mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
429 lines
14 KiB
429 lines
14 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencl_kernels_imgproc.hpp" |
|
|
|
#include <cstdio> |
|
#include <vector> |
|
#include <iostream> |
|
#include <functional> |
|
|
|
namespace cv |
|
{ |
|
|
|
struct greaterThanPtr : |
|
public std::binary_function<const float *, const float *, bool> |
|
{ |
|
bool operator () (const float * a, const float * b) const |
|
{ return *a > *b; } |
|
}; |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
struct Corner |
|
{ |
|
float val; |
|
short y; |
|
short x; |
|
|
|
bool operator < (const Corner & c) const |
|
{ return val > c.val; } |
|
}; |
|
|
|
static bool ocl_goodFeaturesToTrack( InputArray _image, OutputArray _corners, |
|
int maxCorners, double qualityLevel, double minDistance, |
|
InputArray _mask, int blockSize, |
|
bool useHarrisDetector, double harrisK ) |
|
{ |
|
UMat eig, maxEigenValue; |
|
if( useHarrisDetector ) |
|
cornerHarris( _image, eig, blockSize, 3, harrisK ); |
|
else |
|
cornerMinEigenVal( _image, eig, blockSize, 3 ); |
|
|
|
Size imgsize = _image.size(); |
|
size_t total, i, j, ncorners = 0, possibleCornersCount = |
|
std::max(1024, static_cast<int>(imgsize.area() * 0.1)); |
|
bool haveMask = !_mask.empty(); |
|
UMat corners_buffer(1, (int)possibleCornersCount + 1, CV_32FC2); |
|
CV_Assert(sizeof(Corner) == corners_buffer.elemSize()); |
|
Mat tmpCorners; |
|
|
|
// find threshold |
|
{ |
|
CV_Assert(eig.type() == CV_32FC1); |
|
int dbsize = ocl::Device::getDefault().maxComputeUnits(); |
|
size_t wgs = ocl::Device::getDefault().maxWorkGroupSize(); |
|
|
|
int wgs2_aligned = 1; |
|
while (wgs2_aligned < (int)wgs) |
|
wgs2_aligned <<= 1; |
|
wgs2_aligned >>= 1; |
|
|
|
ocl::Kernel k("maxEigenVal", ocl::imgproc::gftt_oclsrc, |
|
format("-D OP_MAX_EIGEN_VAL -D WGS=%d -D groupnum=%d -D WGS2_ALIGNED=%d%s", |
|
(int)wgs, dbsize, wgs2_aligned, haveMask ? " -D HAVE_MASK" : "")); |
|
if (k.empty()) |
|
return false; |
|
|
|
UMat mask = _mask.getUMat(); |
|
maxEigenValue.create(1, dbsize, CV_32FC1); |
|
|
|
ocl::KernelArg eigarg = ocl::KernelArg::ReadOnlyNoSize(eig), |
|
dbarg = ocl::KernelArg::PtrWriteOnly(maxEigenValue), |
|
maskarg = ocl::KernelArg::ReadOnlyNoSize(mask), |
|
cornersarg = ocl::KernelArg::PtrWriteOnly(corners_buffer); |
|
|
|
if (haveMask) |
|
k.args(eigarg, eig.cols, (int)eig.total(), dbarg, maskarg); |
|
else |
|
k.args(eigarg, eig.cols, (int)eig.total(), dbarg); |
|
|
|
size_t globalsize = dbsize * wgs; |
|
if (!k.run(1, &globalsize, &wgs, false)) |
|
return false; |
|
|
|
ocl::Kernel k2("maxEigenValTask", ocl::imgproc::gftt_oclsrc, |
|
format("-D OP_MAX_EIGEN_VAL -D WGS=%d -D WGS2_ALIGNED=%d -D groupnum=%d", |
|
wgs, wgs2_aligned, dbsize)); |
|
if (k2.empty()) |
|
return false; |
|
|
|
k2.args(dbarg, (float)qualityLevel, cornersarg); |
|
|
|
if (!k2.runTask(false)) |
|
return false; |
|
} |
|
|
|
// collect list of pointers to features - put them into temporary image |
|
{ |
|
ocl::Kernel k("findCorners", ocl::imgproc::gftt_oclsrc, |
|
format("-D OP_FIND_CORNERS%s", haveMask ? " -D HAVE_MASK" : "")); |
|
if (k.empty()) |
|
return false; |
|
|
|
ocl::KernelArg eigarg = ocl::KernelArg::ReadOnlyNoSize(eig), |
|
cornersarg = ocl::KernelArg::PtrWriteOnly(corners_buffer), |
|
thresholdarg = ocl::KernelArg::PtrReadOnly(maxEigenValue); |
|
|
|
if (!haveMask) |
|
k.args(eigarg, cornersarg, eig.rows - 2, eig.cols - 2, thresholdarg, |
|
(int)possibleCornersCount); |
|
else |
|
{ |
|
UMat mask = _mask.getUMat(); |
|
k.args(eigarg, ocl::KernelArg::ReadOnlyNoSize(mask), |
