mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
650 lines
21 KiB
650 lines
21 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
|
|
#include "test_precomp.hpp" |
|
#include <opencv2/core/ocl.hpp> |
|
#include <opencv2/core/opencl/ocl_defs.hpp> |
|
#include <opencv2/dnn/layer.details.hpp> // CV_DNN_REGISTER_LAYER_CLASS |
|
|
|
namespace opencv_test { namespace { |
|
|
|
TEST(blobFromImage_4ch, Regression) |
|
{ |
|
Mat ch[4]; |
|
for(int i = 0; i < 4; i++) |
|
ch[i] = Mat::ones(10, 10, CV_8U)*i; |
|
|
|
Mat img; |
|
merge(ch, 4, img); |
|
Mat blob = dnn::blobFromImage(img, 1., Size(), Scalar(), false, false); |
|
|
|
for(int i = 0; i < 4; i++) |
|
{ |
|
ch[i] = Mat(img.rows, img.cols, CV_32F, blob.ptr(0, i)); |
|
ASSERT_DOUBLE_EQ(cvtest::norm(ch[i], cv::NORM_INF), i); |
|
} |
|
} |
|
|
|
TEST(blobFromImage, allocated) |
|
{ |
|
int size[] = {1, 3, 4, 5}; |
|
Mat img(size[2], size[3], CV_32FC(size[1])); |
|
Mat blob(4, size, CV_32F); |
|
void* blobData = blob.data; |
|
dnn::blobFromImage(img, blob, 1.0 / 255, Size(), Scalar(), false, false); |
|
ASSERT_EQ(blobData, blob.data); |
|
} |
|
|
|
TEST(imagesFromBlob, Regression) |
|
{ |
|
int nbOfImages = 8; |
|
|
|
std::vector<cv::Mat> inputImgs(nbOfImages); |
|
for (int i = 0; i < nbOfImages; i++) |
|
{ |
|
inputImgs[i] = cv::Mat::ones(100, 100, CV_32FC3); |
|
cv::randu(inputImgs[i], cv::Scalar::all(0), cv::Scalar::all(1)); |
|
} |
|
|
|
cv::Mat blob = cv::dnn::blobFromImages(inputImgs, 1., cv::Size(), cv::Scalar(), false, false); |
|
std::vector<cv::Mat> outputImgs; |
|
cv::dnn::imagesFromBlob(blob, outputImgs); |
|
|
|
for (int i = 0; i < nbOfImages; i++) |
|
{ |
|
ASSERT_EQ(cv::countNonZero(inputImgs[i] != outputImgs[i]), 0); |
|
} |
|
} |
|
|
|
TEST(readNet, Regression) |
|
{ |
|
Net net = readNet(findDataFile("dnn/squeezenet_v1.1.prototxt"), |
|
findDataFile("dnn/squeezenet_v1.1.caffemodel", false)); |
|
EXPECT_FALSE(net.empty()); |
|
net = readNet(findDataFile("dnn/opencv_face_detector.caffemodel", false), |
|
findDataFile("dnn/opencv_face_detector.prototxt")); |
|
EXPECT_FALSE(net.empty()); |
|
net = readNet(findDataFile("dnn/openface_nn4.small2.v1.t7", false)); |
|
EXPECT_FALSE(net.empty()); |
|
net = readNet(findDataFile("dnn/tiny-yolo-voc.cfg"), |
|
findDataFile("dnn/tiny-yolo-voc.weights", false)); |
|
EXPECT_FALSE(net.empty()); |
|
net = readNet(findDataFile("dnn/ssd_mobilenet_v1_coco.pbtxt"), |
|
findDataFile("dnn/ssd_mobilenet_v1_coco.pb", false)); |
|
EXPECT_FALSE(net.empty()); |
|
} |
|
|
|
typedef testing::TestWithParam<tuple<Backend, Target> > dump; |
|
TEST_P(dump, Regression) |
|
{ |
|
const int backend = get<0>(GetParam()); |
|
const int target = get<1>(GetParam()); |
|
Net net = readNet(findDataFile("dnn/squeezenet_v1.1.prototxt"), |
|
findDataFile("dnn/squeezenet_v1.1.caffemodel", false)); |
|
|
|
ASSERT_EQ(net.getLayerInputs(net.getLayerId("fire2/concat")).size(), 2); |
|
|
|
int size[] = {1, 3, 227, 227}; |
|
Mat input = cv::Mat::ones(4, size, CV_32F); |
|
net.setInput(input); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
EXPECT_FALSE(net.dump().empty()); |
|
net.forward(); |
|
EXPECT_FALSE(net.dump().empty()); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, dump, dnnBackendsAndTargets()); |
|
|
|
class FirstCustomLayer CV_FINAL : public Layer |
|
