Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1104 lines
47 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "opencv2/core/hal/intrin.hpp"
#include "../op_halide.hpp"
#include "../op_inf_engine.hpp"
#ifdef HAVE_DNN_NGRAPH
#include "../ie_ngraph.hpp"
#include <ngraph/op/experimental/layers/roi_pooling.hpp>
#include <ngraph/op/experimental/layers/psroi_pooling.hpp>
#endif
#include <float.h>
#include <algorithm>
#include <numeric>
using std::max;
using std::min;
#ifdef HAVE_OPENCL
#include "opencl_kernels_dnn.hpp"
using namespace cv::dnn::ocl4dnn;
#endif
namespace cv
{
namespace dnn
{
static inline int roundRoiSize(float v)
{
return (int)(v + (v >= 0.f ? 0.5f : -0.5f));
}
class PoolingLayerImpl CV_FINAL : public PoolingLayer
{
public:
PoolingLayerImpl(const LayerParams& params)
{
computeMaxIdx = true;
globalPooling = false;
isGlobalPooling = std::vector<bool>(3, false);
stride = Size(1, 1);
pad_t = pad_l = pad_b = pad_r = 0;
if (params.has("pool") || params.has("kernel_size") ||
params.has("kernel_w") || params.has("kernel_h"))
{
String pool = params.get<String>("pool", "max").toLowerCase();
if (pool == "max")
type = MAX;
else if (pool == "ave")
type = AVE;
else if (pool == "stochastic")
type = STOCHASTIC;
else
CV_Error(Error::StsBadArg, "Unknown pooling type \"" + pool + "\"");
getPoolingKernelParams(params, kernel_size, isGlobalPooling, pads_begin, pads_end, strides, padMode);
globalPooling = isGlobalPooling[0] || isGlobalPooling[1] || isGlobalPooling[2];
if (kernel_size.size() == 2) {
kernel = Size(kernel_size[1], kernel_size[0]);
stride = Size(strides[1], strides[0]);
pad = Size(pads_begin[1], pads_begin[0]);
pad_t = pads_begin[0];
pad_l = pads_begin[1];
pad_b = pads_end[0];
pad_r = pads_end[1];
}
}
else if (params.has("pooled_w") || params.has("pooled_h"))
{
type = ROI;
pooledSize.width = params.get<uint32_t>("pooled_w", 1);
pooledSize.height = params.get<uint32_t>("pooled_h", 1);
}
else if (params.has("output_dim") && params.has("group_size"))
{
type = PSROI;
pooledSize.width = params.get<int>("group_size");
pooledSize.height = pooledSize.width;
psRoiOutChannels = params.get<int>("output_dim");
}
else
CV_Error(Error::StsBadArg, "Cannot determine pooling type");
setParamsFrom(params);
ceilMode = params.get<bool>("ceil_mode", true);
spatialScale = params.get<float>("spatial_scale", 1);
avePoolPaddedArea = params.get<bool>("ave_pool_padded_area", true);
}
#ifdef HAVE_OPENCL
Ptr<OCL4DNNPool<float> > poolOp;
#endif
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
{
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
CV_Assert(!inputs.empty());
std::vector<int> inp;
std::vector<int> out;
for (int i = 2; i < inputs[0].dims; i++) {
inp.push_back(inputs[0].size[i]);
out.push_back(outputs[0].size[i]);
}
if (globalPooling) {
std::vector<size_t> finalKernel;
for (int i = 0; i < inp.size(); i++) {
int idx = isGlobalPooling.size() - inp.size() + i;
finalKernel.push_back(isGlobalPooling[idx] ? inp[i] : kernel_size[idx]);
}
kernel_size = finalKernel;
kernel = Size(kernel_size[1], kernel_size[0]);
}
getConvPoolPaddings(inp, kernel_size, strides, padMode, pads_begin, pads_end);
if (pads_begin.size() == 2) {
pad_t = pads_begin[0];
pad_l = pads_begin[1];
pad_b = pads_end[0];
pad_r = pads_end[1];
}
#ifdef HAVE_OPENCL
poolOp.release();
#endif
computeMaxIdx = type == MAX && outputs.size() == 2;
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
#ifdef HAVE_DNN_IE_NN_BUILDER_2019
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
{
if (computeMaxIdx)
return false;
