRITE; |
|
} |
|
return VP8_ENC_OK; |
|
} |
|
|
|
static int WriteImageSize(const WebPPicture* const pic, |
|
VP8LBitWriter* const bw) { |
|
const int width = pic->width - 1; |
|
const int height = pic->height - 1; |
|
assert(width < WEBP_MAX_DIMENSION && height < WEBP_MAX_DIMENSION); |
|
|
|
VP8LWriteBits(bw, VP8L_IMAGE_SIZE_BITS, width); |
|
VP8LWriteBits(bw, VP8L_IMAGE_SIZE_BITS, height); |
|
return !bw->error_; |
|
} |
|
|
|
static int WriteRealAlphaAndVersion(VP8LBitWriter* const bw, int has_alpha) { |
|
VP8LWriteBits(bw, 1, has_alpha); |
|
VP8LWriteBits(bw, VP8L_VERSION_BITS, VP8L_VERSION); |
|
return !bw->error_; |
|
} |
|
|
|
static WebPEncodingError WriteImage(const WebPPicture* const pic, |
|
VP8LBitWriter* const bw, |
|
size_t* const coded_size) { |
|
WebPEncodingError err = VP8_ENC_OK; |
|
const uint8_t* const webpll_data = VP8LBitWriterFinish(bw); |
|
const size_t webpll_size = VP8LBitWriterNumBytes(bw); |
|
const size_t vp8l_size = VP8L_SIGNATURE_SIZE + webpll_size; |
|
const size_t pad = vp8l_size & 1; |
|
const size_t riff_size = TAG_SIZE + CHUNK_HEADER_SIZE + vp8l_size + pad; |
|
|
|
err = WriteRiffHeader(pic, riff_size, vp8l_size); |
|
if (err != VP8_ENC_OK) goto Error; |
|
|
|
if (!pic->writer(webpll_data, webpll_size, pic)) { |
|
err = VP8_ENC_ERROR_BAD_WRITE; |
|
goto Error; |
|
} |
|
|
|
if (pad) { |
|
const uint8_t pad_byte[1] = { 0 }; |
|
if (!pic->writer(pad_byte, 1, pic)) { |
|
err = VP8_ENC_ERROR_BAD_WRITE; |
|
goto Error; |
|
} |
|
} |
|
*coded_size = CHUNK_HEADER_SIZE + riff_size; |
|
return VP8_ENC_OK; |
|
|
|
Error: |
|
return err; |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
|
|
// Allocates the memory for argb (W x H) buffer, 2 rows of context for |
|
// prediction and transform data. |
|
static WebPEncodingError AllocateTransformBuffer(VP8LEncoder* const enc, |
|
int width, int height) { |
|
WebPEncodingError err = VP8_ENC_OK; |
|
const int tile_size = 1 << enc->transform_bits_; |
|
const uint64_t image_size = width * height; |
|
const uint64_t argb_scratch_size = tile_size * width + width; |
|
const uint64_t transform_data_size = |
|
(uint64_t)VP8LSubSampleSize(width, enc->transform_bits_) * |
|
(uint64_t)VP8LSubSampleSize(height, enc->transform_bits_); |
|
const uint64_t total_size = |
|
image_size + argb_scratch_size + transform_data_size; |
|
uint32_t* mem = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*mem)); |
|
if (mem == NULL) { |
|
err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
|
goto Error; |
|
} |
|
enc->argb_ = mem; |
|
mem += image_size; |
|
enc->argb_scratch_ = mem; |
|
mem += argb_scratch_size; |
|
enc->transform_data_ = mem; |
|
enc->current_width_ = width; |
|
|
|
Error: |
|
return err; |
|
} |
|
|
|
static void ApplyPalette(uint32_t* src, uint32_t* dst, |
|
uint32_t src_stride, uint32_t dst_stride, |
|
const uint32_t* palette, int palette_size, |
|
int width, int height, int xbits, uint8_t* row) { |
|
int i, x, y; |
|
int use_LUT = 1; |
|
for (i = 0; i < palette_size; ++i) { |
|
if ((palette[i] & 0xffff00ffu) != 0) { |
|
use_LUT = 0; |
|
break; |
|
} |
|
} |
|
|
|
if (use_LUT) { |
|
int inv_palette[MAX_PALETTE_SIZE] = { 0 }; |
|
for (i = 0; i < palette_size; ++i) { |
|
const int color = (palette[i] >> 8) & 0xff; |
|
inv_palette[color] = i; |
|
} |
|
for (y = 0; y < height; ++y) { |
|
for (x = 0; x < width; ++x) { |
|
const int color = (src[x] >> 8) & 0xff; |
|
row[x] = inv_palette[color]; |
|
} |
|
VP8LBundleColorMap(row, width, xbits, dst); |
