Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
850 lines
30 KiB
850 lines
30 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencv2/imgproc/imgproc_c.h" |
|
#include "opencv2/video/tracking_c.h" |
|
|
|
// to be moved to legacy |
|
|
|
static int icvMinimalPyramidSize( CvSize imgSize ) |
|
{ |
|
return cvAlign(imgSize.width,8) * imgSize.height / 3; |
|
} |
|
|
|
|
|
static void |
|
icvInitPyramidalAlgorithm( const CvMat* imgA, const CvMat* imgB, |
|
CvMat* pyrA, CvMat* pyrB, |
|
int level, CvTermCriteria * criteria, |
|
int max_iters, int flags, |
|
uchar *** imgI, uchar *** imgJ, |
|
int **step, CvSize** size, |
|
double **scale, cv::AutoBuffer<uchar>* buffer ) |
|
{ |
|
const int ALIGN = 8; |
|
int pyrBytes, bufferBytes = 0, elem_size; |
|
int level1 = level + 1; |
|
|
|
int i; |
|
CvSize imgSize, levelSize; |
|
|
|
*imgI = *imgJ = 0; |
|
*step = 0; |
|
*scale = 0; |
|
*size = 0; |
|
|
|
/* check input arguments */ |
|
if( ((flags & CV_LKFLOW_PYR_A_READY) != 0 && !pyrA) || |
|
((flags & CV_LKFLOW_PYR_B_READY) != 0 && !pyrB) ) |
|
CV_Error( CV_StsNullPtr, "Some of the precomputed pyramids are missing" ); |
|
|
|
if( level < 0 ) |
|
CV_Error( CV_StsOutOfRange, "The number of pyramid levels is negative" ); |
|
|
|
switch( criteria->type ) |
|
{ |
|
case CV_TERMCRIT_ITER: |
|
criteria->epsilon = 0.f; |
|
break; |
|
case CV_TERMCRIT_EPS: |
|
criteria->max_iter = max_iters; |
|
break; |
|
case CV_TERMCRIT_ITER | CV_TERMCRIT_EPS: |
|
break; |
|
default: |
|
assert( 0 ); |
|
CV_Error( CV_StsBadArg, "Invalid termination criteria" ); |
|
} |
|
|
|
/* compare squared values */ |
|
criteria->epsilon *= criteria->epsilon; |
|
|
|
/* set pointers and step for every level */ |
|
pyrBytes = 0; |
|
|
|
imgSize = cvGetSize(imgA); |
|
elem_size = CV_ELEM_SIZE(imgA->type); |
|
levelSize = imgSize; |
|
|
|
for( i = 1; i < level1; i++ ) |
|
{ |
|
levelSize.width = (levelSize.width + 1) >> 1; |
|
levelSize.height = (levelSize.height + 1) >> 1; |
|
|
|
int tstep = cvAlign(levelSize.width,ALIGN) * elem_size; |
|
pyrBytes += tstep * levelSize.height; |
|
} |
|
|
|
assert( pyrBytes <= imgSize.width * imgSize.height * elem_size * 4 / 3 ); |
|
|
|
/* buffer_size = <size for patches> + <size for pyramids> */ |
|
bufferBytes = (int)((level1 >= 0) * ((pyrA->data.ptr == 0) + |
|
(pyrB->data.ptr == 0)) * pyrBytes + |
|
(sizeof(imgI[0][0]) * 2 + sizeof(step[0][0]) + |
|
sizeof(size[0][0]) + sizeof(scale[0][0])) * level1); |
|
|
|
buffer->allocate( bufferBytes ); |
|
|
|
*imgI = (uchar **) (uchar*)(*buffer); |
|
*imgJ = *imgI + level1; |
|
*step = (int *) (*imgJ + level1); |
|
*scale = (double *) (*step + level1); |
|
*size = (CvSize *)(*scale + level1); |
|
|
|
imgI[0][0] = imgA->data.ptr; |
|
imgJ[0][0] = imgB->data.ptr; |
|
step[0][0] = imgA->step; |
|
scale[0][0] = 1; |
|
size[0][0] = imgSize; |
|
|
|
if( level > 0 ) |
|
{ |
|
uchar *bufPtr = (uchar *) (*size + level1); |
|
uchar *ptrA = pyrA->data.ptr; |
|
uchar *ptrB = pyrB->data.ptr; |
|
|
|
if( !ptrA ) |
|
{ |
|
ptrA = bufPtr; |
|
bufPtr += pyrBytes; |
|
} |
|
|
|
if( !ptrB ) |
|
ptrB = bufPtr; |
|
|
|
levelSize = imgSize; |
