mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
435 lines
14 KiB
435 lines
14 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#ifdef HAVE_CUDA |
|
|
|
using namespace cvtest; |
|
|
|
namespace { |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// GEMM |
|
|
|
#ifdef HAVE_CUBLAS |
|
|
|
CV_FLAGS(GemmFlags, 0, cv::GEMM_1_T, cv::GEMM_2_T, cv::GEMM_3_T); |
|
#define ALL_GEMM_FLAGS testing::Values(GemmFlags(0), GemmFlags(cv::GEMM_1_T), GemmFlags(cv::GEMM_2_T), GemmFlags(cv::GEMM_3_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_3_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T | cv::GEMM_3_T)) |
|
|
|
PARAM_TEST_CASE(GEMM, cv::cuda::DeviceInfo, cv::Size, MatType, GemmFlags, UseRoi) |
|
{ |
|
cv::cuda::DeviceInfo devInfo; |
|
cv::Size size; |
|
int type; |
|
int flags; |
|
bool useRoi; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
type = GET_PARAM(2); |
|
flags = GET_PARAM(3); |
|
useRoi = GET_PARAM(4); |
|
|
|
cv::cuda::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
CUDA_TEST_P(GEMM, Accuracy) |
|
{ |
|
cv::Mat src1 = randomMat(size, type, -10.0, 10.0); |
|
cv::Mat src2 = randomMat(size, type, -10.0, 10.0); |
|
cv::Mat src3 = randomMat(size, type, -10.0, 10.0); |
|
double alpha = randomDouble(-10.0, 10.0); |
|
double beta = randomDouble(-10.0, 10.0); |
|
|
|
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE)) |
|
{ |
|
try |
|
{ |
|
cv::cuda::GpuMat dst; |
|
cv::cuda::gemm(loadMat(src1), loadMat(src2), alpha, loadMat(src3), beta, dst, flags); |
|
} |
|
catch (const cv::Exception& e) |
|
{ |
|
ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code); |
|
} |
|
} |
|
else if (type == CV_64FC2 && flags != 0) |
|
{ |
|
try |
|
{ |
|
cv::cuda::GpuMat dst; |
|
cv::cuda::gemm(loadMat(src1), loadMat(src2), alpha, loadMat(src3), beta, dst, flags); |
|
} |
|
catch (const cv::Exception& e) |
|
{ |
|
ASSERT_EQ(cv::Error::StsNotImplemented, e.code); |
|
} |
|
} |
|
else |
|
{ |
|
cv::cuda::GpuMat dst = createMat(size, type, useRoi); |
|
cv::cuda::gemm(loadMat(src1, useRoi), loadMat(src2, useRoi), alpha, loadMat(src3, useRoi), beta, dst, flags); |
|
|
|
cv::Mat dst_gold; |
|
cv::gemm(src1, src2, alpha, src3, beta, dst_gold, flags); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, CV_MAT_DEPTH(type) == CV_32F ? 1e-1 : 1e-10); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, GEMM, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
testing::Values(MatType(CV_32FC1), MatType(CV_32FC2), MatType(CV_64FC1), MatType(CV_64FC2)), |
|
ALL_GEMM_FLAGS, |
|
WHOLE_SUBMAT)); |
|
|
|
//////////////////////////////////////////////////////////////////////////// |
|
// MulSpectrums |
|
|
|
CV_FLAGS(DftFlags, 0, cv::DFT_INVERSE, cv::DFT_SCALE, cv::DFT_ROWS, cv::DFT_COMPLEX_OUTPUT, cv::DFT_REAL_OUTPUT) |
|
|
|
PARAM_TEST_CASE(MulSpectrums, cv::cuda::DeviceInfo, cv::Size, DftFlags) |
|
{ |
|
cv::cuda::DeviceInfo devInfo; |
|
cv::Size size; |
|
int flag; |
|
|
|