|
src += src_stride; |
|
dst += dst_stride; |
|
} |
|
} else { |
|
// Use 1 pixel cache for ARGB pixels. |
|
uint32_t last_pix = palette[0]; |
|
int last_idx = 0; |
|
for (y = 0; y < height; ++y) { |
|
for (x = 0; x < width; ++x) { |
|
const uint32_t pix = src[x]; |
|
if (pix != last_pix) { |
|
for (i = 0; i < palette_size; ++i) { |
|
if (pix == palette[i]) { |
|
last_idx = i; |
|
last_pix = pix; |
|
break; |
|
} |
|
} |
|
} |
|
row[x] = last_idx; |
|
} |
|
VP8LBundleColorMap(row, width, xbits, dst); |
|
src += src_stride; |
|
dst += dst_stride; |
|
} |
|
} |
|
} |
|
|
|
// Note: Expects "enc->palette_" to be set properly. |
|
// Also, "enc->palette_" will be modified after this call and should not be used |
|
// later. |
|
static WebPEncodingError EncodePalette(VP8LBitWriter* const bw, |
|
VP8LEncoder* const enc, int quality) { |
|
WebPEncodingError err = VP8_ENC_OK; |
|
int i; |
|
const WebPPicture* const pic = enc->pic_; |
|
uint32_t* src = pic->argb; |
|
uint32_t* dst; |
|
const int width = pic->width; |
|
const int height = pic->height; |
|
uint32_t* const palette = enc->palette_; |
|
const int palette_size = enc->palette_size_; |
|
uint8_t* row = NULL; |
|
int xbits; |
|
|
|
// Replace each input pixel by corresponding palette index. |
|
// This is done line by line. |
|
if (palette_size <= 4) { |
|
xbits = (palette_size <= 2) ? 3 : 2; |
|
} else { |
|
xbits = (palette_size <= 16) ? 1 : 0; |
|
} |
|
|
|
err = AllocateTransformBuffer(enc, VP8LSubSampleSize(width, xbits), height); |
|
if (err != VP8_ENC_OK) goto Error; |
|
dst = enc->argb_; |
|
|
|
row = WebPSafeMalloc((uint64_t)width, sizeof(*row)); |
|
if (row == NULL) return VP8_ENC_ERROR_OUT_OF_MEMORY; |
|
|
|
ApplyPalette(src, dst, pic->argb_stride, enc->current_width_, |
|
palette, palette_size, width, height, xbits, row); |
|
|
|
// Save palette to bitstream. |
|
VP8LWriteBits(bw, 1, TRANSFORM_PRESENT); |
|
VP8LWriteBits(bw, 2, COLOR_INDEXING_TRANSFORM); |
|
assert(palette_size >= 1); |
|
VP8LWriteBits(bw, 8, palette_size - 1); |
|
for (i = palette_size - 1; i >= 1; --i) { |
|
palette[i] = VP8LSubPixels(palette[i], palette[i - 1]); |
|
} |
|
if (!EncodeImageNoHuffman(bw, palette, palette_size, 1, quality)) { |
|
err = VP8_ENC_ERROR_INVALID_CONFIGURATION; |
|
goto Error; |
|
} |
|
|
|
Error: |
|
free(row); |
|
return err; |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
|
|
static int GetHistoBits(int method, int use_palette, int width, int height) { |
|
const uint64_t hist_size = sizeof(VP8LHistogram); |
|
// Make tile size a function of encoding method (Range: 0 to 6). |
|
int histo_bits = (use_palette ? 9 : 7) - method; |
|
while (1) { |
|
const uint64_t huff_image_size = VP8LSubSampleSize(width, histo_bits) * |
|
VP8LSubSampleSize(height, histo_bits) * |
|
hist_size; |
|
if (huff_image_size <= MAX_HUFF_IMAGE_SIZE) break; |
|
++histo_bits; |
|
} |
|
return (histo_bits < MIN_HUFFMAN_BITS) ? MIN_HUFFMAN_BITS : |
|
(histo_bits > MAX_HUFFMAN_BITS) ? MAX_HUFFMAN_BITS : histo_bits; |
|
} |
|
|
|
static void FinishEncParams(VP8LEncoder* const enc) { |
|
const WebPConfig* const config = enc->config_; |
|
const WebPPicture* const pic = enc->pic_; |
|
const int method = config->method; |
|
const float quality = config->quality; |
|
const int use_palette = enc->use_palette_; |
|
enc->transform_bits_ = (method < 4) ? 5 : (method > 4) ? 3 : 4; |
|
enc->histo_bits_ = GetHistoBits(method, use_palette, pic->width, pic->height); |
|
