mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
96 lines
4.3 KiB
96 lines
4.3 KiB
#include <opencv2/core/utils/filesystem.hpp> |
|
|
|
using namespace cv; |
|
|
|
std::string genArgument(const std::string& argName, const std::string& help, |
|
const std::string& modelName, const std::string& zooFile, |
|
char key = ' ', std::string defaultVal = ""); |
|
|
|
std::string genPreprocArguments(const std::string& modelName, const std::string& zooFile); |
|
|
|
std::string findFile(const std::string& filename); |
|
|
|
std::string genArgument(const std::string& argName, const std::string& help, |
|
const std::string& modelName, const std::string& zooFile, |
|
char key, std::string defaultVal) |
|
{ |
|
if (!modelName.empty()) |
|
{ |
|
FileStorage fs(zooFile, FileStorage::READ); |
|
if (fs.isOpened()) |
|
{ |
|
FileNode node = fs[modelName]; |
|
if (!node.empty()) |
|
{ |
|
FileNode value = node[argName]; |
|
if (!value.empty()) |
|
{ |
|
if (value.isReal()) |
|
defaultVal = format("%f", (float)value); |
|
else if (value.isString()) |
|
defaultVal = (std::string)value; |
|
else if (value.isInt()) |
|
defaultVal = format("%d", (int)value); |
|
else if (value.isSeq()) |
|
{ |
|
for (size_t i = 0; i < value.size(); ++i) |
|
{ |
|
FileNode v = value[(int)i]; |
|
if (v.isInt()) |
|
defaultVal += format("%d ", (int)v); |
|
else if (v.isReal()) |
|
defaultVal += format("%f ", (float)v); |
|
else |
|
CV_Error(Error::StsNotImplemented, "Unexpected value format"); |
|
} |
|
} |
|
else |
|
CV_Error(Error::StsNotImplemented, "Unexpected field format"); |
|
} |
|
} |
|
} |
|
} |
|
return "{ " + argName + " " + key + " | " + defaultVal + " | " + help + " }"; |
|
} |
|
|
|
std::string findFile(const std::string& filename) |
|
{ |
|
if (filename.empty() || utils::fs::exists(filename)) |
|
return filename; |
|
|
|
const char* extraPaths[] = {getenv("OPENCV_DNN_TEST_DATA_PATH"), |
|
getenv("OPENCV_TEST_DATA_PATH")}; |
|
for (int i = 0; i < 2; ++i) |
|
{ |
|
if (extraPaths[i] == NULL) |
|
continue; |
|
std::string absPath = utils::fs::join(extraPaths[i], utils::fs::join("dnn", filename)); |
|
if (utils::fs::exists(absPath)) |
|
return absPath; |
|
} |
|
CV_Error(Error::StsObjectNotFound, "File " + filename + " not found! " |
|
"Please specify a path to /opencv_extra/testdata in OPENCV_DNN_TEST_DATA_PATH " |
|
"environment variable or pass a full path to model."); |
|
return ""; |
|
} |
|
|
|
std::string genPreprocArguments(const std::string& modelName, const std::string& zooFile) |
|
{ |
|
return genArgument("model", "Path to a binary file of model contains trained weights. " |
|
"It could be a file with extensions .caffemodel (Caffe), " |
|
".pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet), .bin (OpenVINO).", |
|
modelName, zooFile, 'm') + |
|
genArgument("config", "Path to a text file of model contains network configuration. " |
|
"It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet), .xml (OpenVINO).", |
|
modelName, zooFile, 'c') + |
|
genArgument("mean", "Preprocess input image by subtracting mean values. Mean values should be in BGR order and delimited by spaces.", |
|
modelName, zooFile) + |
|
genArgument("scale", "Preprocess input image by multiplying on a scale factor.", |
|
modelName, zooFile, ' ', "1.0") + |
|
genArgument("width", "Preprocess input image by resizing to a specific width.", |
|
modelName, zooFile, ' ', "-1") + |
|
genArgument("height", "Preprocess input image by resizing to a specific height.", |
|
modelName, zooFile, ' ', "-1") + |
|
genArgument("rgb", "Indicate that model works with RGB input images instead BGR ones.", |
|
modelName, zooFile); |
|
}
|
|
|