if (kernel_size.size() == 3)
return preferableTarget == DNN_TARGET_CPU;
if (preferableTarget == DNN_TARGET_MYRIAD) {
#if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R1)
if (type == MAX && (pad_l == 1 && pad_t == 1) && stride == Size(2, 2) ) {
return !isMyriadX();
}
#endif
return type == MAX || type == AVE;
}
else
return type != STOCHASTIC;
}
#endif
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
return !computeMaxIdx && type != STOCHASTIC;
}
else if (backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_HALIDE)
{
if (kernel_size.size() == 3)
return (backendId == DNN_BACKEND_OPENCV && preferableTarget == DNN_TARGET_CPU);
if (kernel_size.empty() || kernel_size.size() == 2)
return backendId == DNN_BACKEND_OPENCV ||
(backendId == DNN_BACKEND_HALIDE && haveHalide() &&
(type == MAX || (type == AVE && !pad_t && !pad_l && !pad_b && !pad_r)));
else
return false;
}
return false;
}
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, InputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
bool use_half = (inps.depth() == CV_16S);
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
if (poolOp.empty())
{
OCL4DNNPoolConfig config;
config.in_shape = shape(inputs[0]);
config.out_shape = shape(outputs[0]);
config.kernel = kernel;
config.pad_l = pad_l;
config.pad_t = pad_t;
config.pad_r = pad_r;
config.pad_b = pad_b;
config.stride = stride;
config.channels = inputs[0].size[1];
config.pool_method = type == MAX ? LIBDNN_POOLING_METHOD_MAX :
(type == AVE ? LIBDNN_POOLING_METHOD_AVE :
LIBDNN_POOLING_METHOD_STO);
config.avePoolPaddedArea = avePoolPaddedArea;
config.computeMaxIdx = computeMaxIdx;
config.use_half = use_half;
poolOp = Ptr<OCL4DNNPool<float> >(new OCL4DNNPool<float>(config));
}
CV_Assert_N(inputs.size() == 1, !outputs.empty(), !computeMaxIdx || outputs.size() == 2);
UMat& inpMat = inputs[0];
UMat& outMat = outputs[0];
UMat maskMat = computeMaxIdx ? outputs[1] : UMat();
CV_Assert(inpMat.offset == 0 && outMat.offset == 0);
return poolOp->Forward(inpMat, outMat, maskMat);
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
if (type == MAX || type == AVE || type == STOCHASTIC)
{
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
}
if (inputs_arr.depth() == CV_16S)
{
forward_fallback(inputs_arr, outputs_arr, internals_arr);
return;
}
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
switch (type)
{
case MAX:
{
CV_Assert_N(inputs.size() == 1, !computeMaxIdx || outputs.size() == 2);
Mat mask = computeMaxIdx ? outputs[1] : Mat();
maxPooling(inputs[0], outputs[0], mask);
break;
}
case AVE:
CV_Assert_N(inputs.size() == 1, outputs.size() == 1);
avePooling(inputs[0], outputs[0]);
break;
case ROI: case PSROI:
CV_Assert_N(inputs.size() == 2, outputs.size() == 1);
roiPooling(inputs[0], inputs[1], outputs[0]);
break;
default:
CV_Error(Error::StsNotImplemented, "Not implemented");
break;
}
}
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
{
if (type == MAX)
return initMaxPoolingHalide(inputs);
else if (type == AVE)
return initAvePoolingHalide(inputs);
else
return Ptr<BackendNode>();
}
#ifdef HAVE_DNN_IE_NN_BUILDER_2019
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
{
if (type == MAX || type == AVE)
{
InferenceEngine::Builder::PoolingLayer ieLayer(name);
ieLayer.setKernel(kernel_size);
ieLayer.setStrides(strides);
ieLayer.setPaddingsBegin(pads_begin);
ieLayer.setPaddingsEnd(pads_end);
ieLayer.setPoolingType(type == MAX ?
InferenceEngine::Builder::PoolingLayer::PoolingType::MAX :
InferenceEngine::Builder::PoolingLayer::PoolingType::AVG);
ieLayer.setRoundingType(ceilMode ?