enc->cache_bits_ = (quality <= 25.f) ? 0 : 7; |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// VP8LEncoder |
|
|
|
static VP8LEncoder* VP8LEncoderNew(const WebPConfig* const config, |
|
const WebPPicture* const picture) { |
|
VP8LEncoder* const enc = (VP8LEncoder*)calloc(1, sizeof(*enc)); |
|
if (enc == NULL) { |
|
WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
|
return NULL; |
|
} |
|
enc->config_ = config; |
|
enc->pic_ = picture; |
|
return enc; |
|
} |
|
|
|
static void VP8LEncoderDelete(VP8LEncoder* enc) { |
|
free(enc->argb_); |
|
free(enc); |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Main call |
|
|
|
WebPEncodingError VP8LEncodeStream(const WebPConfig* const config, |
|
const WebPPicture* const picture, |
|
VP8LBitWriter* const bw) { |
|
WebPEncodingError err = VP8_ENC_OK; |
|
const int quality = (int)config->quality; |
|
const int width = picture->width; |
|
const int height = picture->height; |
|
VP8LEncoder* const enc = VP8LEncoderNew(config, picture); |
|
const size_t byte_position = VP8LBitWriterNumBytes(bw); |
|
|
|
if (enc == NULL) { |
|
err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
|
goto Error; |
|
} |
|
|
|
// --------------------------------------------------------------------------- |
|
// Analyze image (entropy, num_palettes etc) |
|
|
|
if (!VP8LEncAnalyze(enc, config->image_hint)) { |
|
err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
|
goto Error; |
|
} |
|
|
|
FinishEncParams(enc); |
|
|
|
if (enc->use_palette_) { |
|
err = EncodePalette(bw, enc, quality); |
|
if (err != VP8_ENC_OK) goto Error; |
|
// Color cache is disabled for palette. |
|
enc->cache_bits_ = 0; |
|
} |
|
|
|
// In case image is not packed. |
|
if (enc->argb_ == NULL) { |
|
int y; |
|
err = AllocateTransformBuffer(enc, width, height); |
|
if (err != VP8_ENC_OK) goto Error; |
|
for (y = 0; y < height; ++y) { |
|
memcpy(enc->argb_ + y * width, |
|
picture->argb + y * picture->argb_stride, |
|
width * sizeof(*enc->argb_)); |
|
} |
|
enc->current_width_ = width; |
|
} |
|
|
|
// --------------------------------------------------------------------------- |
|
// Apply transforms and write transform data. |
|
|
|
if (!EvalAndApplySubtractGreen(enc, enc->current_width_, height, bw)) { |
|
err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
|
goto Error; |
|
} |
|
|
|
if (enc->use_predict_) { |
|
if (!ApplyPredictFilter(enc, enc->current_width_, height, quality, bw)) { |
|
err = VP8_ENC_ERROR_INVALID_CONFIGURATION; |
|
goto Error; |
|
} |
|
} |
|
|
|
if (enc->use_cross_color_) { |
|
if (!ApplyCrossColorFilter(enc, enc->current_width_, height, quality, bw)) { |
|
err = VP8_ENC_ERROR_INVALID_CONFIGURATION; |
|
goto Error; |
|
} |
|
} |
|
|
|
VP8LWriteBits(bw, 1, !TRANSFORM_PRESENT); // No more transforms. |
|
|
|
// --------------------------------------------------------------------------- |
|
// Estimate the color cache size. |
|
|
|
if (enc->cache_bits_ > 0) { |
|
if (!VP8LCalculateEstimateForCacheSize(enc->argb_, enc->current_width_, |
|
height, &enc->cache_bits_)) { |
|
err = VP8_ENC_ERROR_INVALID_CONFIGURATION; |
|
goto Error; |
|
} |
|
} |
|
|
|
// --------------------------------------------------------------------------- |
|
// Encode and write the transformed image. |
|
|
|
if (!EncodeImageInternal(bw, enc->argb_, enc->current_width_, height, |
|
quality, enc->cache_bits_, enc->histo_bits_)) { |
|
err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
|
goto Error; |
