Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
113 lines
4.3 KiB
113 lines
4.3 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include <string> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
class CV_Adaptivethresh : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_Adaptivethresh(); |
|
~CV_Adaptivethresh(); |
|
protected: |
|
void run(int); |
|
}; |
|
|
|
CV_Adaptivethresh::CV_Adaptivethresh() {} |
|
CV_Adaptivethresh::~CV_Adaptivethresh() {} |
|
|
|
void CV_Adaptivethresh::run( int /* start_from */) |
|
{ |
|
string exp_path = string(ts->get_data_path()) + "adaptivethresh/lena_orig.png"; |
|
Mat lena = imread(exp_path, 0); // CV_LOAD_IMAGE_GRAYSCALE=0 |
|
if (lena.empty() ) |
|
{ |
|
ts->set_failed_test_info( cvtest::TS::FAIL_MISSING_TEST_DATA ); |
|
return; |
|
} |
|
int sum=0; |
|
for (int i = 0; i < lena.rows; i++) |
|
{ |
|
unsigned char *ptr = lena.ptr(i); |
|
for (int j=0;j<lena.cols;j++,ptr++) |
|
sum+=*ptr; |
|
} |
|
if (sum!=31910861) |
|
{ |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
int windowSize[9] = {3,9,11,17,21,25,29,37,47}; |
|
int expectedValueMean[9] = {96138,121836,124499,129096,130538,131330,131743,131616,131223}; |
|
int expectedValueGaussNew[9] = {86308,112910,116197,122117,124672,126488,127855,129377,130387}; |
|
int expectedValueGaussOld[9] = {88583,81365,154081,98049,149357,106414,179701,168433,90250}; |
|
Mat im; |
|
bool failed=false; |
|
for(int i = 0; i<9; ++i ) |
|
{ |
|
adaptiveThreshold( lena, im, 255,cv::ADAPTIVE_THRESH_MEAN_C,THRESH_BINARY,windowSize[i],0); |
|
int numberWhite=countNonZero(im); |
|
if (numberWhite != expectedValueMean[i]) |
|
{ |
|
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH ); |
|
return; |
|
} |
|
adaptiveThreshold( lena, im, 255,cv::ADAPTIVE_THRESH_GAUSSIAN_C,THRESH_BINARY,windowSize[i],0); |
|
if (numberWhite != expectedValueGaussNew[i]) |
|
{ |
|
|
|
if (numberWhite != expectedValueGaussOld[i]) |
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); |
|
else |
|
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH ); |
|
} |
|
} |
|
if (failed) |
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
else |
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
} |
|
|
|
TEST(Imgproc_Adaptivethresh, regression) { CV_Adaptivethresh test; test.safe_run(); }
|
|
|