mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
964 lines
36 KiB
964 lines
36 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2014, Itseez Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencl_kernels_imgproc.hpp" |
|
|
|
|
|
#if defined (HAVE_IPP) && (IPP_VERSION_X100 >= 700) |
|
#define USE_IPP_CANNY 1 |
|
#else |
|
#define USE_IPP_CANNY 0 |
|
#endif |
|
|
|
|
|
namespace cv |
|
{ |
|
#ifdef HAVE_IPP |
|
static bool ippCanny(const Mat& _src, Mat& _dst, float low, float high) |
|
{ |
|
#if USE_IPP_CANNY |
|
int size = 0, size1 = 0; |
|
IppiSize roi = { _src.cols, _src.rows }; |
|
|
|
if (ippiFilterSobelNegVertGetBufferSize_8u16s_C1R(roi, ippMskSize3x3, &size) < 0) |
|
return false; |
|
if (ippiFilterSobelHorizGetBufferSize_8u16s_C1R(roi, ippMskSize3x3, &size1) < 0) |
|
return false; |
|
size = std::max(size, size1); |
|
|
|
if (ippiCannyGetSize(roi, &size1) < 0) |
|
return false; |
|
size = std::max(size, size1); |
|
|
|
AutoBuffer<uchar> buf(size + 64); |
|
uchar* buffer = alignPtr((uchar*)buf, 32); |
|
|
|
Mat _dx(_src.rows, _src.cols, CV_16S); |
|
if( ippiFilterSobelNegVertBorder_8u16s_C1R(_src.ptr(), (int)_src.step, |
|
_dx.ptr<short>(), (int)_dx.step, roi, |
|
ippMskSize3x3, ippBorderRepl, 0, buffer) < 0 ) |
|
return false; |
|
|
|
Mat _dy(_src.rows, _src.cols, CV_16S); |
|
if( ippiFilterSobelHorizBorder_8u16s_C1R(_src.ptr(), (int)_src.step, |
|
_dy.ptr<short>(), (int)_dy.step, roi, |
|
ippMskSize3x3, ippBorderRepl, 0, buffer) < 0 ) |
|
return false; |
|
|
|
if( ippiCanny_16s8u_C1R(_dx.ptr<short>(), (int)_dx.step, |
|
_dy.ptr<short>(), (int)_dy.step, |
|
_dst.ptr(), (int)_dst.step, roi, low, high, buffer) < 0 ) |
|
return false; |
|
return true; |
|
#else |
|
CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(low); CV_UNUSED(high); |
|
return false; |
|
#endif |
|
} |
|
#endif |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
static bool ocl_Canny(InputArray _src, OutputArray _dst, float low_thresh, float high_thresh, |
|
int aperture_size, bool L2gradient, int cn, const Size & size) |
|
{ |
|
UMat map; |
|
|
|
const ocl::Device &dev = ocl::Device::getDefault(); |
|
int max_wg_size = (int)dev.maxWorkGroupSize(); |
|
|
|
int lSizeX = 32; |
|
int lSizeY = max_wg_size / 32; |
|
|
|
if (lSizeY == 0) |
|
{ |
|
lSizeX = 16; |
|
lSizeY = max_wg_size / 16; |
|
} |
|
if (lSizeY == 0) |
|
{ |
|
lSizeY = 1; |
|
} |
|
|
|
if (L2gradient) |
|
{ |
|
low_thresh = std::min(32767.0f, low_thresh); |
|
high_thresh = std::min(32767.0f, high_thresh); |
|
|
|
if (low_thresh > 0) |
|
low_thresh *= low_thresh; |
|
if (high_thresh > 0) |
|
high_thresh *= high_thresh; |
|
} |
|
int low = cvFloor(low_thresh), high = cvFloor(high_thresh); |
|
|
|
if (aperture_size == 3 && !_src.isSubmatrix()) |
|
{ |
|
/* |
|
stage1_with_sobel: |
|
Sobel operator |
|
Calc magnitudes |
|
Non maxima suppression |
|
Double thresholding |
|
*/ |
|
char cvt[40]; |
|
ocl::Kernel with_sobel("stage1_with_sobel", ocl::imgproc::canny_oclsrc, |
|
format("-D WITH_SOBEL -D cn=%d -D TYPE=%s -D convert_floatN=%s -D floatN=%s -D GRP_SIZEX=%d -D GRP_SIZEY=%d%s", |
|
cn, ocl::memopTypeToStr(_src.depth()), |
|
ocl::convertTypeStr(_src.depth(), CV_32F, cn, cvt), |
|
ocl::typeToStr(CV_MAKE_TYPE(CV_32F, cn)), |
|
lSizeX, lSizeY, |
|
L2gradient ? " -D L2GRAD" : "")); |
|
if (with_sobel.empty()) |
|
return false; |
|
|
|
UMat src = _src.getUMat(); |
|
map.create(size, CV_32S); |
|
with_sobel.args(ocl::KernelArg::ReadOnly(src), |
|
ocl::KernelArg::WriteOnlyNoSize(map), |
|
(float) low, (float) high); |
|
|
|
size_t globalsize[2] = { size.width, size.height }, |
|
localsize[2] = { lSizeX, lSizeY }; |
|
|
|
if (!with_sobel.run(2, globalsize, localsize, false)) |
