Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
299 lines
11 KiB
299 lines
11 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "../precomp.hpp" |
|
#include "layers_common.hpp" |
|
#include "../op_inf_engine.hpp" |
|
#include "../ie_ngraph.hpp" |
|
|
|
#include <opencv2/dnn/shape_utils.hpp> |
|
|
|
namespace cv |
|
{ |
|
namespace dnn |
|
{ |
|
|
|
static void computeShapeByReshapeMask(const MatShape &srcShape, |
|
const MatShape &maskShape, |
|
Range srcRange /*= Range::all()*/, |
|
MatShape& dstShape) |
|
{ |
|
int srcShapeSize = (int)srcShape.size(); |
|
int maskShapeSize = (int)maskShape.size(); |
|
|
|
if (srcRange == Range::all()) |
|
srcRange = Range(0, srcShapeSize); |
|
else |
|
{ |
|
int sz = srcRange.size(); |
|
srcRange.start = clamp(srcRange.start, srcShapeSize); |
|
srcRange.end = srcRange.end == INT_MAX ? srcShapeSize : srcRange.start + sz; |
|
} |
|
|
|
bool explicitMask = !maskShape.empty(); // All mask values are positive. |
|
for (int i = 0, n = maskShape.size(); i < n && explicitMask; ++i) |
|
{ |
|
explicitMask = maskShape[i] > 0; |
|
} |
|
// Working range of source shape is a range where area(src) == area(mask). |
|
if (explicitMask) |
|
{ |
|
int maskTotal = total(maskShape); |
|
// Go from the end of mask until we collect required total. |
|
bool matched = false; |
|
for (int i = srcRange.end - 1; i >= srcRange.start; --i) |
|
{ |
|
if (matched) |
|
{ |
|
if (total(srcShape, i, srcRange.end) != maskTotal) |
|
{ |
|
srcRange.start = i + 1; |
|
break; |
|
} |
|
else if (i == 0) |
|
{ |
|
srcRange.start = 0; |
|
break; |
|
} |
|
} |
|
else |
|
{ |
|
matched = total(srcShape, i, srcRange.end) == maskTotal; |
|
} |
|
} |
|
while (total(srcShape, srcRange.start, srcRange.end) != maskTotal && srcRange.start > 0) |
|
{ |
|
srcRange.start -= 1; |
|
} |
|
CV_Assert(total(srcShape, srcRange.start, srcRange.end) == maskTotal); |
|
} |
|
|
|
CV_Assert(0 <= srcRange.start && srcRange.start <= srcRange.end && srcRange.end <= srcShapeSize); |
|
int dstShapeSize = srcShapeSize - srcRange.size() + maskShapeSize; |
|
dstShape.resize(dstShapeSize); |
|
|
|
std::copy(srcShape.begin(), srcShape.begin() + srcRange.start, dstShape.begin()); |
|
std::copy(srcShape.begin() + srcRange.end, srcShape.begin() + srcShapeSize, dstShape.begin() + srcRange.start + maskShapeSize); |
|
|
|
int inferDim = -1; |
|
for (int i = 0; i < maskShapeSize; i++) |
|
{ |
|
if (maskShape[i] > 0) |
|
{ |
|
dstShape[srcRange.start + i] = maskShape[i]; |
|
} |
|
else if (maskShape[i] == 0) |
|
{ |
|
if (srcRange.start + i >= srcShapeSize) |
|
CV_Error(Error::StsBadArg, format("Copy dim[%d] (which has zero size) is out of the source shape bounds", srcRange.start + i)); |
|
dstShape[srcRange.start + i] = srcShape[srcRange.start + i]; |
|
} |
|
else if (maskShape[i] == -1) |
|
{ |
|
if (inferDim != -1) |
|
CV_Error(Error::StsAssert, "Duplicate of inferred dim (which is denoted by -1)"); |
|
inferDim = srcRange.start + i; |
|
dstShape[inferDim] = 1; |
|
} |
|
else |
|
CV_Error(Error::StsBadArg, "maskShape[i] >= -1"); |
|
} |
|
|
|
size_t srcTotal = total(srcShape); |
|
size_t dstTotal = total(dstShape); |
|
CV_Assert(dstTotal != 0); |
|
|
|
if (inferDim != -1) |
|
{ |
|
if (srcTotal % dstTotal != 0) |
|
CV_Error(Error::StsBackTrace, "Can't infer a dim denoted by -1"); |
|
|
|
dstShape[inferDim] = (int)(srcTotal / dstTotal); |
|
} |
|
else |
|
{ |
|
CV_Assert(srcTotal == dstTotal); |
|
} |
|
} |
|
|
|
|
|
class ReshapeLayerImpl CV_FINAL : public ReshapeLayer |
|
{ |
|
public: |
|
ReshapeLayerImpl(const LayerParams& params) |
|
{ |
|
setParamsFrom(params); |
|
int axis = params.get<int>("axis", 0); |
|
int numAxes = params.get<int>("num_axes", -1); |
|
