mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
284 lines
8.7 KiB
284 lines
8.7 KiB
// Copyright 2013 Google Inc. All Rights Reserved. |
|
// |
|
// Use of this source code is governed by a BSD-style license |
|
// that can be found in the COPYING file in the root of the source |
|
// tree. An additional intellectual property rights grant can be found |
|
// in the file PATENTS. All contributing project authors may |
|
// be found in the AUTHORS file in the root of the source tree. |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// Implement gradient smoothing: we replace a current alpha value by its |
|
// surrounding average if it's close enough (that is: the change will be less |
|
// than the minimum distance between two quantized level). |
|
// We use sliding window for computing the 2d moving average. |
|
// |
|
// Author: Skal (pascal.massimino@gmail.com) |
|
|
|
#include "./quant_levels_dec_utils.h" |
|
|
|
#include <string.h> // for memset |
|
|
|
#include "./utils.h" |
|
|
|
// #define USE_DITHERING // uncomment to enable ordered dithering (not vital) |
|
|
|
#define FIX 16 // fix-point precision for averaging |
|
#define LFIX 2 // extra precision for look-up table |
|
#define LUT_SIZE ((1 << (8 + LFIX)) - 1) // look-up table size |
|
|
|
#if defined(USE_DITHERING) |
|
|
|
#define DFIX 4 // extra precision for ordered dithering |
|
#define DSIZE 4 // dithering size (must be a power of two) |
|
// cf. http://en.wikipedia.org/wiki/Ordered_dithering |
|
static const uint8_t kOrderedDither[DSIZE][DSIZE] = { |
|
{ 0, 8, 2, 10 }, // coefficients are in DFIX fixed-point precision |
|
{ 12, 4, 14, 6 }, |
|
{ 3, 11, 1, 9 }, |
|
{ 15, 7, 13, 5 } |
|
}; |
|
|
|
#else |
|
#define DFIX 0 |
|
#endif |
|
|
|
typedef struct { |
|
int width_, height_; // dimension |
|
int stride_; // stride in bytes |
|
int row_; // current input row being processed |
|
uint8_t* src_; // input pointer |
|
uint8_t* dst_; // output pointer |
|
|
|
int radius_; // filter radius (=delay) |
|
int scale_; // normalization factor, in FIX bits precision |
|
|
|
void* mem_; // all memory |
|
|
|
// various scratch buffers |
|
uint16_t* start_; |
|
uint16_t* cur_; |
|
uint16_t* end_; |
|
uint16_t* top_; |
|
uint16_t* average_; |
|
|
|
// input levels distribution |
|
int num_levels_; // number of quantized levels |
|
int min_, max_; // min and max level values |
|
int min_level_dist_; // smallest distance between two consecutive levels |
|
|
|
int16_t* correction_; // size = 1 + 2*LUT_SIZE -> ~4k memory |
|
} SmoothParams; |
|
|
|
//------------------------------------------------------------------------------ |
|
|
|
#define CLIP_MASK (int)(~0U << (8 + DFIX)) |
|
static WEBP_INLINE uint8_t clip_8b(int v) { |
|
return (!(v & CLIP_MASK)) ? (uint8_t)(v >> DFIX) : (v < 0) ? 0u : 255u; |
|
} |
|
|
|
// vertical accumulation |
|
static void VFilter(SmoothParams* const p) { |
|
const uint8_t* src = p->src_; |
|
const int w = p->width_; |
|
uint16_t* const cur = p->cur_; |
|
const uint16_t* const top = p->top_; |
|
uint16_t* const out = p->end_; |
|