{ |
|
public: |
|
FirstCustomLayer(const LayerParams ¶ms) : Layer(params) {} |
|
|
|
static Ptr<Layer> create(LayerParams& params) |
|
{ |
|
return Ptr<Layer>(new FirstCustomLayer(params)); |
|
} |
|
|
|
void forward(InputArrayOfArrays, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
std::vector<Mat> outputs; |
|
outputs_arr.getMatVector(outputs); |
|
outputs[0].setTo(1); |
|
} |
|
}; |
|
|
|
class SecondCustomLayer CV_FINAL : public Layer |
|
{ |
|
public: |
|
SecondCustomLayer(const LayerParams ¶ms) : Layer(params) {} |
|
|
|
static Ptr<Layer> create(LayerParams& params) |
|
{ |
|
return Ptr<Layer>(new SecondCustomLayer(params)); |
|
} |
|
|
|
void forward(InputArrayOfArrays, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
std::vector<Mat> outputs; |
|
outputs_arr.getMatVector(outputs); |
|
outputs[0].setTo(2); |
|
} |
|
}; |
|
|
|
TEST(LayerFactory, custom_layers) |
|
{ |
|
LayerParams lp; |
|
lp.name = "name"; |
|
lp.type = "CustomType"; |
|
|
|
Mat inp(1, 1, CV_32FC1); |
|
for (int i = 0; i < 3; ++i) |
|
{ |
|
if (i == 0) { CV_DNN_REGISTER_LAYER_CLASS(CustomType, FirstCustomLayer); } |
|
else if (i == 1) { CV_DNN_REGISTER_LAYER_CLASS(CustomType, SecondCustomLayer); } |
|
else if (i == 2) { LayerFactory::unregisterLayer("CustomType"); } |
|
|
|
Net net; |
|
net.addLayerToPrev(lp.name, lp.type, lp); |
|
|
|
net.setInput(inp); |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
Mat output = net.forward(); |
|
|
|
if (i == 0) { EXPECT_EQ(output.at<float>(0), 1); } |
|
else if (i == 1) { EXPECT_EQ(output.at<float>(0), 2); } |
|
else if (i == 2) { EXPECT_EQ(output.at<float>(0), 1); } |
|
} |
|
LayerFactory::unregisterLayer("CustomType"); |
|
} |
|
|
|
typedef testing::TestWithParam<tuple<float, Vec3f, int, tuple<Backend, Target> > > setInput; |
|
TEST_P(setInput, normalization) |
|
{ |
|
const float kScale = get<0>(GetParam()); |
|
const Scalar kMean = get<1>(GetParam()); |
|
const int dtype = get<2>(GetParam()); |
|
const int backend = get<0>(get<3>(GetParam())); |
|
const int target = get<1>(get<3>(GetParam())); |
|
const bool kSwapRB = true; |
|
|
|
if(backend == DNN_BACKEND_CUDA) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); |
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16 && dtype != CV_32F) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); |
|
if (backend == DNN_BACKEND_VKCOM && dtype != CV_32F) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN); |
|
|
|
Mat inp(5, 5, CV_8UC3); |
|
randu(inp, 0, 255); |
|
Mat ref = blobFromImage(inp, kScale, Size(), kMean, kSwapRB, /*crop*/false); |
|
|
|
LayerParams lp; |
|
Net net; |
|
net.addLayerToPrev("testLayer", "Identity", lp); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
|
|
Mat blob = blobFromImage(inp, 1.0, Size(), Scalar(), kSwapRB, /*crop*/false, dtype); |
|
ASSERT_EQ(blob.type(), dtype); |
|
net.setInput(blob, "", kScale, kMean); |
|
Mat out = net.forward(); |
|
ASSERT_EQ(out.type(), CV_32F); |
|
normAssert(ref, out, "", 4e-4, 1e-3); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, setInput, Combine( |
|
Values(1.0f, 1.0 / 127.5), |
|
Values(Vec3f(), Vec3f(50, 50, 50), Vec3f(10, 50, 140)), |
|
Values(CV_32F, CV_8U), |
|
dnnBackendsAndTargets() |
|
)); |
|
|
|
class CustomLayerWithDeprecatedForward CV_FINAL : public Layer |
|
{ |
|
public: |