|
return false; |
|
} |
|
else |
|
{ |
|
/* |
|
stage1_without_sobel: |
|
Calc magnitudes |
|
Non maxima suppression |
|
Double thresholding |
|
*/ |
|
UMat dx, dy; |
|
Sobel(_src, dx, CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE); |
|
Sobel(_src, dy, CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE); |
|
|
|
ocl::Kernel without_sobel("stage1_without_sobel", ocl::imgproc::canny_oclsrc, |
|
format("-D WITHOUT_SOBEL -D cn=%d -D GRP_SIZEX=%d -D GRP_SIZEY=%d%s", |
|
cn, lSizeX, lSizeY, L2gradient ? " -D L2GRAD" : "")); |
|
if (without_sobel.empty()) |
|
return false; |
|
|
|
map.create(size, CV_32S); |
|
without_sobel.args(ocl::KernelArg::ReadOnlyNoSize(dx), ocl::KernelArg::ReadOnlyNoSize(dy), |
|
ocl::KernelArg::WriteOnly(map), |
|
low, high); |
|
|
|
size_t globalsize[2] = { size.width, size.height }, |
|
localsize[2] = { lSizeX, lSizeY }; |
|
|
|
if (!without_sobel.run(2, globalsize, localsize, false)) |
|
return false; |
|
} |
|
|
|
int PIX_PER_WI = 8; |
|
/* |
|
stage2: |
|
hysteresis (add weak edges if they are connected with strong edges) |
|
*/ |
|
|
|
int sizey = lSizeY / PIX_PER_WI; |
|
if (sizey == 0) |
|
sizey = 1; |
|
|
|
size_t globalsize[2] = { size.width, (size.height + PIX_PER_WI - 1) / PIX_PER_WI }, localsize[2] = { lSizeX, sizey }; |
|
|
|
ocl::Kernel edgesHysteresis("stage2_hysteresis", ocl::imgproc::canny_oclsrc, |
|
format("-D STAGE2 -D PIX_PER_WI=%d -D LOCAL_X=%d -D LOCAL_Y=%d", |
|
PIX_PER_WI, lSizeX, sizey)); |
|
|
|
if (edgesHysteresis.empty()) |
|
return false; |
|
|
|
edgesHysteresis.args(ocl::KernelArg::ReadWrite(map)); |
|
if (!edgesHysteresis.run(2, globalsize, localsize, false)) |
|
return false; |
|
|
|
// get edges |
|
|
|
ocl::Kernel getEdgesKernel("getEdges", ocl::imgproc::canny_oclsrc, |
|
format("-D GET_EDGES -D PIX_PER_WI=%d", PIX_PER_WI)); |
|
if (getEdgesKernel.empty()) |
|
return false; |
|
|
|
_dst.create(size, CV_8UC1); |
|
UMat dst = _dst.getUMat(); |
|
|
|
getEdgesKernel.args(ocl::KernelArg::ReadOnly(map), ocl::KernelArg::WriteOnlyNoSize(dst)); |
|
|
|
return getEdgesKernel.run(2, globalsize, NULL, false); |
|
} |
|
|
|
#endif |
|
|
|
#ifdef HAVE_TBB |
|
|
|
// Queue with peaks that will processed serially. |
|
static tbb::concurrent_queue<uchar*> borderPeaks; |
|
|
|
class tbbCanny |
|
{ |
|
public: |
|
tbbCanny(const Range _boundaries, const Mat& _src, uchar* _map, int _low, |
|
int _high, int _aperture_size, bool _L2gradient) |
|
: boundaries(_boundaries), src(_src), map(_map), low(_low), high(_high), |
|
aperture_size(_aperture_size), L2gradient(_L2gradient) |
|
{} |
|
|
|
// This parallel version of Canny algorithm splits the src image in threadsNumber horizontal slices. |
|
// The first row of each slice contains the last row of the previous slice and |
|
// the last row of each slice contains the first row of the next slice |
|
// so that each slice is independent and no mutexes are required. |
|
void operator()() const |
|
{ |
|
#if CV_SSE2 |
|
bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2); |
|
#endif |
|
|
|
const int type = src.type(), cn = CV_MAT_CN(type); |
|
|
|
Mat dx, dy; |
|
|
|
ptrdiff_t mapstep = src.cols + 2; |
|
|
|
// In sobel transform we calculate ksize2 extra lines for the first and last rows of each slice |
|
// because IPPDerivSobel expects only isolated ROIs, in contrast with the opencv version which |
|
// uses the pixels outside of the ROI to form a border. |
|
uchar ksize2 = aperture_size / 2; |
|
|
|
if (boundaries.start == 0 && boundaries.end == src.rows) |
|
{ |
|
Mat tempdx(boundaries.end - boundaries.start + 2, src.cols, CV_16SC(cn)); |
|
Mat tempdy(boundaries.end - boundaries.start + 2, src.cols, CV_16SC(cn)); |
