mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
403 lines
11 KiB
403 lines
11 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#ifdef HAVE_CUDA |
|
|
|
using namespace cvtest; |
|
|
|
#if defined(HAVE_XINE) || \ |
|
defined(HAVE_GSTREAMER) || \ |
|
defined(HAVE_QUICKTIME) || \ |
|
defined(HAVE_AVFOUNDATION) || \ |
|
defined(HAVE_FFMPEG) || \ |
|
defined(WIN32) /* assume that we have ffmpeg */ |
|
|
|
# define BUILD_WITH_VIDEO_INPUT_SUPPORT 1 |
|
#else |
|
# define BUILD_WITH_VIDEO_INPUT_SUPPORT 0 |
|
#endif |
|
|
|
////////////////////////////////////////////////////// |
|
// FGDStatModel |
|
|
|
#if BUILD_WITH_VIDEO_INPUT_SUPPORT |
|
|
|
namespace cv |
|
{ |
|
template<> void Ptr<CvBGStatModel>::delete_obj() |
|
{ |
|
cvReleaseBGStatModel(&obj); |
|
} |
|
} |
|
|
|
PARAM_TEST_CASE(FGDStatModel, cv::gpu::DeviceInfo, std::string, Channels) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
std::string inputFile; |
|
int out_cn; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1); |
|
|
|
out_cn = GET_PARAM(2); |
|
} |
|
}; |
|
|
|
GPU_TEST_P(FGDStatModel, Update) |
|
{ |
|
cv::VideoCapture cap(inputFile); |
|
ASSERT_TRUE(cap.isOpened()); |
|
|
|
cv::Mat frame; |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
IplImage ipl_frame = frame; |
|
cv::Ptr<CvBGStatModel> model(cvCreateFGDStatModel(&ipl_frame)); |
|
|
|
cv::gpu::GpuMat d_frame(frame); |
|
cv::gpu::FGDStatModel d_model(out_cn); |
|
d_model.create(d_frame); |
|
|
|
cv::Mat h_background; |
|
cv::Mat h_foreground; |
|
cv::Mat h_background3; |
|
|
|
cv::Mat backgroundDiff; |
|
cv::Mat foregroundDiff; |
|
|
|
for (int i = 0; i < 5; ++i) |
|
{ |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
ipl_frame = frame; |
|
int gold_count = cvUpdateBGStatModel(&ipl_frame, model); |
|
|
|
d_frame.upload(frame); |
|
|
|
int count = d_model.update(d_frame); |
|
|
|
ASSERT_EQ(gold_count, count); |
|
|
|
cv::Mat gold_background(model->background); |
|
cv::Mat gold_foreground(model->foreground); |
|
|
|
if (out_cn == 3) |
|
d_model.background.download(h_background3); |
|
else |
|
{ |
|
d_model.background.download(h_background); |
|
cv::cvtColor(h_background, h_background3, cv::COLOR_BGRA2BGR); |
|
} |
|
d_model.foreground.download(h_foreground); |
|
|
|
ASSERT_MAT_NEAR(gold_background, h_background3, 1.0); |
|
ASSERT_MAT_NEAR(gold_foreground, h_foreground, 0.0); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Video, FGDStatModel, testing::Combine( |
|
ALL_DEVICES, |
|
testing::Values(std::string("768x576.avi")), |
|
testing::Values(Channels(3), Channels(4)))); |
|
|
|
#endif |
|
|
|
////////////////////////////////////////////////////// |
|
// MOG |
|
|
|
#if BUILD_WITH_VIDEO_INPUT_SUPPORT |
|
|
|
namespace |
|
{ |
|
IMPLEMENT_PARAM_CLASS(UseGray, bool) |
|
IMPLEMENT_PARAM_CLASS(LearningRate, double) |
|
} |
|
|
|
PARAM_TEST_CASE(MOG, cv::gpu::DeviceInfo, std::string, UseGray, LearningRate, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
std::string inputFile; |
|
bool useGray; |
|
double learningRate; |
|
bool useRoi; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1); |
|
|
|
useGray = GET_PARAM(2); |
|
|
|
learningRate = GET_PARAM(3); |
|
|
|
useRoi = GET_PARAM(4); |
|
} |
|
}; |
|
|
|
GPU_TEST_P(MOG, Update) |
|
{ |
|
cv::VideoCapture cap(inputFile); |
|
ASSERT_TRUE(cap.isOpened()); |
|
|
|
cv::Mat frame; |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
cv::gpu::MOG_GPU mog; |
|
cv::gpu::GpuMat foreground = createMat(frame.size(), CV_8UC1, useRoi); |
|
|
|
cv::BackgroundSubtractorMOG mog_gold; |
|
cv::Mat foreground_gold; |
|
|
|
for (int i = 0; i < 10; ++i) |
|
{ |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
if (useGray) |
|
{ |
|
cv::Mat temp; |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
|
cv::swap(temp, frame); |
|
} |
|
|
|
mog(loadMat(frame, useRoi), foreground, (float)learningRate); |
|
|
|
mog_gold(frame, foreground_gold, learningRate); |
|
|
|
ASSERT_MAT_NEAR(foreground_gold, foreground, 0.0); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Video, MOG, testing::Combine( |
|
ALL_DEVICES, |
|
testing::Values(std::string("768x576.avi")), |
|
testing::Values(UseGray(true), UseGray(false)), |
|
testing::Values(LearningRate(0.0), LearningRate(0.01)), |
|
WHOLE_SUBMAT)); |
|
|
|
#endif |
|
|
|
////////////////////////////////////////////////////// |
|
// MOG2 |
|
|
|