|
CustomLayerWithDeprecatedForward(const LayerParams ¶ms) : Layer(params) {} |
|
|
|
static Ptr<Layer> create(LayerParams& params) |
|
{ |
|
return Ptr<Layer>(new CustomLayerWithDeprecatedForward(params)); |
|
} |
|
|
|
virtual void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE |
|
{ |
|
CV_Assert_N(inputs[0]->depth() == CV_32F, outputs[0].depth() == CV_32F); |
|
cv::add(*inputs[0], 0.5f, outputs[0]); |
|
} |
|
}; |
|
|
|
class CustomLayerWithDeprecatedForwardAndFallback CV_FINAL : public Layer |
|
{ |
|
public: |
|
CustomLayerWithDeprecatedForwardAndFallback(const LayerParams ¶ms) : Layer(params) {} |
|
|
|
static Ptr<Layer> create(LayerParams& params) |
|
{ |
|
return Ptr<Layer>(new CustomLayerWithDeprecatedForwardAndFallback(params)); |
|
} |
|
|
|
void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
CV_OCL_RUN(preferableTarget == DNN_TARGET_OPENCL || preferableTarget == DNN_TARGET_OPENCL_FP16, |
|
forward_ocl(inputs, outputs, internals)); |
|
|
|
Layer::forward_fallback(inputs, outputs, internals); |
|
} |
|
|
|
virtual void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE |
|
{ |
|
CV_Assert_N(inputs[0]->depth() == CV_32F, outputs[0].depth() == CV_32F); |
|
cv::add(*inputs[0], 0.5f, outputs[0]); |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
bool forward_ocl(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) |
|
{ |
|
if (inputs_arr.depth() != CV_32F) |
|
return false; |
|
|
|
std::vector<UMat> inputs; |
|
std::vector<UMat> outputs; |
|
inputs_arr.getUMatVector(inputs); |
|
outputs_arr.getUMatVector(outputs); |
|
cv::add(inputs[0], 0.5f, outputs[0]); |
|
return true; |
|
} |
|
#endif |
|
}; |
|
|
|
typedef testing::TestWithParam<tuple<Backend, Target> > DeprecatedForward; |
|
TEST_P(DeprecatedForward, CustomLayer) |
|
{ |
|
const int backend = get<0>(GetParam()); |
|
const int target = get<1>(GetParam()); |
|
|
|
Mat inp(5, 5, CV_32FC1); |
|
randu(inp, -1.0f, 1.0f); |
|
inp = blobFromImage(inp); |
|
|
|
CV_DNN_REGISTER_LAYER_CLASS(CustomType, CustomLayerWithDeprecatedForward); |
|
try |
|
{ |
|
LayerParams lp; |
|
Net net; |
|
net.addLayerToPrev("testLayer", "CustomType", lp); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
net.setInput(inp); |
|
Mat out = net.forward(); |
|
normAssert(out, inp + 0.5f, "", 2e-4, 7e-4); |
|
} |
|
catch (...) |
|
{ |
|
LayerFactory::unregisterLayer("CustomType"); |
|
throw; |
|
} |
|
LayerFactory::unregisterLayer("CustomType"); |
|
} |
|
|
|
TEST_P(DeprecatedForward, CustomLayerWithFallback) |
|
{ |
|
const int backend = get<0>(GetParam()); |
|
const int target = get<1>(GetParam()); |
|
|
|
Mat inp(5, 5, CV_32FC1); |
|
randu(inp, -1.0f, 1.0f); |
|
inp = blobFromImage(inp); |
|
|
|
CV_DNN_REGISTER_LAYER_CLASS(CustomType, CustomLayerWithDeprecatedForwardAndFallback); |
|
try |
|
{ |
|
LayerParams lp; |
|
Net net; |
|
net.addLayerToPrev("testLayer", "CustomType", lp); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
net.setInput(inp); |
|
Mat out = net.forward(); |
|
normAssert(out, inp + 0.5f, "", 2e-4, 7e-4); |
|
} |
|
catch (...) |
|
{ |
|
LayerFactory::unregisterLayer("CustomType"); |
|
throw; |
|
} |
|
LayerFactory::unregisterLayer("CustomType"); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, DeprecatedForward, dnnBackendsAndTargets()); |
|
|
|
