mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
187 lines
9.1 KiB
187 lines
9.1 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include <opencv2/dnn/layer.details.hpp> |
|
|
|
#include <google/protobuf/stubs/common.h> |
|
|
|
namespace cv { |
|
namespace dnn { |
|
CV__DNN_INLINE_NS_BEGIN |
|
|
|
static Mutex* __initialization_mutex = NULL; |
|
Mutex& getInitializationMutex() |
|
{ |
|
if (__initialization_mutex == NULL) |
|
__initialization_mutex = new Mutex(); |
|
return *__initialization_mutex; |
|
} |
|
// force initialization (single-threaded environment) |
|
Mutex* __initialization_mutex_initializer = &getInitializationMutex(); |
|
|
|
namespace { |
|
using namespace google::protobuf; |
|
class ProtobufShutdown { |
|
public: |
|
bool initialized; |
|
ProtobufShutdown() : initialized(true) {} |
|
~ProtobufShutdown() |
|
{ |
|
initialized = false; |
|
google::protobuf::ShutdownProtobufLibrary(); |
|
} |
|
}; |
|
} // namespace |
|
|
|
void initializeLayerFactory() |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
|
|
static ProtobufShutdown protobufShutdown; CV_UNUSED(protobufShutdown); |
|
|
|
CV_DNN_REGISTER_LAYER_CLASS(Slice, SliceLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Split, SplitLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Concat, ConcatLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Reshape, ReshapeLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Flatten, FlattenLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Resize, ResizeLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Interp, InterpLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(CropAndResize, CropAndResizeLayer); |
|
|
|
CV_DNN_REGISTER_LAYER_CLASS(Convolution, ConvolutionLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Deconvolution, DeconvolutionLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Pooling, PoolingLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(ROIPooling, PoolingLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(PSROIPooling, PoolingLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(LRN, LRNLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(InnerProduct, InnerProductLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Softmax, SoftmaxLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(SoftMax, SoftmaxLayer); // For compatibility. See https://github.com/opencv/opencv/issues/16877 |
|
CV_DNN_REGISTER_LAYER_CLASS(MVN, MVNLayer); |
|
|
|
CV_DNN_REGISTER_LAYER_CLASS(ReLU, ReLULayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(ReLU6, ReLU6Layer); |
|
CV_DNN_REGISTER_LAYER_CLASS(ChannelsPReLU, ChannelsPReLULayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(PReLU, ChannelsPReLULayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Sigmoid, SigmoidLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(TanH, TanHLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Swish, SwishLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Mish, MishLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(ELU, ELULayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(BNLL, BNLLLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(AbsVal, AbsLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Power, PowerLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Exp, ExpLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(BatchNorm, BatchNormLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(MaxUnpool, MaxUnpoolLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Dropout, BlankLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Identity, BlankLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Silence, BlankLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Const, ConstLayer); |
|
|
|
CV_DNN_REGISTER_LAYER_CLASS(Crop, CropLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Eltwise, EltwiseLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Permute, PermuteLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(ShuffleChannel, ShuffleChannelLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(PriorBox, PriorBoxLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(PriorBoxClustered, PriorBoxLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Reorg, ReorgLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Region, RegionLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(DetectionOutput, DetectionOutputLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(NormalizeBBox, NormalizeBBoxLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Normalize, NormalizeBBoxLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Shift, ShiftLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Padding, PaddingLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Proposal, ProposalLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Scale, ScaleLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(DataAugmentation, DataAugmentationLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Correlation, CorrelationLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Accum, AccumLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(FlowWarp, FlowWarpLayer); |
|
|
|
CV_DNN_REGISTER_LAYER_CLASS(LSTM, LSTMLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(GRU, GRULayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(CumSum, CumSumLayer); |
|
|
|
CV_DNN_REGISTER_LAYER_CLASS(Quantize, QuantizeLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Dequantize, DequantizeLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(Requantize, RequantizeLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(ConvolutionInt8, ConvolutionLayerInt8); |
|
CV_DNN_REGISTER_LAYER_CLASS(InnerProductInt8, InnerProductLayerInt8); |
|
CV_DNN_REGISTER_LAYER_CLASS(PoolingInt8, PoolingLayerInt8); |
|
CV_DNN_REGISTER_LAYER_CLASS(EltwiseInt8, EltwiseLayerInt8); |
|
CV_DNN_REGISTER_LAYER_CLASS(BatchNormInt8, BatchNormLayerInt8); |
|
CV_DNN_REGISTER_LAYER_CLASS(ScaleInt8, ScaleLayerInt8); |
|
CV_DNN_REGISTER_LAYER_CLASS(ShiftInt8, ShiftLayerInt8); |
|
|
|
CV_DNN_REGISTER_LAYER_CLASS(ReLUInt8, ActivationLayerInt8); |
|
CV_DNN_REGISTER_LAYER_CLASS(ReLU6Int8, ActivationLayerInt8); |
|
CV_DNN_REGISTER_LAYER_CLASS(SigmoidInt8, ActivationLayerInt8); |
|
CV_DNN_REGISTER_LAYER_CLASS(TanHInt8, ActivationLayerInt8); |
|
CV_DNN_REGISTER_LAYER_CLASS(SwishInt8, ActivationLayerInt8); |
|
CV_DNN_REGISTER_LAYER_CLASS(MishInt8, ActivationLayerInt8); |
|
CV_DNN_REGISTER_LAYER_CLASS(ELUInt8, ActivationLayerInt8); |
|
CV_DNN_REGISTER_LAYER_CLASS(BNLLInt8, ActivationLayerInt8); |
|
CV_DNN_REGISTER_LAYER_CLASS(AbsValInt8, ActivationLayerInt8); |
|
CV_DNN_REGISTER_LAYER_CLASS(SoftmaxInt8, SoftmaxLayerInt8); |
|
CV_DNN_REGISTER_LAYER_CLASS(SoftMaxInt8, SoftmaxLayerInt8); |
|
|
|
CV_DNN_REGISTER_LAYER_CLASS(ConcatInt8, ConcatLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(FlattenInt8, FlattenLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(PaddingInt8, PaddingLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(BlankInt8, BlankLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(DropoutInt8, BlankLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(IdentityInt8, BlankLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(SilenceInt8, BlankLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(ConstInt8, ConstLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(ReshapeInt8, ReshapeLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(ResizeInt8, ResizeLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(SplitInt8, SplitLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(SliceInt8, SliceLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(CropInt8, CropLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(PermuteInt8, PermuteLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(ReorgInt8, ReorgLayer); |
|
CV_DNN_REGISTER_LAYER_CLASS(ShuffleChannelInt8, ShuffleChannelLayer); |
|
} |
|
|
|
CV__DNN_INLINE_NS_END |
|
}} // namespace
|
|
|