uint16_t sum = 0; // all arithmetic is modulo 16bit |
|
int x; |
|
|
|
for (x = 0; x < w; ++x) { |
|
uint16_t new_value; |
|
sum += src[x]; |
|
new_value = top[x] + sum; |
|
out[x] = new_value - cur[x]; // vertical sum of 'r' pixels. |
|
cur[x] = new_value; |
|
} |
|
// move input pointers one row down |
|
p->top_ = p->cur_; |
|
p->cur_ += w; |
|
if (p->cur_ == p->end_) p->cur_ = p->start_; // roll-over |
|
// We replicate edges, as it's somewhat easier as a boundary condition. |
|
// That's why we don't update the 'src' pointer on top/bottom area: |
|
if (p->row_ >= 0 && p->row_ < p->height_ - 1) { |
|
p->src_ += p->stride_; |
|
} |
|
} |
|
|
|
// horizontal accumulation. We use mirror replication of missing pixels, as it's |
|
// a little easier to implement (surprisingly). |
|
static void HFilter(SmoothParams* const p) { |
|
const uint16_t* const in = p->end_; |
|
uint16_t* const out = p->average_; |
|
const uint32_t scale = p->scale_; |
|
const int w = p->width_; |
|
const int r = p->radius_; |
|
|
|
int x; |
|
for (x = 0; x <= r; ++x) { // left mirroring |
|
const uint16_t delta = in[x + r - 1] + in[r - x]; |
|
out[x] = (delta * scale) >> FIX; |
|
} |
|
for (; x < w - r; ++x) { // bulk middle run |
|
const uint16_t delta = in[x + r] - in[x - r - 1]; |
|
out[x] = (delta * scale) >> FIX; |
|
} |
|
for (; x < w; ++x) { // right mirroring |
|
const uint16_t delta = |
|
2 * in[w - 1] - in[2 * w - 2 - r - x] - in[x - r - 1]; |
|
out[x] = (delta * scale) >> FIX; |
|
} |
|
} |
|
|
|
// emit one filtered output row |
|
static void ApplyFilter(SmoothParams* const p) { |
|
const uint16_t* const average = p->average_; |
|
const int w = p->width_; |
|
const int16_t* const correction = p->correction_; |
|
#if defined(USE_DITHERING) |
|
const uint8_t* const dither = kOrderedDither[p->row_ % DSIZE]; |
|
#endif |
|
uint8_t* const dst = p->dst_; |
|
int x; |
|
for (x = 0; x < w; ++x) { |
|
const int v = dst[x]; |
|
if (v < p->max_ && v > p->min_) { |
|
const int c = (v << DFIX) + correction[average[x] - (v << LFIX)]; |
|
#if defined(USE_DITHERING) |
|
dst[x] = clip_8b(c + dither[x % DSIZE]); |
|
#else |
|
dst[x] = clip_8b(c); |
|
#endif |
|
} |
|
} |
|
p->dst_ += p->stride_; // advance output pointer |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Initialize correction table |
|
|
|
static void InitCorrectionLUT(int16_t* const lut, int min_dist) { |
|
// The correction curve is: |
|
// f(x) = x for x <= threshold2 |
|
// f(x) = 0 for x >= threshold1 |
|
// and a linear interpolation for range x=[threshold2, threshold1] |
|
// (along with f(-x) = -f(x) symmetry). |
|
// Note that: threshold2 = 3/4 * threshold1 |
|
const int threshold1 = min_dist << LFIX; |
|
const int threshold2 = (3 * threshold1) >> 2; |
|
const int max_threshold = threshold2 << DFIX; |
|
const int delta = threshold1 - threshold2; |
|
int i; |
|
for (i = 1; i <= LUT_SIZE; ++i) { |
|
int c = (i <= threshold2) ? (i << DFIX) |
|
: (i < threshold1) ? max_threshold * (threshold1 - i) / delta |
|
: 0; |
|
c >>= LFIX; |
|
lut[+i] = +c; |
|
lut[-i] = -c; |
|
} |
|
lut[0] = 0; |