|
|
|
memset(tempdx.ptr<short>(0), 0, cn * src.cols*sizeof(short)); |
|
memset(tempdy.ptr<short>(0), 0, cn * src.cols*sizeof(short)); |
|
memset(tempdx.ptr<short>(tempdx.rows - 1), 0, cn * src.cols*sizeof(short)); |
|
memset(tempdy.ptr<short>(tempdy.rows - 1), 0, cn * src.cols*sizeof(short)); |
|
|
|
Sobel(src, tempdx.rowRange(1, tempdx.rows - 1), CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE); |
|
Sobel(src, tempdy.rowRange(1, tempdy.rows - 1), CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE); |
|
|
|
dx = tempdx; |
|
dy = tempdy; |
|
} |
|
else if (boundaries.start == 0) |
|
{ |
|
Mat tempdx(boundaries.end - boundaries.start + 2 + ksize2, src.cols, CV_16SC(cn)); |
|
Mat tempdy(boundaries.end - boundaries.start + 2 + ksize2, src.cols, CV_16SC(cn)); |
|
|
|
memset(tempdx.ptr<short>(0), 0, cn * src.cols*sizeof(short)); |
|
memset(tempdy.ptr<short>(0), 0, cn * src.cols*sizeof(short)); |
|
|
|
Sobel(src.rowRange(boundaries.start, boundaries.end + 1 + ksize2), tempdx.rowRange(1, tempdx.rows), |
|
CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE); |
|
Sobel(src.rowRange(boundaries.start, boundaries.end + 1 + ksize2), tempdy.rowRange(1, tempdy.rows), |
|
CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE); |
|
|
|
dx = tempdx.rowRange(0, tempdx.rows - ksize2); |
|
dy = tempdy.rowRange(0, tempdy.rows - ksize2); |
|
} |
|
else if (boundaries.end == src.rows) |
|
{ |
|
Mat tempdx(boundaries.end - boundaries.start + 2 + ksize2, src.cols, CV_16SC(cn)); |
|
Mat tempdy(boundaries.end - boundaries.start + 2 + ksize2, src.cols, CV_16SC(cn)); |
|
|
|
memset(tempdx.ptr<short>(tempdx.rows - 1), 0, cn * src.cols*sizeof(short)); |
|
memset(tempdy.ptr<short>(tempdy.rows - 1), 0, cn * src.cols*sizeof(short)); |
|
|
|
Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end), tempdx.rowRange(0, tempdx.rows - 1), |
|
CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE); |
|
Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end), tempdy.rowRange(0, tempdy.rows - 1), |
|
CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE); |
|
|
|
dx = tempdx.rowRange(ksize2, tempdx.rows); |
|
dy = tempdy.rowRange(ksize2, tempdy.rows); |
|
} |
|
else |
|
{ |
|
Mat tempdx(boundaries.end - boundaries.start + 2 + 2*ksize2, src.cols, CV_16SC(cn)); |
|
Mat tempdy(boundaries.end - boundaries.start + 2 + 2*ksize2, src.cols, CV_16SC(cn)); |
|
|
|
Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end + 1 + ksize2), tempdx, |
|
CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE); |
|
Sobel(src.rowRange(boundaries.start - 1 - ksize2, boundaries.end + 1 + ksize2), tempdy, |
|
CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE); |
|
|
|
dx = tempdx.rowRange(ksize2, tempdx.rows - ksize2); |
|
dy = tempdy.rowRange(ksize2, tempdy.rows - ksize2); |
|
} |
|
|
|
int maxsize = std::max(1 << 10, src.cols * (boundaries.end - boundaries.start) / 10); |
|
std::vector<uchar*> stack(maxsize); |
|
uchar **stack_top = &stack[0]; |
|
uchar **stack_bottom = &stack[0]; |
|
|
|
AutoBuffer<uchar> buffer(cn * mapstep * 3 * sizeof(int)); |
|
|
|
int* mag_buf[3]; |
|
mag_buf[0] = (int*)(uchar*)buffer; |
|
mag_buf[1] = mag_buf[0] + mapstep*cn; |
|
mag_buf[2] = mag_buf[1] + mapstep*cn; |
|
|
|
// calculate magnitude and angle of gradient, perform non-maxima suppression. |
|
// fill the map with one of the following values: |
|
// 0 - the pixel might belong to an edge |
|
// 1 - the pixel can not belong to an edge |
|
// 2 - the pixel does belong to an edge |
|
for (int i = boundaries.start - 1; i <= boundaries.end; i++) |
|
{ |
|
int* _norm = mag_buf[(i > boundaries.start) - (i == boundaries.start - 1) + 1] + 1; |
|
|
|
