mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
164 lines
5.9 KiB
164 lines
5.9 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
#ifndef __OPENCV_PRECOMP_H__ |
|
#define __OPENCV_PRECOMP_H__ |
|
|
|
#include "opencv2/core/utility.hpp" |
|
|
|
#include "opencv2/core/private.hpp" |
|
|
|
#include "opencv2/calib3d.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
#include "opencv2/features2d.hpp" |
|
|
|
|
|
#include "opencv2/core/ocl.hpp" |
|
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION |
|
#include "opencv2/calib3d/calib3d_tegra.hpp" |
|
#else |
|
#define GET_OPTIMIZED(func) (func) |
|
#endif |
|
|
|
|
|
namespace cv |
|
{ |
|
|
|
/** |
|
* Compute the number of iterations given the confidence, outlier ratio, number |
|
* of model points and the maximum iteration number. |
|
* |
|
* @param p confidence value |
|
* @param ep outlier ratio |
|
* @param modelPoints number of model points required for estimation |
|
* @param maxIters maximum number of iterations |
|
* @return |
|
* \f[ |
|
* \frac{\ln(1-p)}{\ln\left(1-(1-ep)^\mathrm{modelPoints}\right)} |
|
* \f] |
|
* |
|
* If the computed number of iterations is larger than maxIters, then maxIters is returned. |
|
*/ |
|
int RANSACUpdateNumIters( double p, double ep, int modelPoints, int maxIters ); |
|
|
|
class CV_EXPORTS LMSolver : public Algorithm |
|
{ |
|
public: |
|
class CV_EXPORTS Callback |
|
{ |
|
public: |
|
virtual ~Callback() {} |
|
virtual bool compute(InputArray param, OutputArray err, OutputArray J) const = 0; |
|
}; |
|
|
|
virtual void setCallback(const Ptr<LMSolver::Callback>& cb) = 0; |
|
virtual int run(InputOutputArray _param0) const = 0; |
|
}; |
|
|
|
CV_EXPORTS Ptr<LMSolver> createLMSolver(const Ptr<LMSolver::Callback>& cb, int maxIters); |
|
CV_EXPORTS Ptr<LMSolver> createLMSolver(const Ptr<LMSolver::Callback>& cb, int maxIters, double eps); |
|
|
|
class CV_EXPORTS PointSetRegistrator : public Algorithm |
|
{ |
|
public: |
|
class CV_EXPORTS Callback |
|
{ |
|
public: |
|
virtual ~Callback() {} |
|
virtual int runKernel(InputArray m1, InputArray m2, OutputArray model) const = 0; |
|
virtual void computeError(InputArray m1, InputArray m2, InputArray model, OutputArray err) const = 0; |
|
virtual bool checkSubset(InputArray, InputArray, int) const { return true; } |
|
}; |
|
|
|
virtual void setCallback(const Ptr<PointSetRegistrator::Callback>& cb) = 0; |
|
virtual bool run(InputArray m1, InputArray m2, OutputArray model, OutputArray mask) const = 0; |
|
}; |
|
|
|
CV_EXPORTS Ptr<PointSetRegistrator> createRANSACPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& cb, |
|
int modelPoints, double threshold, |
|
double confidence=0.99, int maxIters=1000 ); |
|
|
|
CV_EXPORTS Ptr<PointSetRegistrator> createLMeDSPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& cb, |
|
int modelPoints, double confidence=0.99, int maxIters=1000 ); |
|
|
|
template<typename T> inline int compressElems( T* ptr, const uchar* mask, int mstep, int count ) |
|
{ |
|
int i, j; |
|
for( i = j = 0; i < count; i++ ) |
|
if( mask[i*mstep] ) |
|
{ |
|
if( i > j ) |
|
ptr[j] = ptr[i]; |
|
j++; |
|
} |
|
return j; |
|
} |
|
|
|
static inline bool haveCollinearPoints( const Mat& m, int count ) |
|
{ |
|
int j, k, i = count-1; |
|
const Point2f* ptr = m.ptr<Point2f>(); |
|
|
|
// check that the i-th selected point does not belong |
|
// to a line connecting some previously selected points |
|
// also checks that points are not too close to each other |
|
for( j = 0; j < i; j++ ) |
|
{ |
|
double dx1 = ptr[j].x - ptr[i].x; |
|
double dy1 = ptr[j].y - ptr[i].y; |
|
for( k = 0; k < j; k++ ) |
|
{ |
|
double dx2 = ptr[k].x - ptr[i].x; |
|
double dy2 = ptr[k].y - ptr[i].y; |
|
if( fabs(dx2*dy1 - dy2*dx1) <= FLT_EPSILON*(fabs(dx1) + fabs(dy1) + fabs(dx2) + fabs(dy2))) |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
} // namespace cv |
|
|
|
int checkChessboard(const cv::Mat & img, const cv::Size & size); |
|
int checkChessboardBinary(const cv::Mat & img, const cv::Size & size); |
|
|
|
#endif
|
|
|