|
} |
|
|
|
static void CountLevels(SmoothParams* const p) { |
|
int i, j, last_level; |
|
uint8_t used_levels[256] = { 0 }; |
|
const uint8_t* data = p->src_; |
|
p->min_ = 255; |
|
p->max_ = 0; |
|
for (j = 0; j < p->height_; ++j) { |
|
for (i = 0; i < p->width_; ++i) { |
|
const int v = data[i]; |
|
if (v < p->min_) p->min_ = v; |
|
if (v > p->max_) p->max_ = v; |
|
used_levels[v] = 1; |
|
} |
|
data += p->stride_; |
|
} |
|
// Compute the mininum distance between two non-zero levels. |
|
p->min_level_dist_ = p->max_ - p->min_; |
|
last_level = -1; |
|
for (i = 0; i < 256; ++i) { |
|
if (used_levels[i]) { |
|
++p->num_levels_; |
|
if (last_level >= 0) { |
|
const int level_dist = i - last_level; |
|
if (level_dist < p->min_level_dist_) { |
|
p->min_level_dist_ = level_dist; |
|
} |
|
} |
|
last_level = i; |
|
} |
|
} |
|
} |
|
|
|
// Initialize all params. |
|
static int InitParams(uint8_t* const data, int width, int height, int stride, |
|
int radius, SmoothParams* const p) { |
|
const int R = 2 * radius + 1; // total size of the kernel |
|
|
|
const size_t size_scratch_m = (R + 1) * width * sizeof(*p->start_); |
|
const size_t size_m = width * sizeof(*p->average_); |
|
const size_t size_lut = (1 + 2 * LUT_SIZE) * sizeof(*p->correction_); |
|
const size_t total_size = size_scratch_m + size_m + size_lut; |
|
uint8_t* mem = (uint8_t*)WebPSafeMalloc(1U, total_size); |
|
|
|
if (mem == NULL) return 0; |
|
p->mem_ = (void*)mem; |
|
|
|
p->start_ = (uint16_t*)mem; |
|
p->cur_ = p->start_; |
|
p->end_ = p->start_ + R * width; |
|
p->top_ = p->end_ - width; |
|
memset(p->top_, 0, width * sizeof(*p->top_)); |
|
mem += size_scratch_m; |
|
|
|
p->average_ = (uint16_t*)mem; |
|
mem += size_m; |
|
|
|
p->width_ = width; |
|
p->height_ = height; |
|
p->stride_ = stride; |
|
p->src_ = data; |
|
p->dst_ = data; |
|
p->radius_ = radius; |
|
p->scale_ = (1 << (FIX + LFIX)) / (R * R); // normalization constant |
|
p->row_ = -radius; |
|
|
|
// analyze the input distribution so we can best-fit the threshold |
|
CountLevels(p); |
|
|
|
// correction table |
|
p->correction_ = ((int16_t*)mem) + LUT_SIZE; |
|
InitCorrectionLUT(p->correction_, p->min_level_dist_); |
|
|
|
return 1; |
|
} |
|
|
|
static void CleanupParams(SmoothParams* const p) { |
|
WebPSafeFree(p->mem_); |
|
} |
|
|
|
int WebPDequantizeLevels(uint8_t* const data, int width, int height, int stride, |
|
int strength) { |
|
const int radius = 4 * strength / 100; |
|
if (strength < 0 || strength > 100) return 0; |
|
if (data == NULL || width <= 0 || height <= 0) return 0; // bad params |
|
if (radius > 0) { |
|
SmoothParams p; |
|
memset(&p, 0, sizeof(p)); |
|
if (!InitParams(data, width, height, stride, radius, &p)) return 0; |
|
if (p.num_levels_ > 2) { |
|
for (; p.row_ < p.height_; ++p.row_) { |
|
VFilter(&p); // accumulate average of input |
|
// Need to wait few rows in order to prime the filter, |
|
// before emitting some output. |
|
if (p.row_ >= p.radius_) { |
|
HFilter(&p); |
|
ApplyFilter(&p); |
|
} |
|
} |
|
} |
|
CleanupParams(&p); |
|
} |
|
return 1; |
|
}
|
|
|