InferenceEngine::Builder::PoolingLayer::RoundingType::CEIL :
InferenceEngine::Builder::PoolingLayer::RoundingType::FLOOR);
ieLayer.setExcludePad(type == AVE && padMode == "SAME");
InferenceEngine::Builder::Layer l = ieLayer;
if (!padMode.empty())
l.getParameters()["auto_pad"] = padMode == "VALID" ? std::string("valid") : std::string("same_upper");
return Ptr<BackendNode>(new InfEngineBackendNode(l));
}
else if (type == ROI)
{
InferenceEngine::Builder::ROIPoolingLayer ieLayer(name);
ieLayer.setSpatialScale(spatialScale);
ieLayer.setPooled({pooledSize.height, pooledSize.width});
ieLayer.setInputPorts(std::vector<InferenceEngine::Port>(2));
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
}
else if (type == PSROI)
{
InferenceEngine::Builder::PSROIPoolingLayer ieLayer(name);
ieLayer.setSpatialScale(spatialScale);
ieLayer.setOutputDim(psRoiOutChannels);
ieLayer.setGroupSize(pooledSize.width);
ieLayer.setInputPorts(std::vector<InferenceEngine::Port>(2));
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
}
else
CV_Error(Error::StsNotImplemented, "Unsupported pooling type");
return Ptr<BackendNode>();
}
#endif // HAVE_DNN_IE_NN_BUILDER_2019
#ifdef HAVE_DNN_NGRAPH
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
CV_Assert_N((inputs.size() == 1 && (type == MAX || type == AVE)) || inputs.size() == 2, nodes.size() == inputs.size());
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
ngraph::op::PadType pad_type = ngraph::op::PadType::EXPLICIT;
if (!padMode.empty())
pad_type = padMode == "VALID" ? ngraph::op::PadType::VALID : ngraph::op::PadType::SAME_UPPER;
auto rounding_type = ceilMode ? ngraph::op::RoundingType::CEIL : ngraph::op::RoundingType::FLOOR;
if (type == AVE) {
auto exclude_pad = !avePoolPaddedArea;
auto ave_pool = std::make_shared<ngraph::op::v1::AvgPool>(ieInpNode, ngraph::Strides(strides),
ngraph::Shape(pads_begin), ngraph::Shape(pads_end), ngraph::Shape(kernel_size),
exclude_pad, rounding_type, pad_type);
return Ptr<BackendNode>(new InfEngineNgraphNode(ave_pool));
}
else if (type == MAX) {
auto max_pool = std::make_shared<ngraph::op::v1::MaxPool>(ieInpNode, ngraph::Strides(strides),
ngraph::Shape(pads_begin), ngraph::Shape(pads_end), ngraph::Shape(kernel_size),
rounding_type, pad_type);
return Ptr<BackendNode>(new InfEngineNgraphNode(max_pool));
}
else if (type == ROI) {
auto& coords = nodes[1].dynamicCast<InfEngineNgraphNode>()->node;
auto roi = std::make_shared<ngraph::op::ROIPooling>(ieInpNode, coords,
ngraph::Shape{(size_t)pooledSize.height, (size_t)pooledSize.width}, spatialScale, "max");
return Ptr<BackendNode>(new InfEngineNgraphNode(roi));
}
else if (type == PSROI) {
auto& coords = nodes[1].dynamicCast<InfEngineNgraphNode>()->node;
auto psroi = std::make_shared<ngraph::op::PSROIPooling>(ieInpNode, coords,
(size_t)psRoiOutChannels, (size_t)pooledSize.width, spatialScale, 1, 1, "average");
return Ptr<BackendNode>(new InfEngineNgraphNode(psroi));
}
else
CV_Error(Error::StsNotImplemented, "Unsupported pooling type");
}
#endif // HAVE_DNN_NGRAPH
class PoolingInvoker : public ParallelLoopBody
{
public:
const Mat* src, *rois;
Mat *dst, *mask;
Size kernel, stride;
int pad_l, pad_t, pad_r, pad_b;
bool avePoolPaddedArea;
int nstripes;
bool computeMaxIdx;
std::vector<int> ofsbuf;
int poolingType;
float spatialScale;
std::vector<size_t> pads_begin, pads_end;
std::vector<size_t> kernel_size;
std::vector<size_t> strides;
PoolingInvoker() : src(0), rois(0), dst(0), mask(0), avePoolPaddedArea(false), nstripes(0),
computeMaxIdx(0), poolingType(MAX), spatialScale(0) {}
static void run(const Mat& src, const Mat& rois, Mat& dst, Mat& mask,
std::vector<size_t> kernel_size, std::vector<size_t> strides,