short* _dx = dx.ptr<short>(i - boundaries.start + 1); |
|
short* _dy = dy.ptr<short>(i - boundaries.start + 1); |
|
|
|
if (!L2gradient) |
|
{ |
|
int j = 0, width = src.cols * cn; |
|
#if CV_SSE2 |
|
if (haveSSE2) |
|
{ |
|
__m128i v_zero = _mm_setzero_si128(); |
|
for ( ; j <= width - 8; j += 8) |
|
{ |
|
__m128i v_dx = _mm_loadu_si128((const __m128i *)(_dx + j)); |
|
__m128i v_dy = _mm_loadu_si128((const __m128i *)(_dy + j)); |
|
v_dx = _mm_max_epi16(v_dx, _mm_sub_epi16(v_zero, v_dx)); |
|
v_dy = _mm_max_epi16(v_dy, _mm_sub_epi16(v_zero, v_dy)); |
|
|
|
__m128i v_norm = _mm_add_epi32(_mm_unpacklo_epi16(v_dx, v_zero), _mm_unpacklo_epi16(v_dy, v_zero)); |
|
_mm_storeu_si128((__m128i *)(_norm + j), v_norm); |
|
|
|
v_norm = _mm_add_epi32(_mm_unpackhi_epi16(v_dx, v_zero), _mm_unpackhi_epi16(v_dy, v_zero)); |
|
_mm_storeu_si128((__m128i *)(_norm + j + 4), v_norm); |
|
} |
|
} |
|
#elif CV_NEON |
|
for ( ; j <= width - 8; j += 8) |
|
{ |
|
int16x8_t v_dx = vld1q_s16(_dx + j), v_dy = vld1q_s16(_dy + j); |
|
vst1q_s32(_norm + j, vaddq_s32(vabsq_s32(vmovl_s16(vget_low_s16(v_dx))), |
|
vabsq_s32(vmovl_s16(vget_low_s16(v_dy))))); |
|
vst1q_s32(_norm + j + 4, vaddq_s32(vabsq_s32(vmovl_s16(vget_high_s16(v_dx))), |
|
vabsq_s32(vmovl_s16(vget_high_s16(v_dy))))); |
|
} |
|
#endif |
|
for ( ; j < width; ++j) |
|
_norm[j] = std::abs(int(_dx[j])) + std::abs(int(_dy[j])); |
|
} |
|
else |
|
{ |
|
int j = 0, width = src.cols * cn; |
|
#if CV_SSE2 |
|
if (haveSSE2) |
|
{ |
|
for ( ; j <= width - 8; j += 8) |
|
{ |
|
__m128i v_dx = _mm_loadu_si128((const __m128i *)(_dx + j)); |
|
__m128i v_dy = _mm_loadu_si128((const __m128i *)(_dy + j)); |
|
|
|
__m128i v_dx_ml = _mm_mullo_epi16(v_dx, v_dx), v_dx_mh = _mm_mulhi_epi16(v_dx, v_dx); |
|
__m128i v_dy_ml = _mm_mullo_epi16(v_dy, v_dy), v_dy_mh = _mm_mulhi_epi16(v_dy, v_dy); |
|
|
|
__m128i v_norm = _mm_add_epi32(_mm_unpacklo_epi16(v_dx_ml, v_dx_mh), _mm_unpacklo_epi16(v_dy_ml, v_dy_mh)); |
|
_mm_storeu_si128((__m128i *)(_norm + j), v_norm); |
|
|
|
v_norm = _mm_add_epi32(_mm_unpackhi_epi16(v_dx_ml, v_dx_mh), _mm_unpackhi_epi16(v_dy_ml, v_dy_mh)); |
|
_mm_storeu_si128((__m128i *)(_norm + j + 4), v_norm); |
|
} |
|
} |
|
#elif CV_NEON |
|
for ( ; j <= width - 8; j += 8) |
|
{ |
|
int16x8_t v_dx = vld1q_s16(_dx + j), v_dy = vld1q_s16(_dy + j); |
|
int16x4_t v_dxp = vget_low_s16(v_dx), v_dyp = vget_low_s16(v_dy); |
|
int32x4_t v_dst = vmlal_s16(vmull_s16(v_dxp, v_dxp), v_dyp, v_dyp); |
|
vst1q_s32(_norm + j, v_dst); |
|
|
|
v_dxp = vget_high_s16(v_dx), v_dyp = vget_high_s16(v_dy); |
|
v_dst = vmlal_s16(vmull_s16(v_dxp, v_dxp), v_dyp, v_dyp); |
|
vst1q_s32(_norm + j + 4, v_dst); |
|
} |
|
#endif |
|
for ( ; j < width; ++j) |
|
_norm[j] = int(_dx[j])*_dx[j] + int(_dy[j])*_dy[j]; |
|
} |
|
|
|
if (cn > 1) |
|
{ |
|
for(int j = 0, jn = 0; j < src.cols; ++j, jn += cn) |
|
{ |
|
int maxIdx = jn; |
|
for(int k = 1; k < cn; ++k) |
|
if(_norm[jn + k] > _norm[maxIdx]) maxIdx = jn + k; |
|
_norm[j] = _norm[maxIdx]; |
|
_dx[j] = _dx[maxIdx]; |
|
_dy[j] = _dy[maxIdx]; |
|
} |
|
} |
|
_norm[-1] = _norm[src.cols] = 0; |
|
|
|
// at the very beginning we do not have a complete ring |
|
// buffer of 3 magnitude rows for non-maxima suppression |
|
if (i <= boundaries.start) |
|
continue; |
|
|
|
uchar* _map = map + mapstep*i + 1; |
|
_map[-1] = _map[src.cols] = 1; |
|
|
|
int* _mag = mag_buf[1] + 1; // take the central row |
|
ptrdiff_t magstep1 = mag_buf[2] - mag_buf[1]; |
|
ptrdiff_t magstep2 = mag_buf[0] - mag_buf[1]; |
|
|
|
const short* _x = dx.ptr<short>(i - boundaries.start); |
|
const short* _y = dy.ptr<short>(i - boundaries.start); |
|
|
|
if ((stack_top - stack_bottom) + src.cols > maxsize) |
|
{ |
|
