Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
218 lines
8.0 KiB
218 lines
8.0 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "../precomp.hpp" |
|
#include "layers_common.hpp" |
|
#include "../op_inf_engine.hpp" |
|
#include "../ie_ngraph.hpp" |
|
|
|
#include <float.h> |
|
#include <algorithm> |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
|
|
namespace cv |
|
{ |
|
namespace dnn |
|
{ |
|
|
|
class FlattenLayerImpl CV_FINAL : public FlattenLayer |
|
{ |
|
public: |
|
FlattenLayerImpl(const LayerParams ¶ms) |
|
{ |
|
_startAxis = params.get<int>("axis", 1); |
|
_endAxis = params.get<int>("end_axis", -1); |
|
setParamsFrom(params); |
|
} |
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE |
|
{ |
|
return backendId == DNN_BACKEND_OPENCV || |
|
((backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && haveInfEngine()); |
|
} |
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const CV_OVERRIDE |
|
{ |
|
CV_Assert(inputs.size() > 0); |
|
for (size_t i = 1; i < inputs.size(); i++) |
|
{ |
|
CV_Assert(inputs[i] == inputs[0]); |
|
} |
|
|
|
int numAxes = inputs[0].size(); |
|
int startAxis = clamp(_startAxis, numAxes); |
|
int endAxis = clamp(_endAxis, numAxes); |
|
|
|
CV_Assert(startAxis >= 0); |
|
CV_Assert(endAxis >= startAxis && endAxis < (int)numAxes); |
|
|
|
size_t flattenedDimensionSize = total(inputs[0], startAxis, endAxis + 1); |
|
|
|
MatShape outputShapeVec; |
|
for (int i = 0; i < startAxis; i++) |
|
{ |
|
outputShapeVec.push_back(inputs[0][i]); |
|
} |
|
outputShapeVec.push_back(flattenedDimensionSize); |
|
for (size_t i = endAxis + 1; i < numAxes; i++) |
|
{ |
|
outputShapeVec.push_back(inputs[0][i]); |
|
} |
|
CV_Assert(outputShapeVec.size() <= 4); |
|
|
|
outputs.resize(inputs.size(), outputShapeVec); |
|
|
|
return true; |
|
} |
|
|
|
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays) CV_OVERRIDE |
|
{ |
|
std::vector<Mat> inputs; |
|
inputs_arr.getMatVector(inputs); |
|
|
|
int numAxes = inputs[0].dims; |
|
_startAxis = clamp(_startAxis, numAxes); |
|
_endAxis = clamp(_endAxis, numAxes); |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
bool forward_ocl(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) |
|
{ |
|
std::vector<UMat> inpvec; |
|
std::vector<UMat> outputs; |
|
|
|
inputs_arr.getUMatVector(inpvec); |
|
outputs_arr.getUMatVector(outputs); |
|
|
|
std::vector<UMat*> inputs(inpvec.size()); |
|
for (int i = 0; i < inpvec.size(); i++) |
|
inputs[i] = &inpvec[i]; |
|
|
|
for (size_t i = 0; i < inputs.size(); i++) |
|
{ |
|
MatShape outShape = shape(outputs[i]); |
|
UMat& output = outputs_arr.getUMatRef(i); |
|
output = inputs[i]->reshape(1, (int)outShape.size(), &outShape[0]); |
|
} |
|
|
|
return true; |
|
} |
|
#endif |
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) && |
|
outputs_arr.isUMatVector(), |
|
forward_ocl(inputs_arr, outputs_arr, internals_arr)) |
|
|
|
std::vector<Mat> inputs, outputs; |
|
inputs_arr.getMatVector(inputs); |
|
outputs_arr.getMatVector(outputs); |
|
|
|
for (size_t i = 0; i < inputs.size(); i++) |
|
{ |
|
MatShape outShape = shape(outputs[i]); |
|
if (inputs[i].data != outputs[i].data) |
|
{ |
|
inputs[i].reshape(1, (int)outShape.size(), &outShape[0]).copyTo(outputs[i]); |
|
} |
|
} |
|
} |
|
|
|
#ifdef HAVE_DNN_IE_NN_BUILDER_2019 |
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >& inputs) CV_OVERRIDE |
|
{ |
|
InferenceEngine::Builder::Layer ieLayer(name); |
|
ieLayer.setName(name); |
|
ieLayer.setType("Flatten"); |
|
ieLayer.getParameters()["axis"] = (size_t)_startAxis; |
|
ieLayer.getParameters()["end_axis"] = _endAxis; // Do not cast to size_t because it might be negative. |
|
ieLayer.setInputPorts(std::vector<InferenceEngine::Port>(1)); |
|
ieLayer.setOutputPorts(std::vector<InferenceEngine::Port>(1)); |
|
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer)); |
|
} |
|
#endif // HAVE_DNN_IE_NN_BUILDER_2019 |
|
|
|
#ifdef HAVE_DNN_NGRAPH |
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs, |
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE |
|
{ |
|
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node; |
|
std::vector<size_t> dims = ieInpNode->get_shape(); |
|
|
|
int numAxes = dims.size(); |
|
int startAxis = clamp(_startAxis, numAxes); |
|
int endAxis = clamp(_endAxis, numAxes); |
|
|
|
CV_Assert(startAxis >= 0); |
|
CV_Assert(endAxis >= startAxis && endAxis < numAxes); |
|
int64_t flattenedDimensionSize = std::accumulate(dims.begin() + startAxis, |
|
dims.begin() + endAxis + 1, 1, std::multiplies<size_t>()); |
|
|
|
std::vector<int64_t> outputShapeVec(dims.begin(), dims.begin() + startAxis); |
|
outputShapeVec.push_back(flattenedDimensionSize); |
|
outputShapeVec.insert(outputShapeVec.end(), dims.begin() + endAxis + 1, dims.end()); |
|
|
|
auto shape = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, |
|
ngraph::Shape({outputShapeVec.size()}), outputShapeVec.data()); |
|
auto reshape = std::make_shared<ngraph::op::v1::Reshape>(ieInpNode, shape, true); |
|
return Ptr<BackendNode>(new InfEngineNgraphNode(reshape)); |
|
} |
|
#endif // HAVE_DNN_NGRAPH |
|
|
|
int _startAxis; |
|
int _endAxis; |
|
}; |
|
|
|
Ptr<FlattenLayer> FlattenLayer::create(const LayerParams& params) |
|
{ |
|
return Ptr<FlattenLayer>(new FlattenLayerImpl(params)); |
|
} |
|
|
|
} |
|
}
|
|
|