cv::Mat a, b; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
flag = GET_PARAM(2); |
|
|
|
cv::cuda::setDevice(devInfo.deviceID()); |
|
|
|
a = randomMat(size, CV_32FC2); |
|
b = randomMat(size, CV_32FC2); |
|
} |
|
}; |
|
|
|
CUDA_TEST_P(MulSpectrums, Simple) |
|
{ |
|
cv::cuda::GpuMat c; |
|
cv::cuda::mulSpectrums(loadMat(a), loadMat(b), c, flag, false); |
|
|
|
cv::Mat c_gold; |
|
cv::mulSpectrums(a, b, c_gold, flag, false); |
|
|
|
EXPECT_MAT_NEAR(c_gold, c, 1e-2); |
|
} |
|
|
|
CUDA_TEST_P(MulSpectrums, Scaled) |
|
{ |
|
float scale = 1.f / size.area(); |
|
|
|
cv::cuda::GpuMat c; |
|
cv::cuda::mulAndScaleSpectrums(loadMat(a), loadMat(b), c, flag, scale, false); |
|
|
|
cv::Mat c_gold; |
|
cv::mulSpectrums(a, b, c_gold, flag, false); |
|
c_gold.convertTo(c_gold, c_gold.type(), scale); |
|
|
|
EXPECT_MAT_NEAR(c_gold, c, 1e-2); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, MulSpectrums, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
testing::Values(DftFlags(0), DftFlags(cv::DFT_ROWS)))); |
|
|
|
//////////////////////////////////////////////////////////////////////////// |
|
// Dft |
|
|
|
struct Dft : testing::TestWithParam<cv::cuda::DeviceInfo> |
|
{ |
|
cv::cuda::DeviceInfo devInfo; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GetParam(); |
|
|
|
cv::cuda::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
namespace |
|
{ |
|
void testC2C(const std::string& hint, int cols, int rows, int flags, bool inplace) |
|
{ |
|
SCOPED_TRACE(hint); |
|
|
|
cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC2, 0.0, 10.0); |
|
|
|
cv::Mat b_gold; |
|
cv::dft(a, b_gold, flags); |
|
|
|
cv::cuda::GpuMat d_b; |
|
cv::cuda::GpuMat d_b_data; |
|
if (inplace) |
|
{ |
|
d_b_data.create(1, a.size().area(), CV_32FC2); |
|
d_b = cv::cuda::GpuMat(a.rows, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize()); |
|
} |
|
cv::cuda::dft(loadMat(a), d_b, cv::Size(cols, rows), flags); |
|
|
|
EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr()); |
|
ASSERT_EQ(CV_32F, d_b.depth()); |
|
ASSERT_EQ(2, d_b.channels()); |
|
EXPECT_MAT_NEAR(b_gold, cv::Mat(d_b), rows * cols * 1e-4); |
|
} |
|
} |
|
|
|
CUDA_TEST_P(Dft, C2C) |
|
{ |
|
int cols = randomInt(2, 100); |
|
int rows = randomInt(2, 100); |
|
|
|
for (int i = 0; i < 2; ++i) |
|
{ |
|
bool inplace = i != 0; |
|
|
|
testC2C("no flags", cols, rows, 0, inplace); |
|
testC2C("no flags 0 1", cols, rows + 1, 0, inplace); |
|
testC2C("no flags 1 0", cols, rows + 1, 0, inplace); |
|
testC2C("no flags 1 1", cols + 1, rows, 0, inplace); |
|
testC2C("DFT_INVERSE", cols, rows, cv::DFT_INVERSE, inplace); |
|
testC2C("DFT_ROWS", cols, rows, cv::DFT_ROWS, inplace); |
|
testC2C("single col", 1, rows, 0, inplace); |
|
testC2C("single row", cols, 1, 0, inplace); |
|
testC2C("single col inversed", 1, rows, cv::DFT_INVERSE, inplace); |
|
testC2C("single row inversed", cols, 1, cv::DFT_INVERSE, inplace); |
|
testC2C("single row DFT_ROWS", cols, 1, cv::DFT_ROWS, inplace); |