CV_Assert(numAxes >= -1); |
|
newShapeRange = (numAxes == -1) ? Range(axis, INT_MAX) : Range(axis, axis + numAxes); |
|
|
|
newShapeDesc.clear(); |
|
if (params.has("dim")) |
|
{ |
|
const DictValue ¶mShape = params.get("dim"); |
|
int i, dims = paramShape.size(); |
|
newShapeDesc.resize(dims); |
|
for (i = 0; i < dims; i++) |
|
newShapeDesc[i] = paramShape.get<int>(i); |
|
} |
|
} |
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE |
|
{ |
|
return backendId == DNN_BACKEND_OPENCV || |
|
((backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && haveInfEngine()); |
|
} |
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const CV_OVERRIDE |
|
{ |
|
if (inputs.size() == 1 || inputs.size() == requiredOutputs) |
|
{ |
|
outputs.clear(); |
|
for (size_t i = 0; i < inputs.size(); i++) |
|
{ |
|
outputs.push_back(MatShape()); |
|
computeShapeByReshapeMask(inputs[i], newShapeDesc, newShapeRange, outputs.back()); |
|
} |
|
} |
|
else |
|
{ |
|
CV_Assert_N(inputs.size() == 2, total(inputs[0]) == total(inputs[1])); |
|
outputs.assign(1, inputs[1]); |
|
} |
|
return true; |
|
} |
|
|
|
void finalize(InputArrayOfArrays, OutputArrayOfArrays outputs_arr) CV_OVERRIDE |
|
{ |
|
std::vector<Mat> outputs; |
|
outputs_arr.getMatVector(outputs); |
|
|
|
CV_Assert(!outputs.empty()); |
|
outShapes.resize(outputs.size()); |
|
for (int i = 0; i < outputs.size(); ++i) |
|
outShapes[i] = shape(outputs[i]); |
|
} |
|
|
|
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals) |
|
{ |
|
std::vector<UMat> inputs; |
|
std::vector<UMat> outputs; |
|
|
|
inps.getUMatVector(inputs); |
|
outs.getUMatVector(outputs); |
|
|
|
for (size_t i = 0; i < outputs.size(); i++) |
|
{ |
|
UMat srcBlob = inputs[i]; |
|
void *src_handle = inputs[i].handle(ACCESS_READ); |
|
void *dst_handle = outputs[i].handle(ACCESS_WRITE); |
|
if (src_handle != dst_handle) |
|
{ |
|
UMat umat = srcBlob.reshape(1, (int)outShapes[i].size(), &outShapes[i][0]); |
|
umat.copyTo(outputs[i]); |
|
} |
|
} |
|
outs.assign(outputs); |
|
|
|
return true; |
|
} |
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget), |
|
forward_ocl(inputs_arr, outputs_arr, internals_arr)) |
|
|
|
std::vector<Mat> inputs, outputs; |
|
inputs_arr.getMatVector(inputs); |
|
outputs_arr.getMatVector(outputs); |
|
for (size_t i = 0; i < outputs.size(); i++) |
|
{ |
|
Mat srcBlob = inputs[i]; |
|
if (outputs[i].data != srcBlob.data) |
|
srcBlob.reshape(1, shape(outputs[i])).copyTo(outputs[i]); |
|
} |
|
} |
|
|
|
#ifdef HAVE_DNN_IE_NN_BUILDER_2019 |
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >& inputs) CV_OVERRIDE |
|
{ |
|
InferenceEngine::Builder::ReshapeLayer ieLayer(name); |
|
CV_Assert(outShapes.size() == 1); |
|
ieLayer.setDims(outShapes[0]); |
|
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer)); |
|
} |
|
#endif // HAVE_DNN_IE_NN_BUILDER_2019 |
|
|
|
#ifdef HAVE_DNN_NGRAPH |
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs, |
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE |
|
{ |
|
CV_Assert(outShapes.size() == 1); |
|
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node; |
|
|
|
std::vector<int64_t> out(outShapes[0].begin(), outShapes[0].end()); |
|
auto shape = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, |
|
ngraph::Shape{out.size()}, out.data()); |
|
auto reshape = std::make_shared<ngraph::op::v1::Reshape>(ieInpNode, shape, true); |
|
return Ptr<BackendNode>(new InfEngineNgraphNode(reshape)); |
|
} |
|
#endif // HAVE_DNN_NGRAPH |
|
|
|
private: |
|
std::vector<MatShape> outShapes; |
|
}; |
|
|
|
Ptr<ReshapeLayer> ReshapeLayer::create(const LayerParams& params) |
|
{ |
|
return Ptr<ReshapeLayer>(new ReshapeLayerImpl(params)); |
|
} |
|
|
|
|
|
} |
|
}
|
|
|