|
cornersarg, eig.rows - 2, eig.cols - 2, |
|
thresholdarg, (int)possibleCornersCount); |
|
} |
|
|
|
size_t globalsize[2] = { eig.cols - 2, eig.rows - 2 }; |
|
if (!k.run(2, globalsize, NULL, false)) |
|
return false; |
|
|
|
tmpCorners = corners_buffer.getMat(ACCESS_RW); |
|
total = std::min<size_t>(tmpCorners.at<Vec2i>(0, 0)[0], possibleCornersCount); |
|
if (total == 0) |
|
{ |
|
_corners.release(); |
|
return true; |
|
} |
|
} |
|
|
|
Corner* corner_ptr = tmpCorners.ptr<Corner>() + 1; |
|
std::sort(corner_ptr, corner_ptr + total); |
|
|
|
std::vector<Point2f> corners; |
|
corners.reserve(total); |
|
|
|
if (minDistance >= 1) |
|
{ |
|
// Partition the image into larger grids |
|
int w = imgsize.width, h = imgsize.height; |
|
|
|
const int cell_size = cvRound(minDistance); |
|
const int grid_width = (w + cell_size - 1) / cell_size; |
|
const int grid_height = (h + cell_size - 1) / cell_size; |
|
|
|
std::vector<std::vector<Point2f> > grid(grid_width*grid_height); |
|
minDistance *= minDistance; |
|
|
|
for( i = 0; i < total; i++ ) |
|
{ |
|
const Corner & c = corner_ptr[i]; |
|
bool good = true; |
|
|
|
int x_cell = c.x / cell_size; |
|
int y_cell = c.y / cell_size; |
|
|
|
int x1 = x_cell - 1; |
|
int y1 = y_cell - 1; |
|
int x2 = x_cell + 1; |
|
int y2 = y_cell + 1; |
|
|
|
// boundary check |
|
x1 = std::max(0, x1); |
|
y1 = std::max(0, y1); |
|
x2 = std::min(grid_width - 1, x2); |
|
y2 = std::min(grid_height - 1, y2); |
|
|
|
for( int yy = y1; yy <= y2; yy++ ) |
|
for( int xx = x1; xx <= x2; xx++ ) |
|
{ |
|
std::vector<Point2f> &m = grid[yy * grid_width + xx]; |
|
|
|
if( m.size() ) |
|
{ |
|
for(j = 0; j < m.size(); j++) |
|
{ |
|
float dx = c.x - m[j].x; |
|
float dy = c.y - m[j].y; |
|
|
|
if( dx*dx + dy*dy < minDistance ) |
|
{ |
|
good = false; |
|
goto break_out; |
|
} |
|
} |
|
} |
|
} |
|
|
|
break_out: |
|
|
|
if (good) |
|
{ |
|
grid[y_cell*grid_width + x_cell].push_back(Point2f((float)c.x, (float)c.y)); |
|
|
|
corners.push_back(Point2f((float)c.x, (float)c.y)); |
|
++ncorners; |
|
|
|
if( maxCorners > 0 && (int)ncorners == maxCorners ) |
|
break; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( i = 0; i < total; i++ ) |
|
{ |
|
const Corner & c = corner_ptr[i]; |
|
|
|
corners.push_back(Point2f((float)c.x, (float)c.y)); |
|
++ncorners; |
|
if( maxCorners > 0 && (int)ncorners == maxCorners ) |
|
break; |
|
} |
|
} |
|
|
|
Mat(corners).convertTo(_corners, _corners.fixedType() ? _corners.type() : CV_32F); |
|
return true; |
|
} |
|
|
|
#endif |
|
|
|
} |
|
|
|
void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners, |
|
int maxCorners, double qualityLevel, double minDistance, |
|
InputArray _mask, int blockSize, |
|
bool useHarrisDetector, double harrisK ) |
|
{ |
|
CV_Assert( qualityLevel > 0 && minDistance >= 0 && maxCorners >= 0 ); |
|
CV_Assert( _mask.empty() || (_mask.type() == CV_8UC1 && _mask.sameSize(_image)) ); |
|
|
|
CV_OCL_RUN(_image.dims() <= 2 && _image.isUMat(), |
|
ocl_goodFeaturesToTrack(_image, _corners, maxCorners, qualityLevel, minDistance, |
|
_mask, blockSize, useHarrisDetector, harrisK)) |
|
|
|
Mat image = _image.getMat(), eig, tmp; |
|
if (image.empty()) |
|
{ |
|
_corners.release(); |
|
return; |
|
} |
|
|
|
if( useHarrisDetector ) |
|
cornerHarris( image, eig, blockSize, 3, harrisK ); |
|
else |
|
cornerMinEigenVal( image, eig, blockSize, 3 ); |
|
|
|
double maxVal = 0; |
|
minMaxLoc( eig, 0, &maxVal, 0, 0, _mask ); |
|
threshold( eig, eig, maxVal*qualityLevel, 0, THRESH_TOZERO ); |
|
dilate( eig, tmp, Mat()); |
|
|
|
Size imgsize = image.size(); |
|
std::vector<const float*> tmpCorners; |