std::vector<size_t> pads_begin, std::vector<size_t> pads_end,
bool avePoolPaddedArea, int poolingType, float spatialScale,
bool computeMaxIdx, int nstripes)
{
CV_Assert_N(
src.isContinuous(), dst.isContinuous(),
src.type() == CV_32F, src.type() == dst.type(),
src.dims == 4 || src.dims == 5, dst.dims == 4 || dst.dims == 5,
(((poolingType == ROI || poolingType == PSROI) &&
dst.size[0] == rois.size[0]) || src.size[0] == dst.size[0]),
poolingType == PSROI || src.size[1] == dst.size[1],
(mask.empty() || (mask.type() == src.type() && mask.size == dst.size)));
PoolingInvoker p;
p.src = &src;
p.rois = &rois;
p.dst = &dst;
p.kernel_size = kernel_size;
p.strides = strides;
p.pads_begin = pads_begin;
p.pads_end = pads_end;
p.mask = &mask;
p.kernel = Size(kernel_size[1], kernel_size[0]);
p.stride = Size(strides[1], strides[0]);
p.pad_l = pads_begin.back();
p.pad_t = pads_begin[pads_begin.size() - 2];
p.pad_r = pads_end.back();
p.pad_b = pads_end[pads_end.size() - 2];
p.avePoolPaddedArea = avePoolPaddedArea;
p.nstripes = nstripes;
p.computeMaxIdx = computeMaxIdx;
p.poolingType = poolingType;
p.spatialScale = spatialScale;
if( !computeMaxIdx )
{
int height = src.size[src.dims - 2];
int width = src.size[src.dims - 1];
int kernel_d = (kernel_size.size() == 3) ? kernel_size[0] : 1;
int kernel_h = kernel_size[kernel_size.size() - 2];
int kernel_w = kernel_size.back();
p.ofsbuf.resize(kernel_d * kernel_h * kernel_w);
for (int i = 0; i < kernel_d; ++i) {
for (int j = 0; j < kernel_h; ++j) {
for (int k = 0; k < kernel_w; ++k) {
p.ofsbuf[i * kernel_h * kernel_w + j * kernel_w + k] = width * height * i + width * j + k;
}
}
}
}
parallel_for_(Range(0, nstripes), p, nstripes);
}
void operator()(const Range& r) const CV_OVERRIDE
{
int channels = dst->size[1];
bool isPool2D = src->dims == 4;
int depth = !isPool2D? dst->size[2] : 1;
int height = dst->size[dst->dims - 2];
int width = dst->size[dst->dims - 1];
int inp_depth = !isPool2D? src->size[2] : 1;
int inp_height = src->size[src->dims - 2];
int inp_width = src->size[src->dims - 1];
size_t total = dst->total();
size_t stripeSize = (total + nstripes - 1)/nstripes;
size_t stripeStart = r.start*stripeSize;
size_t stripeEnd = std::min(r.end*stripeSize, total);
int kernel_d = !isPool2D? kernel_size[0] : 1;
int kernel_h = kernel_size[kernel_size.size() - 2];
int kernel_w = kernel_size.back();
int stride_d = !isPool2D? strides[0] : 0;
int stride_h = strides[strides.size() - 2];
int stride_w = strides.back();
bool compMaxIdx = computeMaxIdx;
#if CV_SIMD128
const int* ofsptr = ofsbuf.empty() ? 0 : (const int*)&ofsbuf[0];
if (poolingType == MAX && !compMaxIdx && !ofsptr)
CV_Error(Error::StsBadArg, "ofsbuf should be initialized in this mode");
v_float32x4 idx00(0.f, (float)stride_w, (float)(stride_w*2), (float)(stride_w*3));
v_float32x4 ones = v_setall_f32(1.f);
v_float32x4 idx_delta = v_setall_f32((float)(inp_width - kernel_w));
#endif
for( size_t ofs0 = stripeStart; ofs0 < stripeEnd; )
{
size_t ofs = ofs0;
int x0 = (int)(ofs % width);
ofs /= width;
int y0 = (int)(ofs % height);
ofs /= height;
int d0 = (int)(ofs % depth);
ofs /= depth;
int c = (int)(ofs % channels);
int n = (int)(ofs / channels);
int ystart, yend;
int dstart = 0, dend = 1;
const float *srcData = 0;
if (poolingType == ROI)
{
const float *roisData = rois->ptr<float>(n);
int ystartROI = roundRoiSize(roisData[2] * spatialScale);
int yendROI = roundRoiSize(roisData[4] * spatialScale);
int roiHeight = std::max(yendROI - ystartROI + 1, 1);
float roiRatio = (float)roiHeight / height;
ystart = ystartROI + y0 * roiRatio;
yend = ystartROI + std::ceil((y0 + 1) * roiRatio);
CV_Assert(roisData[0] < src->size[0]);
srcData = src->ptr<float>(roisData[0], c);
