mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
100 lines
3.3 KiB
100 lines
3.3 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
|
|
#ifndef OPENCV_DNN_NMS_INL_HPP |
|
#define OPENCV_DNN_NMS_INL_HPP |
|
|
|
#include <opencv2/dnn.hpp> |
|
|
|
namespace cv { |
|
namespace dnn { |
|
|
|
namespace |
|
{ |
|
|
|
template <typename T> |
|
static inline bool SortScorePairDescend(const std::pair<float, T>& pair1, |
|
const std::pair<float, T>& pair2) |
|
{ |
|
return pair1.first > pair2.first; |
|
} |
|
|
|
} // namespace |
|
|
|
// Get max scores with corresponding indices. |
|
// scores: a set of scores. |
|
// threshold: only consider scores higher than the threshold. |
|
// top_k: if -1, keep all; otherwise, keep at most top_k. |
|
// score_index_vec: store the sorted (score, index) pair. |
|
inline void GetMaxScoreIndex(const std::vector<float>& scores, const float threshold, const int top_k, |
|
std::vector<std::pair<float, int> >& score_index_vec) |
|
{ |
|
CV_DbgAssert(score_index_vec.empty()); |
|
// Generate index score pairs. |
|
for (size_t i = 0; i < scores.size(); ++i) |
|
{ |
|
if (scores[i] > threshold) |
|
{ |
|
score_index_vec.push_back(std::make_pair(scores[i], i)); |
|
} |
|
} |
|
|
|
// Sort the score pair according to the scores in descending order |
|
std::stable_sort(score_index_vec.begin(), score_index_vec.end(), |
|
SortScorePairDescend<int>); |
|
|
|
// Keep top_k scores if needed. |
|
if (top_k > 0 && top_k < (int)score_index_vec.size()) |
|
{ |
|
score_index_vec.resize(top_k); |
|
} |
|
} |
|
|
|
// Do non maximum suppression given bboxes and scores. |
|
// Inspired by Piotr Dollar's NMS implementation in EdgeBox. |
|
// https://goo.gl/jV3JYS |
|
// bboxes: a set of bounding boxes. |
|
// scores: a set of corresponding confidences. |
|
// score_threshold: a threshold used to filter detection results. |
|
// nms_threshold: a threshold used in non maximum suppression. |
|
// top_k: if not > 0, keep at most top_k picked indices. |
|
// indices: the kept indices of bboxes after nms. |
|
template <typename BoxType> |
|
inline void NMSFast_(const std::vector<BoxType>& bboxes, |
|
const std::vector<float>& scores, const float score_threshold, |
|
const float nms_threshold, const float eta, const int top_k, |
|
std::vector<int>& indices, float (*computeOverlap)(const BoxType&, const BoxType&)) |
|
{ |
|
CV_Assert(bboxes.size() == scores.size()); |
|
|
|
// Get top_k scores (with corresponding indices). |
|
std::vector<std::pair<float, int> > score_index_vec; |
|
GetMaxScoreIndex(scores, score_threshold, top_k, score_index_vec); |
|
|
|
// Do nms. |
|
float adaptive_threshold = nms_threshold; |
|
indices.clear(); |
|
for (size_t i = 0; i < score_index_vec.size(); ++i) { |
|
const int idx = score_index_vec[i].second; |
|
bool keep = true; |
|
for (int k = 0; k < (int)indices.size() && keep; ++k) { |
|
const int kept_idx = indices[k]; |
|
float overlap = computeOverlap(bboxes[idx], bboxes[kept_idx]); |
|
keep = overlap <= adaptive_threshold; |
|
} |
|
if (keep) |
|
indices.push_back(idx); |
|
if (keep && eta < 1 && adaptive_threshold > 0.5) { |
|
adaptive_threshold *= eta; |
|
} |
|
} |
|
} |
|
|
|
}// dnn |
|
}// cv |
|
|
|
#endif
|
|
|