|
|
|
// collect list of pointers to features - put them into temporary image |
|
Mat mask = _mask.getMat(); |
|
for( int y = 1; y < imgsize.height - 1; y++ ) |
|
{ |
|
const float* eig_data = (const float*)eig.ptr(y); |
|
const float* tmp_data = (const float*)tmp.ptr(y); |
|
const uchar* mask_data = mask.data ? mask.ptr(y) : 0; |
|
|
|
for( int x = 1; x < imgsize.width - 1; x++ ) |
|
{ |
|
float val = eig_data[x]; |
|
if( val != 0 && val == tmp_data[x] && (!mask_data || mask_data[x]) ) |
|
tmpCorners.push_back(eig_data + x); |
|
} |
|
} |
|
std::sort( tmpCorners.begin(), tmpCorners.end(), greaterThanPtr() ); |
|
|
|
std::vector<Point2f> corners; |
|
size_t i, j, total = tmpCorners.size(), ncorners = 0; |
|
|
|
if (minDistance >= 1) |
|
{ |
|
// Partition the image into larger grids |
|
int w = image.cols; |
|
int h = image.rows; |
|
|
|
const int cell_size = cvRound(minDistance); |
|
const int grid_width = (w + cell_size - 1) / cell_size; |
|
const int grid_height = (h + cell_size - 1) / cell_size; |
|
|
|
std::vector<std::vector<Point2f> > grid(grid_width*grid_height); |
|
|
|
minDistance *= minDistance; |
|
|
|
for( i = 0; i < total; i++ ) |
|
{ |
|
int ofs = (int)((const uchar*)tmpCorners[i] - eig.ptr()); |
|
int y = (int)(ofs / eig.step); |
|
int x = (int)((ofs - y*eig.step)/sizeof(float)); |
|
|
|
bool good = true; |
|
|
|
int x_cell = x / cell_size; |
|
int y_cell = y / cell_size; |
|
|
|
int x1 = x_cell - 1; |
|
int y1 = y_cell - 1; |
|
int x2 = x_cell + 1; |
|
int y2 = y_cell + 1; |
|
|
|
// boundary check |
|
x1 = std::max(0, x1); |
|
y1 = std::max(0, y1); |
|
x2 = std::min(grid_width-1, x2); |
|
y2 = std::min(grid_height-1, y2); |
|
|
|
for( int yy = y1; yy <= y2; yy++ ) |
|
for( int xx = x1; xx <= x2; xx++ ) |
|
{ |
|
std::vector <Point2f> &m = grid[yy*grid_width + xx]; |
|
|
|
if( m.size() ) |
|
{ |
|
for(j = 0; j < m.size(); j++) |
|
{ |
|
float dx = x - m[j].x; |
|
float dy = y - m[j].y; |
|
|
|
if( dx*dx + dy*dy < minDistance ) |
|
{ |
|
good = false; |
|
goto break_out; |
|
} |
|
} |
|
} |
|
} |
|
|
|
break_out: |
|
|
|
if (good) |
|
{ |
|
grid[y_cell*grid_width + x_cell].push_back(Point2f((float)x, (float)y)); |
|
|
|
corners.push_back(Point2f((float)x, (float)y)); |
|
++ncorners; |
|
|
|
if( maxCorners > 0 && (int)ncorners == maxCorners ) |
|
break; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( i = 0; i < total; i++ ) |
|
{ |
|
int ofs = (int)((const uchar*)tmpCorners[i] - eig.ptr()); |
|
int y = (int)(ofs / eig.step); |
|
int x = (int)((ofs - y*eig.step)/sizeof(float)); |
|
|
|
corners.push_back(Point2f((float)x, (float)y)); |
|
++ncorners; |
|
if( maxCorners > 0 && (int)ncorners == maxCorners ) |
|
break; |
|
} |
|
} |
|
|
|
Mat(corners).convertTo(_corners, _corners.fixedType() ? _corners.type() : CV_32F); |
|
} |
|
|
|
CV_IMPL void |
|
cvGoodFeaturesToTrack( const void* _image, void*, void*, |
|
CvPoint2D32f* _corners, int *_corner_count, |
|
double quality_level, double min_distance, |
|
const void* _maskImage, int block_size, |
|
int use_harris, double harris_k ) |
|
{ |
|
cv::Mat image = cv::cvarrToMat(_image), mask; |
|
std::vector<cv::Point2f> corners; |
|
|
|
if( _maskImage ) |
|
mask = cv::cvarrToMat(_maskImage); |
|
|
|
CV_Assert( _corners && _corner_count ); |
|
cv::goodFeaturesToTrack( image, corners, *_corner_count, quality_level, |
|
min_distance, mask, block_size, use_harris != 0, harris_k ); |
|
|
|
size_t i, ncorners = corners.size(); |
|
for( i = 0; i < ncorners; i++ ) |
|
_corners[i] = corners[i]; |
|
*_corner_count = (int)ncorners; |
|
} |
|
|
|
/* End of file. */
|
|
|