|
|
|
/* build pyramids for both frames */ |
|
for( i = 1; i <= level; i++ ) |
|
{ |
|
int levelBytes; |
|
CvMat prev_level, next_level; |
|
|
|
levelSize.width = (levelSize.width + 1) >> 1; |
|
levelSize.height = (levelSize.height + 1) >> 1; |
|
|
|
size[0][i] = levelSize; |
|
step[0][i] = cvAlign( levelSize.width, ALIGN ) * elem_size; |
|
scale[0][i] = scale[0][i - 1] * 0.5; |
|
|
|
levelBytes = step[0][i] * levelSize.height; |
|
imgI[0][i] = (uchar *) ptrA; |
|
ptrA += levelBytes; |
|
|
|
if( !(flags & CV_LKFLOW_PYR_A_READY) ) |
|
{ |
|
prev_level = cvMat( size[0][i-1].height, size[0][i-1].width, CV_8UC1 ); |
|
next_level = cvMat( size[0][i].height, size[0][i].width, CV_8UC1 ); |
|
cvSetData( &prev_level, imgI[0][i-1], step[0][i-1] ); |
|
cvSetData( &next_level, imgI[0][i], step[0][i] ); |
|
cvPyrDown( &prev_level, &next_level ); |
|
} |
|
|
|
imgJ[0][i] = (uchar *) ptrB; |
|
ptrB += levelBytes; |
|
|
|
if( !(flags & CV_LKFLOW_PYR_B_READY) ) |
|
{ |
|
prev_level = cvMat( size[0][i-1].height, size[0][i-1].width, CV_8UC1 ); |
|
next_level = cvMat( size[0][i].height, size[0][i].width, CV_8UC1 ); |
|
cvSetData( &prev_level, imgJ[0][i-1], step[0][i-1] ); |
|
cvSetData( &next_level, imgJ[0][i], step[0][i] ); |
|
cvPyrDown( &prev_level, &next_level ); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
/* compute dI/dx and dI/dy */ |
|
static void |
|
icvCalcIxIy_32f( const float* src, int src_step, float* dstX, float* dstY, int dst_step, |
|
CvSize src_size, const float* smooth_k, float* buffer0 ) |
|
{ |
|
int src_width = src_size.width, dst_width = src_size.width-2; |
|
int x, height = src_size.height - 2; |
|
float* buffer1 = buffer0 + src_width; |
|
|
|
src_step /= sizeof(src[0]); |
|
dst_step /= sizeof(dstX[0]); |
|
|
|
for( ; height--; src += src_step, dstX += dst_step, dstY += dst_step ) |
|
{ |
|
const float* src2 = src + src_step; |
|
const float* src3 = src + src_step*2; |
|
|
|
for( x = 0; x < src_width; x++ ) |
|
{ |
|
float t0 = (src3[x] + src[x])*smooth_k[0] + src2[x]*smooth_k[1]; |
|
float t1 = src3[x] - src[x]; |
|
buffer0[x] = t0; buffer1[x] = t1; |
|
} |
|
|
|
for( x = 0; x < dst_width; x++ ) |
|
{ |
|
float t0 = buffer0[x+2] - buffer0[x]; |
|
float t1 = (buffer1[x] + buffer1[x+2])*smooth_k[0] + buffer1[x+1]*smooth_k[1]; |
|
dstX[x] = t0; dstY[x] = t1; |
|
} |
|
} |
|
} |
|
|
|
|
|
#undef CV_8TO32F |
|
#define CV_8TO32F(a) (a) |
|
|
|
static const void* |
|
icvAdjustRect( const void* srcptr, int src_step, int pix_size, |
|
CvSize src_size, CvSize win_size, |
|
CvPoint ip, CvRect* pRect ) |
|
{ |
|
CvRect rect; |
|
const char* src = (const char*)srcptr; |
|
|
|
if( ip.x >= 0 ) |
|
{ |
|
src += ip.x*pix_size; |
|
rect.x = 0; |
|
} |
|
else |
|
{ |
|
rect.x = -ip.x; |
|
if( rect.x > win_size.width ) |
|
rect.x = win_size.width; |
|
} |
|
|
|
if( ip.x + win_size.width < src_size.width ) |
|
rect.width = win_size.width; |
|
else |
|
{ |
|
rect.width = src_size.width - ip.x - 1; |
|
if( rect.width < 0 ) |
|
{ |
|
src += rect.width*pix_size; |
|
rect.width = 0; |
|
} |
|
assert( rect.width <= win_size.width ); |
|
} |
|
|
|
if( ip.y >= 0 ) |
|
{ |
|