#if BUILD_WITH_VIDEO_INPUT_SUPPORT |
|
|
|
namespace |
|
{ |
|
IMPLEMENT_PARAM_CLASS(DetectShadow, bool) |
|
} |
|
|
|
PARAM_TEST_CASE(MOG2, cv::gpu::DeviceInfo, std::string, UseGray, DetectShadow, UseRoi) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
std::string inputFile; |
|
bool useGray; |
|
bool detectShadow; |
|
bool useRoi; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1); |
|
useGray = GET_PARAM(2); |
|
detectShadow = GET_PARAM(3); |
|
useRoi = GET_PARAM(4); |
|
} |
|
}; |
|
|
|
GPU_TEST_P(MOG2, Update) |
|
{ |
|
cv::VideoCapture cap(inputFile); |
|
ASSERT_TRUE(cap.isOpened()); |
|
|
|
cv::Mat frame; |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
cv::gpu::MOG2_GPU mog2; |
|
mog2.bShadowDetection = detectShadow; |
|
cv::gpu::GpuMat foreground = createMat(frame.size(), CV_8UC1, useRoi); |
|
|
|
cv::Ptr<cv::BackgroundSubtractorMOG2> mog2_gold = cv::createBackgroundSubtractorMOG2(); |
|
mog2_gold.setDetectShadows(detectShadow); |
|
cv::Mat foreground_gold; |
|
|
|
for (int i = 0; i < 10; ++i) |
|
{ |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
if (useGray) |
|
{ |
|
cv::Mat temp; |
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
|
cv::swap(temp, frame); |
|
} |
|
|
|
mog2(loadMat(frame, useRoi), foreground); |
|
|
|
mog2_gold->apply(frame, foreground_gold); |
|
|
|
if (detectShadow) |
|
{ |
|
ASSERT_MAT_SIMILAR(foreground_gold, foreground, 1e-2); |
|
} |
|
else |
|
{ |
|
ASSERT_MAT_NEAR(foreground_gold, foreground, 0); |
|
} |
|
} |
|
} |
|
|
|
GPU_TEST_P(MOG2, getBackgroundImage) |
|
{ |
|
if (useGray) |
|
return; |
|
|
|
cv::VideoCapture cap(inputFile); |
|
ASSERT_TRUE(cap.isOpened()); |
|
|
|
cv::Mat frame; |
|
|
|
cv::gpu::MOG2_GPU mog2; |
|
mog2.bShadowDetection = detectShadow; |
|
cv::gpu::GpuMat foreground; |
|
|
|
cv::Ptr<cv::BackgroundSubtractorMOG2> mog2_gold = cv::createBackgroundSubtractorMOG2(); |
|
mog2_gold.setDetectShadows(detectShadow); |
|
cv::Mat foreground_gold; |
|
|
|
for (int i = 0; i < 10; ++i) |
|
{ |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
mog2(loadMat(frame, useRoi), foreground); |
|
|
|
mog2_gold->apply(frame, foreground_gold); |
|
} |
|
|
|
cv::gpu::GpuMat background = createMat(frame.size(), frame.type(), useRoi); |
|
mog2.getBackgroundImage(background); |
|
|
|
cv::Mat background_gold; |
|
mog2_gold->getBackgroundImage(background_gold); |
|
|
|
ASSERT_MAT_NEAR(background_gold, background, 0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Video, MOG2, testing::Combine( |
|
ALL_DEVICES, |
|
testing::Values(std::string("768x576.avi")), |
|
testing::Values(UseGray(true), UseGray(false)), |
|
testing::Values(DetectShadow(true), DetectShadow(false)), |
|
WHOLE_SUBMAT)); |
|
|
|
#endif |
|
|
|
////////////////////////////////////////////////////// |
|
// GMG |
|
|
|
PARAM_TEST_CASE(GMG, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRoi) |
|
{ |
|
}; |
|
|
|
GPU_TEST_P(GMG, Accuracy) |
|
{ |
|
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
const cv::Size size = GET_PARAM(1); |
|
const int depth = GET_PARAM(2); |
|
const int channels = GET_PARAM(3); |
|
const bool useRoi = GET_PARAM(4); |
|
|
|
const int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
const cv::Mat zeros(size, CV_8UC1, cv::Scalar::all(0)); |
|
const cv::Mat fullfg(size, CV_8UC1, cv::Scalar::all(255)); |
|
|
|
cv::Mat frame = randomMat(size, type, 0, 100); |
|
cv::gpu::GpuMat d_frame = loadMat(frame, useRoi); |
|
|
|
cv::gpu::GMG_GPU gmg; |
|
gmg.numInitializationFrames = 5; |
|
gmg.smoothingRadius = 0; |
|
gmg.initialize(d_frame.size(), 0, 255); |
|
|
|
cv::gpu::GpuMat d_fgmask = createMat(size, CV_8UC1, useRoi); |
|
|
|
for (int i = 0; i < gmg.numInitializationFrames; ++i) |
|
{ |
|
gmg(d_frame, d_fgmask); |
|
|
|
// fgmask should be entirely background during training |
|
ASSERT_MAT_NEAR(zeros, d_fgmask, 0); |
|
} |
|
|
|
frame = randomMat(size, type, 160, 255); |
|
d_frame = loadMat(frame, useRoi); |
|
gmg(d_frame, d_fgmask); |
|
|
|
// now fgmask should be entirely foreground |
|
ASSERT_MAT_NEAR(fullfg, d_fgmask, 0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_Video, GMG, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
testing::Values(MatType(CV_8U), MatType(CV_16U), MatType(CV_32F)), |
|
testing::Values(Channels(1), Channels(3), Channels(4)), |
|
WHOLE_SUBMAT)); |
|
|
|
#endif // HAVE_CUDA
|
|
|