int sz = (int)(stack_top - stack_bottom); |
|
maxsize = std::max(maxsize * 3/2, sz + src.cols); |
|
stack.resize(maxsize); |
|
stack_bottom = &stack[0]; |
|
stack_top = stack_bottom + sz; |
|
} |
|
|
|
#define CANNY_PUSH(d) *(d) = uchar(2), *stack_top++ = (d) |
|
#define CANNY_POP(d) (d) = *--stack_top |
|
|
|
int prev_flag = 0; |
|
bool canny_push = false; |
|
for (int j = 0; j < src.cols; j++) |
|
{ |
|
#define CANNY_SHIFT 15 |
|
const int TG22 = (int)(0.4142135623730950488016887242097*(1<<CANNY_SHIFT) + 0.5); |
|
|
|
int m = _mag[j]; |
|
|
|
if (m > low) |
|
{ |
|
int xs = _x[j]; |
|
int ys = _y[j]; |
|
int x = std::abs(xs); |
|
int y = std::abs(ys) << CANNY_SHIFT; |
|
|
|
int tg22x = x * TG22; |
|
|
|
if (y < tg22x) |
|
{ |
|
if (m > _mag[j-1] && m >= _mag[j+1]) canny_push = true; |
|
} |
|
else |
|
{ |
|
int tg67x = tg22x + (x << (CANNY_SHIFT+1)); |
|
if (y > tg67x) |
|
{ |
|
if (m > _mag[j+magstep2] && m >= _mag[j+magstep1]) canny_push = true; |
|
} |
|
else |
|
{ |
|
int s = (xs ^ ys) < 0 ? -1 : 1; |
|
if (m > _mag[j+magstep2-s] && m > _mag[j+magstep1+s]) canny_push = true; |
|
} |
|
} |
|
} |
|
if (!canny_push) |
|
{ |
|
prev_flag = 0; |
|
_map[j] = uchar(1); |
|
continue; |
|
} |
|
else |
|
{ |
|
// _map[j-mapstep] is short-circuited at the start because previous thread is |
|
// responsible for initializing it. |
|
if (!prev_flag && m > high && (i <= boundaries.start+1 || _map[j-mapstep] != 2) ) |
|
{ |
|
CANNY_PUSH(_map + j); |
|
prev_flag = 1; |
|
} |
|
else |
|
_map[j] = 0; |
|
|
|
canny_push = false; |
|
} |
|
} |
|
|
|
// scroll the ring buffer |
|
_mag = mag_buf[0]; |
|
mag_buf[0] = mag_buf[1]; |
|
mag_buf[1] = mag_buf[2]; |
|
mag_buf[2] = _mag; |
|
} |
|
|
|
// now track the edges (hysteresis thresholding) |
|
while (stack_top > stack_bottom) |
|
{ |
|
if ((stack_top - stack_bottom) + 8 > maxsize) |
|
{ |
|
int sz = (int)(stack_top - stack_bottom); |
|
maxsize = maxsize * 3/2; |
|
stack.resize(maxsize); |
|
stack_bottom = &stack[0]; |
|
stack_top = stack_bottom + sz; |
|
} |
|
|
|
uchar* m; |
|
CANNY_POP(m); |
|
|
|
// Stops thresholding from expanding to other slices by sending pixels in the borders of each |
|
// slice in a queue to be serially processed later. |
|
if ( (m < map + (boundaries.start + 2) * mapstep) || (m >= map + boundaries.end * mapstep) ) |
|
{ |
|
borderPeaks.push(m); |
|
continue; |
|
} |
|
|
|
if (!m[-1]) CANNY_PUSH(m - 1); |
|
if (!m[1]) CANNY_PUSH(m + 1); |
|
if (!m[-mapstep-1]) CANNY_PUSH(m - mapstep - 1); |
|
if (!m[-mapstep]) CANNY_PUSH(m - mapstep); |
|
if (!m[-mapstep+1]) CANNY_PUSH(m - mapstep + 1); |
|
if (!m[mapstep-1]) CANNY_PUSH(m + mapstep - 1); |
|
if (!m[mapstep]) CANNY_PUSH(m + mapstep); |
|
if (!m[mapstep+1]) CANNY_PUSH(m + mapstep + 1); |
|
} |
|
} |
|
|
|
private: |
|
const Range boundaries; |
|
const Mat& src; |
|
uchar* map; |
|
int low; |
|
int high; |
|
int aperture_size; |
|
bool L2gradient; |
|
}; |
|
|
|
#endif |
|
|
|
} // namespace cv |
|
|
|
void cv::Canny( InputArray _src, OutputArray _dst, |
|
double low_thresh, double high_thresh, |
|
int aperture_size, bool L2gradient ) |
|
{ |
|
const int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); |
|
const Size size = _src.size(); |
|
|
|
CV_Assert( depth == CV_8U ); |
|
_dst.create(size, CV_8U); |
|
|
|
if (!L2gradient && (aperture_size & CV_CANNY_L2_GRADIENT) == CV_CANNY_L2_GRADIENT) |
|
{ |
|
// backward compatibility |
|
aperture_size &= ~CV_CANNY_L2_GRADIENT; |
|
L2gradient = true; |
|
} |
|
|
|
if ((aperture_size & 1) == 0 || (aperture_size != -1 && (aperture_size < 3 || aperture_size > 7))) |
|
CV_Error(CV_StsBadFlag, "Aperture size should be odd"); |
|
|
|
if (low_thresh > high_thresh) |