TEST(Net, forwardAndRetrieve) |
|
{ |
|
std::string prototxt = |
|
"input: \"data\"\n" |
|
"layer {\n" |
|
" name: \"testLayer\"\n" |
|
" type: \"Slice\"\n" |
|
" bottom: \"data\"\n" |
|
" top: \"firstCopy\"\n" |
|
" top: \"secondCopy\"\n" |
|
" slice_param {\n" |
|
" axis: 0\n" |
|
" slice_point: 2\n" |
|
" }\n" |
|
"}"; |
|
Net net = readNetFromCaffe(&prototxt[0], prototxt.size()); |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
|
|
Mat inp(4, 5, CV_32F); |
|
randu(inp, -1, 1); |
|
net.setInput(inp); |
|
|
|
std::vector<String> outNames; |
|
outNames.push_back("testLayer"); |
|
std::vector<std::vector<Mat> > outBlobs; |
|
|
|
net.forward(outBlobs, outNames); |
|
|
|
EXPECT_EQ(outBlobs.size(), 1); |
|
EXPECT_EQ(outBlobs[0].size(), 2); |
|
normAssert(outBlobs[0][0], inp.rowRange(0, 2), "first part"); |
|
normAssert(outBlobs[0][1], inp.rowRange(2, 4), "second part"); |
|
} |
|
|
|
#ifdef HAVE_INF_ENGINE |
|
static const std::chrono::milliseconds async_timeout(10000); |
|
|
|
// This test runs network in synchronous mode for different inputs and then |
|
// runs the same model asynchronously for the same inputs. |
|
typedef testing::TestWithParam<tuple<int, tuple<Backend, Target> > > Async; |
|
TEST_P(Async, model_optimizer_pipeline_set_and_forward_single) |
|
{ |
|
const int dtype = get<0>(GetParam()); |
|
const Backend backendId = get<0>(get<1>(GetParam())); |
|
const Target targetId = get<1>(get<1>(GetParam())); |
|
|
|
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
throw SkipTestException("No support for async forward"); |
|
|
|
const std::string suffix = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? "_fp16" : ""; |
|
const std::string& model = findDataFile("dnn/layers/layer_convolution" + suffix + ".bin"); |
|
const std::string& proto = findDataFile("dnn/layers/layer_convolution" + suffix + ".xml"); |
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) |
|
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API); |
|
else if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH); |
|
else |
|
FAIL() << "Unknown backendId"; |
|
|
|
Net netSync = readNet(model, proto); |
|
netSync.setPreferableBackend(backendId); |
|
netSync.setPreferableTarget(targetId); |
|
|
|
Net netAsync = readNet(model, proto); |
|
netAsync.setPreferableBackend(backendId); |
|
netAsync.setPreferableTarget(targetId); |
|
|
|
// Generate inputs. |
|
const int numInputs = 10; |
|
std::vector<Mat> inputs(numInputs); |
|
int blobSize[] = {2, 6, 75, 113}; |
|
for (int i = 0; i < numInputs; ++i) |
|
{ |
|
inputs[i].create(4, &blobSize[0], dtype); |
|
randu(inputs[i], 0, 255); |
|
} |
|
|
|
// Run synchronously. |
|
std::vector<Mat> refs(numInputs); |
|
for (int i = 0; i < numInputs; ++i) |
|
{ |
|
netSync.setInput(inputs[i]); |
|
refs[i] = netSync.forward().clone(); |
|
} |
|
|
|
// Run asynchronously. To make test more robust, process inputs in the reversed order. |
|
for (int i = numInputs - 1; i >= 0; --i) |
|
{ |
|
netAsync.setInput(inputs[i]); |
|
|
|
AsyncArray out = netAsync.forwardAsync(); |
|
ASSERT_TRUE(out.valid()); |
|
Mat result; |
|
EXPECT_TRUE(out.get(result, async_timeout)); |
|
normAssert(refs[i], result, format("Index: %d", i).c_str(), 0, 0); |
|
} |
|
} |
|
|
|
TEST_P(Async, model_optimizer_pipeline_set_and_forward_all) |
|
{ |
|