}
else if (poolingType == PSROI)
{
const float *roisData = rois->ptr<float>(n);
float ystartROI = roundRoiSize(roisData[2]) * spatialScale;
float yendROI = roundRoiSize(roisData[4] + 1) * spatialScale;
float roiHeight = std::max(yendROI - ystartROI, 0.1f);
float roiRatio = roiHeight / height;
ystart = (int)std::floor(ystartROI + y0 * roiRatio);
yend = (int)std::ceil(ystartROI + (y0 + 1) * roiRatio);
}
else
{
int pad_d_begin = (pads_begin.size() == 3) ? pads_begin[0] : 0;
dstart = d0 * stride_d - pad_d_begin;
dend = min(dstart + kernel_d, (int)(inp_depth + pads_end[0]));
ystart = y0 * stride_h - pad_t;
yend = min(ystart + kernel_h, inp_height + pad_b);
srcData = src->ptr<float>(n, c);
}
int ddelta = dend - dstart;
dstart = max(dstart, 0);
dend = min(dend, inp_depth);
int ydelta = yend - ystart;
ystart = max(ystart, 0);
yend = min(yend, inp_height);
float *dstData = &dst->ptr<float>(n, c, d0)[y0 * width];
float *dstMaskData = mask->data ? &mask->ptr<float>(n, c, d0)[y0 * width] : 0;
int delta = std::min((int)(stripeEnd - ofs0), width - x0);
ofs0 += delta;
int x1 = x0 + delta;
if( poolingType == MAX)
for( ; x0 < x1; x0++ )
{
int xstart = x0 * stride_w - pad_l;
int xend = min(xstart + kernel_w, inp_width);
xstart = max(xstart, 0);
if (xstart >= xend || ystart >= yend)
{
dstData[x0] = 0;
if (compMaxIdx && dstMaskData)
dstMaskData[x0] = -1;
continue;
}
#if CV_SIMD128
if( isPool2D && xstart > 0 && x0 + 7 < x1 && (x0 + 7) * stride_w - pad_l + kernel_w < inp_width )
{
if( compMaxIdx )
{
v_float32x4 max_val0 = v_setall_f32(-FLT_MAX);
v_float32x4 max_val1 = max_val0;
v_float32x4 max_idx0 = v_setall_f32(-1.f);
v_float32x4 max_idx1 = max_idx0;
int index0 = ystart * inp_width + xstart;
v_float32x4 idx0 = idx00 + v_setall_f32((float)index0);
v_float32x4 idx1 = idx0 + v_setall_f32((float)(stride_w*4));
for (int y = ystart; y < yend; ++y)
{
for (int x = xstart; x < xend; ++x, idx0 += ones, idx1 += ones)
{
const int index = y * inp_width + x;
v_float32x4 v0(srcData[index], srcData[index + stride_w],
srcData[index + stride_w*2], srcData[index + stride_w*3]);
v_float32x4 v1(srcData[index + stride_w*4], srcData[index + stride_w*5],
srcData[index + stride_w*6], srcData[index + stride_w*7]);
max_idx0 = v_select(v0 > max_val0, idx0, max_idx0);
max_idx1 = v_select(v1 > max_val1, idx1, max_idx1);
max_val0 = v_max(max_val0, v0);
max_val1 = v_max(max_val1, v1);
}
idx0 += idx_delta;
idx1 += idx_delta;
}
v_store(dstData + x0, max_val0);
v_store(dstData + x0 + 4, max_val1);
if (dstMaskData)
{
v_store(dstMaskData + x0, max_idx0);
v_store(dstMaskData + x0 + 4, max_idx1);
}
x0 += 7;
}
else
{
v_float32x4 max_val0 = v_setall_f32(-FLT_MAX);
v_float32x4 max_val1 = max_val0;
if( yend - ystart == kernel_h )
{
const float* srcData1 = srcData + ystart*inp_width + xstart;
if( stride_w == 1 )
for (int k = 0; k < kernel_w*kernel_h; k++)
{
int index = ofsptr[k];
v_float32x4 v0 = v_load(srcData1 + index);
v_float32x4 v1 = v_load(srcData1 + index + 4);
max_val0 = v_max(max_val0, v0);
max_val1 = v_max(max_val1, v1);
}
else if( stride_w == 2 )
for (int k = 0; k < kernel_w*kernel_h; k++)
{
int index = ofsptr[k];
v_float32x4 v0, v1, dummy;
v_load_deinterleave(srcData1 + index, v0, dummy); // f0 f2 f4 f6 ,f1 f3 f5 f7
v_load_deinterleave(srcData1 + index + 8, v1, dummy); // f8 f10 f12 f14 ,f9 f11 f13 f15
max_val0 = v_max(max_val0, v0);
max_val1 = v_max(max_val1, v1);
}
else
for (int k = 0; k < kernel_w*kernel_h; k++)
{
int index = ofsptr[k];
v_float32x4 v0(srcData1[index], srcData1[index + stride_w],
srcData1[index + stride_w*2], srcData1[index + stride_w*3]);
v_float32x4 v1(srcData1[index + stride_w*4], srcData1[index + stride_w*5],