|
std::swap(low_thresh, high_thresh); |
|
|
|
CV_OCL_RUN(_dst.isUMat() && (cn == 1 || cn == 3), |
|
ocl_Canny(_src, _dst, (float)low_thresh, (float)high_thresh, aperture_size, L2gradient, cn, size)) |
|
|
|
Mat src = _src.getMat(), dst = _dst.getMat(); |
|
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION |
|
if (tegra::useTegra() && tegra::canny(src, dst, low_thresh, high_thresh, aperture_size, L2gradient)) |
|
return; |
|
#endif |
|
|
|
CV_IPP_RUN(USE_IPP_CANNY && (aperture_size == 3 && !L2gradient && 1 == cn), ippCanny(src, dst, (float)low_thresh, (float)high_thresh)) |
|
|
|
#ifdef HAVE_TBB |
|
|
|
if (L2gradient) |
|
{ |
|
low_thresh = std::min(32767.0, low_thresh); |
|
high_thresh = std::min(32767.0, high_thresh); |
|
|
|
if (low_thresh > 0) low_thresh *= low_thresh; |
|
if (high_thresh > 0) high_thresh *= high_thresh; |
|
} |
|
int low = cvFloor(low_thresh); |
|
int high = cvFloor(high_thresh); |
|
|
|
ptrdiff_t mapstep = src.cols + 2; |
|
AutoBuffer<uchar> buffer((src.cols+2)*(src.rows+2)); |
|
|
|
uchar* map = (uchar*)buffer; |
|
memset(map, 1, mapstep); |
|
memset(map + mapstep*(src.rows + 1), 1, mapstep); |
|
|
|
int threadsNumber = tbb::task_scheduler_init::default_num_threads(); |
|
int grainSize = src.rows / threadsNumber; |
|
|
|
// Make a fallback for pictures with too few rows. |
|
uchar ksize2 = aperture_size / 2; |
|
int minGrainSize = 1 + ksize2; |
|
int maxGrainSize = src.rows - 2 - 2*ksize2; |
|
if ( !( minGrainSize <= grainSize && grainSize <= maxGrainSize ) ) |
|
{ |
|
threadsNumber = 1; |
|
grainSize = src.rows; |
|
} |
|
|
|
tbb::task_group g; |
|
|
|
for (int i = 0; i < threadsNumber; ++i) |
|
{ |
|
if (i < threadsNumber - 1) |
|
g.run(tbbCanny(Range(i * grainSize, (i + 1) * grainSize), src, map, low, high, aperture_size, L2gradient)); |
|
else |
|
g.run(tbbCanny(Range(i * grainSize, src.rows), src, map, low, high, aperture_size, L2gradient)); |
|
} |
|
|
|
g.wait(); |
|
|
|
#define CANNY_PUSH_SERIAL(d) *(d) = uchar(2), borderPeaks.push(d) |
|
|
|
// now track the edges (hysteresis thresholding) |
|
uchar* m; |
|
while (borderPeaks.try_pop(m)) |
|
{ |
|
if (!m[-1]) CANNY_PUSH_SERIAL(m - 1); |
|
if (!m[1]) CANNY_PUSH_SERIAL(m + 1); |
|
if (!m[-mapstep-1]) CANNY_PUSH_SERIAL(m - mapstep - 1); |
|
if (!m[-mapstep]) CANNY_PUSH_SERIAL(m - mapstep); |
|
if (!m[-mapstep+1]) CANNY_PUSH_SERIAL(m - mapstep + 1); |
|
if (!m[mapstep-1]) CANNY_PUSH_SERIAL(m + mapstep - 1); |
|
if (!m[mapstep]) CANNY_PUSH_SERIAL(m + mapstep); |
|
if (!m[mapstep+1]) CANNY_PUSH_SERIAL(m + mapstep + 1); |
|
} |
|
|
|
#else |
|
|
|
Mat dx(src.rows, src.cols, CV_16SC(cn)); |
|
Mat dy(src.rows, src.cols, CV_16SC(cn)); |
|
|
|
Sobel(src, dx, CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE); |
|
Sobel(src, dy, CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE); |
|
|
|
if (L2gradient) |
|
{ |
|
low_thresh = std::min(32767.0, low_thresh); |
|
high_thresh = std::min(32767.0, high_thresh); |
|
|
|
if (low_thresh > 0) low_thresh *= low_thresh; |
|
if (high_thresh > 0) high_thresh *= high_thresh; |
|
} |
|
int low = cvFloor(low_thresh); |
|
int high = cvFloor(high_thresh); |
|
|
|
ptrdiff_t mapstep = src.cols + 2; |
|
AutoBuffer<uchar> buffer((src.cols+2)*(src.rows+2) + cn * mapstep * 3 * sizeof(int)); |
|
|
|
int* mag_buf[3]; |
|
mag_buf[0] = (int*)(uchar*)buffer; |
|
mag_buf[1] = mag_buf[0] + mapstep*cn; |
|
mag_buf[2] = mag_buf[1] + mapstep*cn; |
|
memset(mag_buf[0], 0, /* cn* */mapstep*sizeof(int)); |
|
|
|
uchar* map = (uchar*)(mag_buf[2] + mapstep*cn); |
|
memset(map, 1, mapstep); |
|
memset(map + mapstep*(src.rows + 1), 1, mapstep); |
|
|
|
int maxsize = std::max(1 << 10, src.cols * src.rows / 10); |
|