|
} |
|
|
|
if (picture->stats != NULL) { |
|
WebPAuxStats* const stats = picture->stats; |
|
stats->lossless_features = 0; |
|
if (enc->use_predict_) stats->lossless_features |= 1; |
|
if (enc->use_cross_color_) stats->lossless_features |= 2; |
|
if (enc->use_subtract_green_) stats->lossless_features |= 4; |
|
if (enc->use_palette_) stats->lossless_features |= 8; |
|
stats->histogram_bits = enc->histo_bits_; |
|
stats->transform_bits = enc->transform_bits_; |
|
stats->cache_bits = enc->cache_bits_; |
|
stats->palette_size = enc->palette_size_; |
|
stats->lossless_size = (int)(VP8LBitWriterNumBytes(bw) - byte_position); |
|
} |
|
|
|
Error: |
|
VP8LEncoderDelete(enc); |
|
return err; |
|
} |
|
|
|
int VP8LEncodeImage(const WebPConfig* const config, |
|
const WebPPicture* const picture) { |
|
int width, height; |
|
int has_alpha; |
|
size_t coded_size; |
|
int percent = 0; |
|
WebPEncodingError err = VP8_ENC_OK; |
|
VP8LBitWriter bw; |
|
|
|
if (picture == NULL) return 0; |
|
|
|
if (config == NULL || picture->argb == NULL) { |
|
err = VP8_ENC_ERROR_NULL_PARAMETER; |
|
WebPEncodingSetError(picture, err); |
|
return 0; |
|
} |
|
|
|
width = picture->width; |
|
height = picture->height; |
|
if (!VP8LBitWriterInit(&bw, (width * height) >> 1)) { |
|
err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
|
goto Error; |
|
} |
|
|
|
if (!WebPReportProgress(picture, 1, &percent)) { |
|
UserAbort: |
|
err = VP8_ENC_ERROR_USER_ABORT; |
|
goto Error; |
|
} |
|
// Reset stats (for pure lossless coding) |
|
if (picture->stats != NULL) { |
|
WebPAuxStats* const stats = picture->stats; |
|
memset(stats, 0, sizeof(*stats)); |
|
stats->PSNR[0] = 99.f; |
|
stats->PSNR[1] = 99.f; |
|
stats->PSNR[2] = 99.f; |
|
stats->PSNR[3] = 99.f; |
|
stats->PSNR[4] = 99.f; |
|
} |
|
|
|
// Write image size. |
|
if (!WriteImageSize(picture, &bw)) { |
|
err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
|
goto Error; |
|
} |
|
|
|
has_alpha = WebPPictureHasTransparency(picture); |
|
// Write the non-trivial Alpha flag and lossless version. |
|
if (!WriteRealAlphaAndVersion(&bw, has_alpha)) { |
|
err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
|
goto Error; |
|
} |
|
|
|
if (!WebPReportProgress(picture, 5, &percent)) goto UserAbort; |
|
|
|
// Encode main image stream. |
|
err = VP8LEncodeStream(config, picture, &bw); |
|
if (err != VP8_ENC_OK) goto Error; |
|
|
|
// TODO(skal): have a fine-grained progress report in VP8LEncodeStream(). |
|
if (!WebPReportProgress(picture, 90, &percent)) goto UserAbort; |
|
|
|
// Finish the RIFF chunk. |
|
err = WriteImage(picture, &bw, &coded_size); |
|
if (err != VP8_ENC_OK) goto Error; |
|
|
|
if (!WebPReportProgress(picture, 100, &percent)) goto UserAbort; |
|
|
|
// Save size. |
|
if (picture->stats != NULL) { |
|
picture->stats->coded_size += (int)coded_size; |
|
picture->stats->lossless_size = (int)coded_size; |
|
} |
|
|
|
if (picture->extra_info != NULL) { |
|
const int mb_w = (width + 15) >> 4; |
|
const int mb_h = (height + 15) >> 4; |
|
memset(picture->extra_info, 0, mb_w * mb_h * sizeof(*picture->extra_info)); |
|
} |
|
|
|
Error: |
|
if (bw.error_) err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
|
VP8LBitWriterDestroy(&bw); |
|
if (err != VP8_ENC_OK) { |
|
WebPEncodingSetError(picture, err); |
|
return 0; |
|
} |
|
return 1; |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
|
|
#if defined(__cplusplus) || defined(c_plusplus) |
|
} // extern "C" |
|
#endif
|
|
|