srcData1[index + stride_w*6], srcData1[index + stride_w*7]);
max_val0 = v_max(max_val0, v0);
max_val1 = v_max(max_val1, v1);
}
}
else
{
for (int y = ystart; y < yend; ++y)
{
for (int x = xstart; x < xend; ++x)
{
const int index = y * inp_width + x;
v_float32x4 v0(srcData[index], srcData[index + stride_w],
srcData[index + stride_w*2], srcData[index + stride_w*3]);
v_float32x4 v1(srcData[index + stride_w*4], srcData[index + stride_w*5],
srcData[index + stride_w*6], srcData[index + stride_w*7]);
max_val0 = v_max(max_val0, v0);
max_val1 = v_max(max_val1, v1);
}
}
}
v_store(dstData + x0, max_val0);
v_store(dstData + x0 + 4, max_val1);
x0 += 7;
}
}
else
#endif
{
float max_val = -FLT_MAX;
if( compMaxIdx )
{
int max_index = -1;
for (int d = dstart; d < dend; ++d)
for (int y = ystart; y < yend; ++y)
for (int x = xstart; x < xend; ++x)
{
const int index = d * inp_width * inp_height + y * inp_width + x;
float val = srcData[index];
if (val > max_val)
{
max_val = val;
max_index = index;
}
}
dstData[x0] = max_val;
if (dstMaskData)
dstMaskData[x0] = max_index;
}
else
{
for (int d = dstart; d < dend; ++d) {
for (int y = ystart; y < yend; ++y) {
for (int x = xstart; x < xend; ++x) {
const int index = d * inp_width * inp_height + y * inp_width + x;
float val = srcData[index];
max_val = std::max(max_val, val);
}
}
}
dstData[x0] = max_val;
}
}
}
else if (poolingType == AVE)
{
for( ; x0 < x1; ++x0)
{
int xstart = x0 * stride_w - pad_l;
int xend = min(xstart + kernel_w, inp_width + pad_r);
int xdelta = xend - xstart;
xstart = max(xstart, 0);
xend = min(xend, inp_width);
float inv_kernel_area = avePoolPaddedArea ? xdelta * ydelta * ddelta :
((dend - dstart) * (yend - ystart) * (xend - xstart));
inv_kernel_area = 1.0 / inv_kernel_area;
#if CV_SIMD128
if( isPool2D && xstart > 0 && x0 + 7 < x1 && (x0 + 7) * stride_w - pad_l + kernel_w < inp_width )
{
v_float32x4 sum_val0 = v_setzero_f32(), sum_val1 = v_setzero_f32();
v_float32x4 ikarea = v_setall_f32(inv_kernel_area);
for (int y = ystart; y < yend; ++y)
{
for (int x = xstart; x < xend; ++x)
{
const int index = y * inp_width + x;
v_float32x4 v0(srcData[index], srcData[index + stride_w],
srcData[index + stride_w*2], srcData[index + stride_w*3]);
v_float32x4 v1(srcData[index + stride_w*4], srcData[index + stride_w*5],
srcData[index + stride_w*6], srcData[index + stride_w*7]);
sum_val0 += v0;
sum_val1 += v1;
}
}
v_store(dstData + x0, sum_val0*ikarea);
v_store(dstData + x0 + 4, sum_val1*ikarea);
x0 += 7;
}
else
#endif
{
float sum_val = 0.f;
for (int d = dstart; d < dend; ++d) {
for (int y = ystart; y < yend; ++y) {
for (int x = xstart; x < xend; ++x) {
const int index = d * inp_width * inp_height + y * inp_width + x;
float val = srcData[index];
sum_val += val;
}
}
}
dstData[x0] = sum_val*inv_kernel_area;
}
}
}
else if (poolingType == ROI)
{
const float *roisData = rois->ptr<float>(n);
int xstartROI = roundRoiSize(roisData[1] * spatialScale);
int xendROI = roundRoiSize(roisData[3] * spatialScale);
int roiWidth = std::max(xendROI - xstartROI + 1, 1);
float roiRatio = (float)roiWidth / width;
for( ; x0 < x1; x0++ )
{
int xstart = xstartROI + x0 * roiRatio;
int xend = xstartROI + std::ceil((x0 + 1) * roiRatio);
xstart = max(xstart, 0);
xend = min(xend, inp_width);
if (xstart >= xend || ystart >= yend)
{
dstData[x0] = 0;
if (compMaxIdx && dstMaskData)
dstMaskData[x0] = -1;
continue;
}
float max_val = -FLT_MAX;
for (int y = ystart; y < yend; ++y)
for (int x = xstart; x < xend; ++x)
{
const int index = y * inp_width + x;
float val = srcData[index];
max_val = std::max(max_val, val);
}
dstData[x0] = max_val;
}
}
else // PSROI
{
const float *roisData = rois->ptr<float>(n);
CV_Assert(roisData[0] < src->size[0]);