|
testC2C("size 1 2", 1, 2, 0, inplace); |
|
testC2C("size 2 1", 2, 1, 0, inplace); |
|
} |
|
} |
|
|
|
CUDA_TEST_P(Dft, Algorithm) |
|
{ |
|
int cols = randomInt(2, 100); |
|
int rows = randomInt(2, 100); |
|
|
|
int flags = 0; |
|
cv::Ptr<cv::cuda::DFT> dft = cv::cuda::createDFT(cv::Size(cols, rows), flags); |
|
|
|
for (int i = 0; i < 5; ++i) |
|
{ |
|
SCOPED_TRACE("dft algorithm"); |
|
|
|
cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC2, 0.0, 10.0); |
|
|
|
cv::cuda::GpuMat d_b; |
|
cv::cuda::GpuMat d_b_data; |
|
dft->compute(loadMat(a), d_b); |
|
|
|
cv::Mat b_gold; |
|
cv::dft(a, b_gold, flags); |
|
|
|
ASSERT_EQ(CV_32F, d_b.depth()); |
|
ASSERT_EQ(2, d_b.channels()); |
|
EXPECT_MAT_NEAR(b_gold, cv::Mat(d_b), rows * cols * 1e-4); |
|
} |
|
} |
|
|
|
namespace |
|
{ |
|
void testR2CThenC2R(const std::string& hint, int cols, int rows, bool inplace) |
|
{ |
|
SCOPED_TRACE(hint); |
|
|
|
cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC1, 0.0, 10.0); |
|
|
|
cv::cuda::GpuMat d_b, d_c; |
|
cv::cuda::GpuMat d_b_data, d_c_data; |
|
if (inplace) |
|
{ |
|
if (a.cols == 1) |
|
{ |
|
d_b_data.create(1, (a.rows / 2 + 1) * a.cols, CV_32FC2); |
|
d_b = cv::cuda::GpuMat(a.rows / 2 + 1, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize()); |
|
} |
|
else |
|
{ |
|
d_b_data.create(1, a.rows * (a.cols / 2 + 1), CV_32FC2); |
|
d_b = cv::cuda::GpuMat(a.rows, a.cols / 2 + 1, CV_32FC2, d_b_data.ptr(), (a.cols / 2 + 1) * d_b_data.elemSize()); |
|
} |
|
d_c_data.create(1, a.size().area(), CV_32F); |
|
d_c = cv::cuda::GpuMat(a.rows, a.cols, CV_32F, d_c_data.ptr(), a.cols * d_c_data.elemSize()); |
|
} |
|
|
|
cv::cuda::dft(loadMat(a), d_b, cv::Size(cols, rows), 0); |
|
cv::cuda::dft(d_b, d_c, cv::Size(cols, rows), cv::DFT_REAL_OUTPUT | cv::DFT_SCALE); |
|
|
|
EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr()); |
|
EXPECT_TRUE(!inplace || d_c.ptr() == d_c_data.ptr()); |
|
ASSERT_EQ(CV_32F, d_c.depth()); |
|
ASSERT_EQ(1, d_c.channels()); |
|
|
|
cv::Mat c(d_c); |
|
EXPECT_MAT_NEAR(a, c, rows * cols * 1e-5); |
|
} |
|
} |
|
|
|
CUDA_TEST_P(Dft, R2CThenC2R) |
|
{ |
|
int cols = randomInt(2, 100); |
|
int rows = randomInt(2, 100); |
|
|
|
testR2CThenC2R("sanity", cols, rows, false); |
|
testR2CThenC2R("sanity 0 1", cols, rows + 1, false); |
|
testR2CThenC2R("sanity 1 0", cols + 1, rows, false); |
|
testR2CThenC2R("sanity 1 1", cols + 1, rows + 1, false); |
|
testR2CThenC2R("single col", 1, rows, false); |
|
testR2CThenC2R("single col 1", 1, rows + 1, false); |
|
testR2CThenC2R("single row", cols, 1, false); |
|
testR2CThenC2R("single row 1", cols + 1, 1, false); |
|
|
|
testR2CThenC2R("sanity", cols, rows, true); |
|
testR2CThenC2R("sanity 0 1", cols, rows + 1, true); |
|
testR2CThenC2R("sanity 1 0", cols + 1, rows, true); |
|
testR2CThenC2R("sanity 1 1", cols + 1, rows + 1, true); |
|
testR2CThenC2R("single row", cols, 1, true); |
|
testR2CThenC2R("single row 1", cols + 1, 1, true); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Dft, ALL_DEVICES); |