const int dtype = get<0>(GetParam()); |
|
const Backend backendId = get<0>(get<1>(GetParam())); |
|
const Target targetId = get<1>(get<1>(GetParam())); |
|
|
|
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
throw SkipTestException("No support for async forward"); |
|
|
|
const std::string suffix = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? "_fp16" : ""; |
|
const std::string& model = findDataFile("dnn/layers/layer_convolution" + suffix + ".bin"); |
|
const std::string& proto = findDataFile("dnn/layers/layer_convolution" + suffix + ".xml"); |
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) |
|
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API); |
|
else if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH); |
|
else |
|
FAIL() << "Unknown backendId"; |
|
|
|
Net netSync = readNet(model, proto); |
|
netSync.setPreferableBackend(backendId); |
|
netSync.setPreferableTarget(targetId); |
|
|
|
Net netAsync = readNet(model, proto); |
|
netAsync.setPreferableBackend(backendId); |
|
netAsync.setPreferableTarget(targetId); |
|
|
|
// Generate inputs. |
|
const int numInputs = 10; |
|
std::vector<Mat> inputs(numInputs); |
|
int blobSize[] = {2, 6, 75, 113}; |
|
for (int i = 0; i < numInputs; ++i) |
|
{ |
|
inputs[i].create(4, &blobSize[0], dtype); |
|
randu(inputs[i], 0, 255); |
|
} |
|
|
|
// Run synchronously. |
|
std::vector<Mat> refs(numInputs); |
|
for (int i = 0; i < numInputs; ++i) |
|
{ |
|
netSync.setInput(inputs[i]); |
|
refs[i] = netSync.forward().clone(); |
|
} |
|
|
|
// Run asynchronously. To make test more robust, process inputs in the reversed order. |
|
std::vector<AsyncArray> outs(numInputs); |
|
for (int i = numInputs - 1; i >= 0; --i) |
|
{ |
|
netAsync.setInput(inputs[i]); |
|
outs[i] = netAsync.forwardAsync(); |
|
} |
|
|
|
for (int i = numInputs - 1; i >= 0; --i) |
|
{ |
|
ASSERT_TRUE(outs[i].valid()); |
|
Mat result; |
|
EXPECT_TRUE(outs[i].get(result, async_timeout)); |
|
normAssert(refs[i], result, format("Index: %d", i).c_str(), 0, 0); |
|
} |
|
} |
|
|
|
TEST_P(Async, create_layer_pipeline_set_and_forward_all) |
|
{ |
|
const int dtype = get<0>(GetParam()); |
|
const Backend backendId = get<0>(get<1>(GetParam())); |
|
const Target targetId = get<1>(get<1>(GetParam())); |
|
|
|
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
throw SkipTestException("No support for async forward"); |
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) |
|
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API); |
|
else if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH); |
|
else |
|
FAIL() << "Unknown backendId"; |
|
|
|
Net netSync; |
|
Net netAsync; |
|
{ |
|
int inChannels = 4; |
|
int outChannels = 12; |
|
int group = 3; |
|
Size inSize(113, 75); |
|
Size kernel(4, 5); |
|
Size stride(2, 3); |
|
Size pad(0, 1); |
|
Size dilation(1, 1); |
|
bool hasBias = true; |
|
|
|
int sz[] = {outChannels, inChannels / group, kernel.height, kernel.width}; |
|
Mat weights(4, &sz[0], CV_32F); |
|
randu(weights, -1.0f, 1.0f); |
|
|
|
LayerParams lp; |
|
lp.set("kernel_w", kernel.width); |
|
lp.set("kernel_h", kernel.height); |
|
lp.set("pad_w", pad.width); |
|
lp.set("pad_h", pad.height); |
|
lp.set("stride_w", stride.width); |
|
lp.set("stride_h", stride.height); |
|
lp.set("dilation_w", dilation.width); |
|