float xstartROI = roundRoiSize(roisData[1]) * spatialScale;
float xendROI = roundRoiSize(roisData[3] + 1) * spatialScale;
float roiWidth = std::max(xendROI - xstartROI, 0.1f);
float roiRatio = roiWidth / width;
for( ; x0 < x1; x0++ )
{
int xstart = (int)std::floor(xstartROI + x0 * roiRatio);
int xend = (int)std::ceil(xstartROI + (x0 + 1) * roiRatio);
xstart = max(xstart, 0);
xend = min(xend, inp_width);
if (xstart >= xend || ystart >= yend)
{
dstData[x0] = 0;
continue;
}
srcData = src->ptr<float>(roisData[0], (c * height + y0) * width + x0);
float sum_val = 0.f;
for (int y = ystart; y < yend; ++y)
for (int x = xstart; x < xend; ++x)
{
const int index = y * inp_width + x;
float val = srcData[index];
sum_val += val;
}
dstData[x0] = sum_val / ((yend - ystart) * (xend - xstart));
}
}
}
}
};
void maxPooling(Mat &src, Mat &dst, Mat &mask)
{
const int nstripes = getNumThreads();
Mat rois;
PoolingInvoker::run(src, rois, dst, mask, kernel_size, strides, pads_begin, pads_end, avePoolPaddedArea, type, spatialScale, computeMaxIdx, nstripes);
}
void avePooling(Mat &src, Mat &dst)
{
const int nstripes = getNumThreads();
Mat rois, mask;
PoolingInvoker::run(src, rois, dst, mask, kernel_size, strides, pads_begin, pads_end, avePoolPaddedArea, type, spatialScale, computeMaxIdx, nstripes);
}
void roiPooling(const Mat &src, const Mat &rois, Mat &dst)
{
const int nstripes = getNumThreads();
Mat mask;
kernel_size.resize(2);
strides.resize(2);
pads_begin.resize(2);
pads_end.resize(2);
PoolingInvoker::run(src, rois, dst, mask, kernel_size, strides, pads_begin, pads_end, avePoolPaddedArea, type, spatialScale, computeMaxIdx, nstripes);
}
virtual Ptr<BackendNode> initMaxPoolingHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
{
#ifdef HAVE_HALIDE
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
const int inWidth = inputBuffer.width();
const int inHeight = inputBuffer.height();
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
Halide::RDom r(0, kernel.width, 0, kernel.height);
Halide::Expr kx, ky;
if(pad_l || pad_t)
{
kx = clamp(x * stride.width + r.x - pad_l, 0, inWidth - 1);
ky = clamp(y * stride.height + r.y - pad_t, 0, inHeight - 1);
}
else
{
kx = min(x * stride.width + r.x, inWidth - 1);
ky = min(y * stride.height + r.y, inHeight - 1);
}
// Halide::argmax returns tuple (r.x, r.y, max).
Halide::Tuple res = argmax(inputBuffer(kx, ky, c, n));
// Compute offset from argmax in range [0, kernel_size).
Halide::Expr max_index;
if(pad_l || pad_t)
{
max_index = clamp(y * stride.height + res[1] - pad_t,
0, inHeight - 1) * inWidth +
clamp(x * stride.width + res[0] - pad_l,
0, inWidth - 1);
}
else
{
max_index = min(y * stride.height + res[1], inHeight - 1) * inWidth +
min(x * stride.width + res[0], inWidth - 1);
}
top(x, y, c, n) = { res[2], Halide::cast<float>(max_index) };
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
virtual Ptr<BackendNode> initAvePoolingHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
{
#ifdef HAVE_HALIDE
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
const int inW = inputBuffer.width(), inH = inputBuffer.height();
if ((inW - kernel.width) % stride.width || (inH - kernel.height) % stride.height)
{
CV_Error(cv::Error::StsNotImplemented,
"Halide backend for average pooling with partial "
"kernels is not implemented");
}
const float norm = 1.0f / (kernel.width * kernel.height);
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
Halide::RDom r(0, kernel.width, 0, kernel.height);
top(x, y, c, n) = sum(
inputBuffer(x * stride.width + r.x,
y * stride.height + r.y, c, n)) * norm;
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
virtual void applyHalideScheduler(Ptr<BackendNode>& node,