|
|
|
//////////////////////////////////////////////////////// |
|
// Convolve |
|
|
|
namespace |
|
{ |
|
void convolveDFT(const cv::Mat& A, const cv::Mat& B, cv::Mat& C, bool ccorr = false) |
|
{ |
|
// reallocate the output array if needed |
|
C.create(std::abs(A.rows - B.rows) + 1, std::abs(A.cols - B.cols) + 1, A.type()); |
|
cv::Size dftSize; |
|
|
|
// compute the size of DFT transform |
|
dftSize.width = cv::getOptimalDFTSize(A.cols + B.cols - 1); |
|
dftSize.height = cv::getOptimalDFTSize(A.rows + B.rows - 1); |
|
|
|
// allocate temporary buffers and initialize them with 0s |
|
cv::Mat tempA(dftSize, A.type(), cv::Scalar::all(0)); |
|
cv::Mat tempB(dftSize, B.type(), cv::Scalar::all(0)); |
|
|
|
// copy A and B to the top-left corners of tempA and tempB, respectively |
|
cv::Mat roiA(tempA, cv::Rect(0, 0, A.cols, A.rows)); |
|
A.copyTo(roiA); |
|
cv::Mat roiB(tempB, cv::Rect(0, 0, B.cols, B.rows)); |
|
B.copyTo(roiB); |
|
|
|
// now transform the padded A & B in-place; |
|
// use "nonzeroRows" hint for faster processing |
|
cv::dft(tempA, tempA, 0, A.rows); |
|
cv::dft(tempB, tempB, 0, B.rows); |
|
|
|
// multiply the spectrums; |
|
// the function handles packed spectrum representations well |
|
cv::mulSpectrums(tempA, tempB, tempA, 0, ccorr); |
|
|
|
// transform the product back from the frequency domain. |
|
// Even though all the result rows will be non-zero, |
|
// you need only the first C.rows of them, and thus you |
|
// pass nonzeroRows == C.rows |
|
cv::dft(tempA, tempA, cv::DFT_INVERSE + cv::DFT_SCALE, C.rows); |
|
|
|
// now copy the result back to C. |
|
tempA(cv::Rect(0, 0, C.cols, C.rows)).copyTo(C); |
|
} |
|
|
|
IMPLEMENT_PARAM_CLASS(KSize, int) |
|
IMPLEMENT_PARAM_CLASS(Ccorr, bool) |
|
} |
|
|
|
PARAM_TEST_CASE(Convolve, cv::cuda::DeviceInfo, cv::Size, KSize, Ccorr) |
|
{ |
|
cv::cuda::DeviceInfo devInfo; |
|
cv::Size size; |
|
int ksize; |
|
bool ccorr; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
ksize = GET_PARAM(2); |
|
ccorr = GET_PARAM(3); |
|
|
|
cv::cuda::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
CUDA_TEST_P(Convolve, Accuracy) |
|
{ |
|
cv::Mat src = randomMat(size, CV_32FC1, 0.0, 100.0); |
|
cv::Mat kernel = randomMat(cv::Size(ksize, ksize), CV_32FC1, 0.0, 1.0); |
|
|
|
cv::Ptr<cv::cuda::Convolution> conv = cv::cuda::createConvolution(); |
|
|
|
cv::cuda::GpuMat dst; |
|
conv->convolve(loadMat(src), loadMat(kernel), dst, ccorr); |
|
|
|
cv::Mat dst_gold; |
|
convolveDFT(src, kernel, dst_gold, ccorr); |
|
|
|
EXPECT_MAT_NEAR(dst, dst_gold, 1e-1); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Convolve, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
testing::Values(KSize(3), KSize(7), KSize(11), KSize(17), KSize(19), KSize(23), KSize(45)), |
|
testing::Values(Ccorr(false), Ccorr(true)))); |
|
|
|
#endif // HAVE_CUBLAS |
|
|
|
} // namespace |
|
|
|
#endif // HAVE_CUDA
|
|
|