std::vector<uchar*> stack(maxsize); |
|
uchar **stack_top = &stack[0]; |
|
uchar **stack_bottom = &stack[0]; |
|
|
|
/* sector numbers |
|
(Top-Left Origin) |
|
|
|
1 2 3 |
|
* * * |
|
* * * |
|
0*******0 |
|
* * * |
|
* * * |
|
3 2 1 |
|
*/ |
|
|
|
#define CANNY_PUSH(d) *(d) = uchar(2), *stack_top++ = (d) |
|
#define CANNY_POP(d) (d) = *--stack_top |
|
|
|
#if CV_SSE2 |
|
bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2); |
|
#endif |
|
|
|
// calculate magnitude and angle of gradient, perform non-maxima suppression. |
|
// fill the map with one of the following values: |
|
// 0 - the pixel might belong to an edge |
|
// 1 - the pixel can not belong to an edge |
|
// 2 - the pixel does belong to an edge |
|
for (int i = 0; i <= src.rows; i++) |
|
{ |
|
int* _norm = mag_buf[(i > 0) + 1] + 1; |
|
if (i < src.rows) |
|
{ |
|
short* _dx = dx.ptr<short>(i); |
|
short* _dy = dy.ptr<short>(i); |
|
|
|
if (!L2gradient) |
|
{ |
|
int j = 0, width = src.cols * cn; |
|
#if CV_SSE2 |
|
if (haveSSE2) |
|
{ |
|
__m128i v_zero = _mm_setzero_si128(); |
|
for ( ; j <= width - 8; j += 8) |
|
{ |
|
__m128i v_dx = _mm_loadu_si128((const __m128i *)(_dx + j)); |
|
__m128i v_dy = _mm_loadu_si128((const __m128i *)(_dy + j)); |
|
v_dx = _mm_max_epi16(v_dx, _mm_sub_epi16(v_zero, v_dx)); |
|
v_dy = _mm_max_epi16(v_dy, _mm_sub_epi16(v_zero, v_dy)); |
|
|
|
__m128i v_norm = _mm_add_epi32(_mm_unpacklo_epi16(v_dx, v_zero), _mm_unpacklo_epi16(v_dy, v_zero)); |
|
_mm_storeu_si128((__m128i *)(_norm + j), v_norm); |
|
|
|
v_norm = _mm_add_epi32(_mm_unpackhi_epi16(v_dx, v_zero), _mm_unpackhi_epi16(v_dy, v_zero)); |
|
_mm_storeu_si128((__m128i *)(_norm + j + 4), v_norm); |
|
} |
|
} |
|
#elif CV_NEON |
|
for ( ; j <= width - 8; j += 8) |
|
{ |
|
int16x8_t v_dx = vld1q_s16(_dx + j), v_dy = vld1q_s16(_dy + j); |
|
vst1q_s32(_norm + j, vaddq_s32(vabsq_s32(vmovl_s16(vget_low_s16(v_dx))), |
|
vabsq_s32(vmovl_s16(vget_low_s16(v_dy))))); |
|
vst1q_s32(_norm + j + 4, vaddq_s32(vabsq_s32(vmovl_s16(vget_high_s16(v_dx))), |
|
vabsq_s32(vmovl_s16(vget_high_s16(v_dy))))); |
|
} |
|
#endif |
|
for ( ; j < width; ++j) |
|
_norm[j] = std::abs(int(_dx[j])) + std::abs(int(_dy[j])); |
|
} |
|
else |
|
{ |
|
int j = 0, width = src.cols * cn; |
|
#if CV_SSE2 |
|
if (haveSSE2) |
|
{ |
|
for ( ; j <= width - 8; j += 8) |
|
{ |
|
__m128i v_dx = _mm_loadu_si128((const __m128i *)(_dx + j)); |
|
__m128i v_dy = _mm_loadu_si128((const __m128i *)(_dy + j)); |
|
|
|
__m128i v_dx_ml = _mm_mullo_epi16(v_dx, v_dx), v_dx_mh = _mm_mulhi_epi16(v_dx, v_dx); |
|
__m128i v_dy_ml = _mm_mullo_epi16(v_dy, v_dy), v_dy_mh = _mm_mulhi_epi16(v_dy, v_dy); |
|
|
|
__m128i v_norm = _mm_add_epi32(_mm_unpacklo_epi16(v_dx_ml, v_dx_mh), _mm_unpacklo_epi16(v_dy_ml, v_dy_mh)); |
|
_mm_storeu_si128((__m128i *)(_norm + j), v_norm); |
|
|
|
v_norm = _mm_add_epi32(_mm_unpackhi_epi16(v_dx_ml, v_dx_mh), _mm_unpackhi_epi16(v_dy_ml, v_dy_mh)); |
|
_mm_storeu_si128((__m128i *)(_norm + j + 4), v_norm); |
|
} |
|
} |
|
#elif CV_NEON |
|
for ( ; j <= width - 8; j += 8) |
|
{ |
|
int16x8_t v_dx = vld1q_s16(_dx + j), v_dy = vld1q_s16(_dy + j); |
|
int16x4_t v_dxp = vget_low_s16(v_dx), v_dyp = vget_low_s16(v_dy); |
|
int32x4_t v_dst = vmlal_s16(vmull_s16(v_dxp, v_dxp), v_dyp, v_dyp); |
|
vst1q_s32(_norm + j, v_dst); |
|
|
|
v_dxp = vget_high_s16(v_dx), v_dyp = vget_high_s16(v_dy); |
|
v_dst = vmlal_s16(vmull_s16(v_dxp, v_dxp), v_dyp, v_dyp); |
|
vst1q_s32(_norm + j + 4, v_dst); |
|
} |
|
#endif |
|
for ( ; j < width; ++j) |
|
_norm[j] = int(_dx[j])*_dx[j] + int(_dy[j])*_dy[j]; |
|
} |
|
|
|
if (cn > 1) |
|
{ |
|
for(int j = 0, jn = 0; j < src.cols; ++j, jn += cn) |
|
{ |
|
int maxIdx = jn; |
|
for(int k = 1; k < cn; ++k) |