lp.set("dilation_h", dilation.height); |
|
lp.set("num_output", outChannels); |
|
lp.set("group", group); |
|
lp.set("bias_term", hasBias); |
|
lp.type = "Convolution"; |
|
lp.name = "testLayer"; |
|
lp.blobs.push_back(weights); |
|
if (hasBias) |
|
{ |
|
Mat bias(1, outChannels, CV_32F); |
|
randu(bias, -1.0f, 1.0f); |
|
lp.blobs.push_back(bias); |
|
} |
|
int inpSz[] = {1, inChannels, inSize.height, inSize.width}; |
|
Mat input(4, &inpSz[0], CV_32F); |
|
|
|
netSync.addLayerToPrev(lp.name, lp.type, lp); |
|
|
|
netAsync.addLayerToPrev(lp.name, lp.type, lp); |
|
} |
|
|
|
netSync.setPreferableBackend(backendId); |
|
netSync.setPreferableTarget(targetId); |
|
|
|
netAsync.setPreferableBackend(backendId); |
|
netAsync.setPreferableTarget(targetId); |
|
|
|
// Generate inputs. |
|
const int numInputs = 10; |
|
std::vector<Mat> inputs(numInputs); |
|
int blobSize[] = {1, 4, 75, 113}; |
|
for (int i = 0; i < numInputs; ++i) |
|
{ |
|
inputs[i].create(4, &blobSize[0], dtype); |
|
randu(inputs[i], 0, 255); |
|
} |
|
|
|
// Run synchronously. |
|
std::vector<Mat> refs(numInputs); |
|
for (int i = 0; i < numInputs; ++i) |
|
{ |
|
netSync.setInput(inputs[i]); |
|
refs[i] = netSync.forward().clone(); |
|
} |
|
|
|
// Run asynchronously. To make test more robust, process inputs in the reversed order. |
|
std::vector<AsyncArray> outs(numInputs); |
|
for (int i = numInputs - 1; i >= 0; --i) |
|
{ |
|
netAsync.setInput(inputs[i]); |
|
outs[i] = netAsync.forwardAsync(); |
|
} |
|
|
|
for (int i = numInputs - 1; i >= 0; --i) |
|
{ |
|
ASSERT_TRUE(outs[i].valid()); |
|
Mat result; |
|
EXPECT_TRUE(outs[i].get(result, async_timeout)); |
|
normAssert(refs[i], result, format("Index: %d", i).c_str(), 0, 0); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Async, Combine( |
|
Values(CV_32F, CV_8U), |
|
dnnBackendsAndTargetsIE() |
|
)); |
|
|
|
typedef testing::TestWithParam<tuple<Backend, Target> > Test_Model_Optimizer; |
|
TEST_P(Test_Model_Optimizer, forward_two_nets) |
|
{ |
|
const Backend backendId = get<0>(GetParam()); |
|
const Target targetId = get<1>(GetParam()); |
|
|
|
const std::string suffix = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? "_fp16" : ""; |
|
const std::string& model = findDataFile("dnn/layers/layer_convolution" + suffix + ".bin"); |
|
const std::string& proto = findDataFile("dnn/layers/layer_convolution" + suffix + ".xml"); |
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) |
|
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API); |
|
else if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH); |
|
else |
|
FAIL() << "Unknown backendId"; |
|
|
|
Net net0 = readNet(model, proto); |
|
net0.setPreferableTarget(targetId); |
|
|
|
Net net1 = readNet(model, proto); |
|
net1.setPreferableTarget(targetId); |
|
|
|
// Generate inputs. |
|
int blobSize[] = {2, 6, 75, 113}; |
|
Mat input(4, &blobSize[0], CV_32F); |
|
randu(input, 0, 255); |
|
|
|
net0.setInput(input); |
|
Mat ref0 = net0.forward().clone(); |
|
|
|
net1.setInput(input); |
|
Mat ref1 = net1.forward(); |
|
|
|
net0.setInput(input); |
|
Mat ref2 = net0.forward(); |
|
|
|
normAssert(ref0, ref2, 0, 0); |
|
} |
|
INSTANTIATE_TEST_CASE_P(/**/, Test_Model_Optimizer, |
|
dnnBackendsAndTargetsIE() |
|
); |
|
|
|
#endif // HAVE_INF_ENGINE |
|
|
|
}} // namespace
|
|
|