mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
120 lines
3.9 KiB
120 lines
3.9 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
|
|
// Sample of using Halide backend in OpenCV deep learning module. |
|
// Based on dnn/samples/caffe_googlenet.cpp. |
|
|
|
#include <opencv2/dnn.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/highgui.hpp> |
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
#include <fstream> |
|
#include <iostream> |
|
#include <cstdlib> |
|
|
|
/* Find best class for the blob (i. e. class with maximal probability) */ |
|
void getMaxClass(const Mat &probBlob, int *classId, double *classProb) |
|
{ |
|
Mat probMat = probBlob.reshape(1, 1); //reshape the blob to 1x1000 matrix |
|
Point classNumber; |
|
|
|
minMaxLoc(probMat, NULL, classProb, NULL, &classNumber); |
|
*classId = classNumber.x; |
|
} |
|
|
|
std::vector<std::string> readClassNames(const char *filename = "synset_words.txt") |
|
{ |
|
std::vector<std::string> classNames; |
|
|
|
std::ifstream fp(filename); |
|
if (!fp.is_open()) |
|
{ |
|
std::cerr << "File with classes labels not found: " << filename << std::endl; |
|
exit(-1); |
|
} |
|
|
|
std::string name; |
|
while (!fp.eof()) |
|
{ |
|
std::getline(fp, name); |
|
if (name.length()) |
|
classNames.push_back( name.substr(name.find(' ')+1) ); |
|
} |
|
|
|
fp.close(); |
|
return classNames; |
|
} |
|
|
|
int main(int argc, char **argv) |
|
{ |
|
initModule(); // Required if OpenCV is built as static libs. |
|
|
|
std::string modelTxt = "train_val.prototxt"; |
|
std::string modelBin = "squeezenet_v1.1.caffemodel"; |
|
std::string imageFile = (argc > 1) ? argv[1] : "space_shuttle.jpg"; |
|
|
|
//! [Read and initialize network] |
|
Net net = dnn::readNetFromCaffe(modelTxt, modelBin); |
|
//! [Read and initialize network] |
|
|
|
//! [Check that network was read successfully] |
|
if (net.empty()) |
|
{ |
|
std::cerr << "Can't load network by using the following files: " << std::endl; |
|
std::cerr << "prototxt: " << modelTxt << std::endl; |
|
std::cerr << "caffemodel: " << modelBin << std::endl; |
|
std::cerr << "SqueezeNet v1.1 can be downloaded from:" << std::endl; |
|
std::cerr << "https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1" << std::endl; |
|
exit(-1); |
|
} |
|
//! [Check that network was read successfully] |
|
|
|
//! [Prepare blob] |
|
Mat img = imread(imageFile); |
|
if (img.empty()) |
|
{ |
|
std::cerr << "Can't read image from the file: " << imageFile << std::endl; |
|
exit(-1); |
|
} |
|
if (img.channels() != 3) |
|
{ |
|
std::cerr << "Image " << imageFile << " isn't 3-channel" << std::endl; |
|
exit(-1); |
|
} |
|
|
|
resize(img, img, Size(227, 227)); // SqueezeNet v1.1 predict class by 3x227x227 input image. |
|
Mat inputBlob = blobFromImage(img, 1.0, Size(), Scalar(), false); // Convert Mat to 4-dimensional batch. |
|
//! [Prepare blob] |
|
|
|
//! [Set input blob] |
|
net.setInput(inputBlob); // Set the network input. |
|
//! [Set input blob] |
|
|
|
//! [Enable Halide backend] |
|
net.setPreferableBackend(DNN_BACKEND_HALIDE); // Tell engine to use Halide where it possible. |
|
//! [Enable Halide backend] |
|
|
|
//! [Make forward pass] |
|
Mat prob = net.forward("prob"); // Compute output. |
|
//! [Make forward pass] |
|
|
|
//! [Determine the best class] |
|
int classId; |
|
double classProb; |
|
getMaxClass(prob, &classId, &classProb); // Find the best class. |
|
//! [Determine the best class] |
|
|
|
//! [Print results] |
|
std::vector<std::string> classNames = readClassNames(); |
|
std::cout << "Best class: #" << classId << " '" << classNames.at(classId) << "'" << std::endl; |
|
std::cout << "Probability: " << classProb * 100 << "%" << std::endl; |
|
//! [Print results] |
|
|
|
return 0; |
|
} //main
|
|
|