|
if(_norm[jn + k] > _norm[maxIdx]) maxIdx = jn + k; |
|
_norm[j] = _norm[maxIdx]; |
|
_dx[j] = _dx[maxIdx]; |
|
_dy[j] = _dy[maxIdx]; |
|
} |
|
} |
|
_norm[-1] = _norm[src.cols] = 0; |
|
} |
|
else |
|
memset(_norm-1, 0, /* cn* */mapstep*sizeof(int)); |
|
|
|
// at the very beginning we do not have a complete ring |
|
// buffer of 3 magnitude rows for non-maxima suppression |
|
if (i == 0) |
|
continue; |
|
|
|
uchar* _map = map + mapstep*i + 1; |
|
_map[-1] = _map[src.cols] = 1; |
|
|
|
int* _mag = mag_buf[1] + 1; // take the central row |
|
ptrdiff_t magstep1 = mag_buf[2] - mag_buf[1]; |
|
ptrdiff_t magstep2 = mag_buf[0] - mag_buf[1]; |
|
|
|
const short* _x = dx.ptr<short>(i-1); |
|
const short* _y = dy.ptr<short>(i-1); |
|
|
|
if ((stack_top - stack_bottom) + src.cols > maxsize) |
|
{ |
|
int sz = (int)(stack_top - stack_bottom); |
|
maxsize = std::max(maxsize * 3/2, sz + src.cols); |
|
stack.resize(maxsize); |
|
stack_bottom = &stack[0]; |
|
stack_top = stack_bottom + sz; |
|
} |
|
|
|
int prev_flag = 0; |
|
for (int j = 0; j < src.cols; j++) |
|
{ |
|
#define CANNY_SHIFT 15 |
|
const int TG22 = (int)(0.4142135623730950488016887242097*(1<<CANNY_SHIFT) + 0.5); |
|
|
|
int m = _mag[j]; |
|
|
|
if (m > low) |
|
{ |
|
int xs = _x[j]; |
|
int ys = _y[j]; |
|
int x = std::abs(xs); |
|
int y = std::abs(ys) << CANNY_SHIFT; |
|
|
|
int tg22x = x * TG22; |
|
|
|
if (y < tg22x) |
|
{ |
|
if (m > _mag[j-1] && m >= _mag[j+1]) goto __ocv_canny_push; |
|
} |
|
else |
|
{ |
|
int tg67x = tg22x + (x << (CANNY_SHIFT+1)); |
|
if (y > tg67x) |
|
{ |
|
if (m > _mag[j+magstep2] && m >= _mag[j+magstep1]) goto __ocv_canny_push; |
|
} |
|
else |
|
{ |
|
int s = (xs ^ ys) < 0 ? -1 : 1; |
|
if (m > _mag[j+magstep2-s] && m > _mag[j+magstep1+s]) goto __ocv_canny_push; |
|
} |
|
} |
|
} |
|
prev_flag = 0; |
|
_map[j] = uchar(1); |
|
continue; |
|
__ocv_canny_push: |
|
if (!prev_flag && m > high && _map[j-mapstep] != 2) |
|
{ |
|
CANNY_PUSH(_map + j); |
|
prev_flag = 1; |
|
} |
|
else |
|
_map[j] = 0; |
|
} |
|
|
|
// scroll the ring buffer |
|
_mag = mag_buf[0]; |
|
mag_buf[0] = mag_buf[1]; |
|
mag_buf[1] = mag_buf[2]; |
|
mag_buf[2] = _mag; |
|
} |
|
|
|
// now track the edges (hysteresis thresholding) |
|
while (stack_top > stack_bottom) |
|
{ |
|
uchar* m; |
|
if ((stack_top - stack_bottom) + 8 > maxsize) |
|
{ |
|
int sz = (int)(stack_top - stack_bottom); |
|
maxsize = maxsize * 3/2; |
|
stack.resize(maxsize); |
|
stack_bottom = &stack[0]; |
|
stack_top = stack_bottom + sz; |
|
} |
|
|
|
CANNY_POP(m); |
|
|
|
if (!m[-1]) CANNY_PUSH(m - 1); |
|
if (!m[1]) CANNY_PUSH(m + 1); |
|
if (!m[-mapstep-1]) CANNY_PUSH(m - mapstep - 1); |
|
if (!m[-mapstep]) CANNY_PUSH(m - mapstep); |
|
if (!m[-mapstep+1]) CANNY_PUSH(m - mapstep + 1); |
|
if (!m[mapstep-1]) CANNY_PUSH(m + mapstep - 1); |
|
if (!m[mapstep]) CANNY_PUSH(m + mapstep); |
|
if (!m[mapstep+1]) CANNY_PUSH(m + mapstep + 1); |
|
} |
|
|
|
#endif |
|
|
|
// the final pass, form the final image |
|
const uchar* pmap = map + mapstep + 1; |
|
uchar* pdst = dst.ptr(); |
|
for (int i = 0; i < src.rows; i++, pmap += mapstep, pdst += dst.step) |
|
{ |
|
for (int j = 0; j < src.cols; j++) |
|
pdst[j] = (uchar)-(pmap[j] >> 1); |
|
} |
|
} |
|
|
|
void cvCanny( const CvArr* image, CvArr* edges, double threshold1, |
|
double threshold2, int aperture_size ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(image), dst = cv::cvarrToMat(edges); |
|
CV_Assert( src.size == dst.size && src.depth() == CV_8U && dst.type() == CV_8U ); |
|
|
|
cv::Canny(src, dst, threshold1, threshold2, aperture_size & 255, |
|
(aperture_size & CV_CANNY_L2_GRADIENT) != 0); |
|
} |
|
|
|
/* End of file. */
|
|
|