const std::vector<Mat*> &inputs,
const std::vector<Mat> &outputs,
int targetId) const CV_OVERRIDE
{
#ifdef HAVE_HALIDE
if (targetId != DNN_TARGET_CPU)
{
Layer::applyHalideScheduler(node, inputs, outputs, targetId);
return;
}
Halide::Var x("x"), y("y"), c("c"), n("n"), tile("tile"),
xi("xi"), yi("yi"), ci("ci"), xo("xo"), yo("yo"), co("co");
Halide::Func& top = node.dynamicCast<HalideBackendNode>()->funcs.back();
int outW, outH, outC, outN;
getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN);
if (outW < 8 || outH < 8)
{
if (outC > 8)
top.split(c, co, ci, 8)
.fuse(x, y, tile).fuse(co, tile, tile).fuse(n, tile, tile)
.parallel(tile)
.vectorize(ci);
else
{
top.fuse(y, c, tile).fuse(n, tile, tile)
.parallel(tile);
if (outW > 1)
top.vectorize(x);
}
}
else
{
if (outC > 8)
top.split(x, xo, xi, 8).split(y, yo, yi, 8).split(c, co, ci, 8)
.fuse(xo, yo, tile).fuse(co, tile, tile).fuse(n, tile, tile)
.parallel(tile)
.vectorize(xi);
else
top.split(x, xo, xi, 8).split(y, yo, yi, 8)
.fuse(xo, yo, tile).fuse(c, tile, tile).fuse(n, tile, tile)
.parallel(tile)
.vectorize(xi);
}
#endif // HAVE_HALIDE
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert(inputs.size() != 0);
std::vector<int> inpShape(inputs[0].begin() + 2, inputs[0].end());
std::vector<int> outShape(inputs[0].begin(), inputs[0].begin() + 2);
std::vector<size_t> local_kernel;
if (globalPooling) {
for (int i = 0; i < inpShape.size(); i++) {
int idx = isGlobalPooling.size() - inpShape.size() + i;
local_kernel.push_back(isGlobalPooling[idx] ? inpShape[i] : kernel_size[idx]);
}
} else {
local_kernel = kernel_size;
}
if (type == ROI || type == PSROI)
{
outShape.push_back(pooledSize.height);
outShape.push_back(pooledSize.width);
}
else if (padMode.empty())
{
for (int i = 0; i < local_kernel.size(); i++) {
float dst = (float)(inpShape[i] + pads_begin[i] + pads_end[i] - local_kernel[i]) / strides[i];
outShape.push_back(1 + (ceilMode ? ceil(dst) : floor(dst)));
}
// If we have padding, ensure that the last pooling starts strictly
// inside the image (instead of at the padding); otherwise clip the last.
for (int i = 0; i < pads_end.size(); i++) {
if (pads_end[i] && (outShape[2 + i] - 1) * strides[i] >= inpShape[i] + pads_end[i]) {
--outShape[2 + i];
CV_Assert((outShape[2 + i] - 1) * strides[i] < inpShape[i] + pads_end[i]);
}
}
}
else
{
getConvPoolOutParams(inpShape, local_kernel, strides, padMode, std::vector<size_t>(local_kernel.size(), 1), outShape);
}
if (type == ROI)
{
CV_Assert(inputs.size() == 2);
outShape[0] = inputs[1][0]; // Number of proposals;
}
else if (type == PSROI)
{
CV_Assert(inputs.size() == 2);
CV_Assert(psRoiOutChannels * pooledSize.width * pooledSize.height == inputs[0][1]);
outShape[0] = inputs[1][0]; // Number of proposals;
outShape[1] = psRoiOutChannels;
}
int numOutputs = requiredOutputs ? requiredOutputs : (type == MAX ? 2 : 1);
CV_Assert(numOutputs == 1 || (numOutputs == 2 && type == MAX));
outputs.assign(numOutputs, outShape);
return false;
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
CV_UNUSED(inputs); // suppress unused variable warning
long flops = 0;
size_t karea = std::accumulate(kernel_size.begin(), kernel_size.end(),
1, std::multiplies<size_t>());
for(int i = 0; i < outputs.size(); i++)
{
if (type == MAX)
{
if (i%2 == 0)
flops += total(outputs[i])*karea;
}
else
{
flops += total(outputs[i])*(karea + 1);
}
}
return flops;
}
private:
enum Type
{
MAX,
AVE,
STOCHASTIC,
ROI, // RoI pooling, https://arxiv.org/pdf/1504.08083.pdf
PSROI // Position-sensitive RoI pooling, https://arxiv.org/pdf/1605.06409.pdf
};
};
Ptr<PoolingLayer> PoolingLayer::create(const LayerParams& params)
{
return Ptr<PoolingLayer>(new PoolingLayerImpl(params));
}
}
}