src += ip.y * src_step; |
|
rect.y = 0; |
|
} |
|
else |
|
rect.y = -ip.y; |
|
|
|
if( ip.y + win_size.height < src_size.height ) |
|
rect.height = win_size.height; |
|
else |
|
{ |
|
rect.height = src_size.height - ip.y - 1; |
|
if( rect.height < 0 ) |
|
{ |
|
src += rect.height*src_step; |
|
rect.height = 0; |
|
} |
|
} |
|
|
|
*pRect = rect; |
|
return src - rect.x*pix_size; |
|
} |
|
|
|
|
|
static CvStatus CV_STDCALL icvGetRectSubPix_8u32f_C1R |
|
( const uchar* src, int src_step, CvSize src_size, |
|
float* dst, int dst_step, CvSize win_size, CvPoint2D32f center ) |
|
{ |
|
CvPoint ip; |
|
float a12, a22, b1, b2; |
|
float a, b; |
|
double s = 0; |
|
int i, j; |
|
|
|
center.x -= (win_size.width-1)*0.5f; |
|
center.y -= (win_size.height-1)*0.5f; |
|
|
|
ip.x = cvFloor( center.x ); |
|
ip.y = cvFloor( center.y ); |
|
|
|
if( win_size.width <= 0 || win_size.height <= 0 ) |
|
return CV_BADRANGE_ERR; |
|
|
|
a = center.x - ip.x; |
|
b = center.y - ip.y; |
|
a = MAX(a,0.0001f); |
|
a12 = a*(1.f-b); |
|
a22 = a*b; |
|
b1 = 1.f - b; |
|
b2 = b; |
|
s = (1. - a)/a; |
|
|
|
src_step /= sizeof(src[0]); |
|
dst_step /= sizeof(dst[0]); |
|
|
|
if( 0 <= ip.x && ip.x + win_size.width < src_size.width && |
|
0 <= ip.y && ip.y + win_size.height < src_size.height ) |
|
{ |
|
// extracted rectangle is totally inside the image |
|
src += ip.y * src_step + ip.x; |
|
|
|
#if 0 |
|
if( icvCopySubpix_8u32f_C1R_p && |
|
icvCopySubpix_8u32f_C1R_p( src, src_step, dst, |
|
dst_step*sizeof(dst[0]), win_size, a, b ) >= 0 ) |
|
return CV_OK; |
|
#endif |
|
|
|
for( ; win_size.height--; src += src_step, dst += dst_step ) |
|
{ |
|
float prev = (1 - a)*(b1*CV_8TO32F(src[0]) + b2*CV_8TO32F(src[src_step])); |
|
for( j = 0; j < win_size.width; j++ ) |
|
{ |
|
float t = a12*CV_8TO32F(src[j+1]) + a22*CV_8TO32F(src[j+1+src_step]); |
|
dst[j] = prev + t; |
|
prev = (float)(t*s); |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
CvRect r; |
|
|
|
src = (const uchar*)icvAdjustRect( src, src_step*sizeof(*src), |
|
sizeof(*src), src_size, win_size,ip, &r); |
|
|
|
for( i = 0; i < win_size.height; i++, dst += dst_step ) |
|
{ |
|
const uchar *src2 = src + src_step; |
|
|
|
if( i < r.y || i >= r.height ) |
|
src2 -= src_step; |
|
|
|
for( j = 0; j < r.x; j++ ) |
|
{ |
|
float s0 = CV_8TO32F(src[r.x])*b1 + |
|
CV_8TO32F(src2[r.x])*b2; |
|
|
|
dst[j] = (float)(s0); |
|
} |
|
|
|
if( j < r.width ) |
|
{ |
|
float prev = (1 - a)*(b1*CV_8TO32F(src[j]) + b2*CV_8TO32F(src2[j])); |
|
|
|
for( ; j < r.width; j++ ) |
|
{ |
|
float t = a12*CV_8TO32F(src[j+1]) + a22*CV_8TO32F(src2[j+1]); |
|
dst[j] = prev + t; |
|
prev = (float)(t*s); |
|
} |
|
} |
|
|
|
for( ; j < win_size.width; j++ ) |
|
{ |
|
float s0 = CV_8TO32F(src[r.width])*b1 + |
|
CV_8TO32F(src2[r.width])*b2; |
|
|
|
dst[j] = (float)(s0); |
|
} |
|
|
|
if( i < r.height ) |
|
src = src2; |
|
} |
|
} |
|
|
|
return CV_OK; |
|
} |
|
|
|
|
|
#define ICV_32F8U(x) ((uchar)cvRound(x)) |
|
|
|
#define ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( flavor, srctype, dsttype, worktype, cast_macro, cvt ) \ |
|
static CvStatus CV_STDCALL icvGetQuadrangleSubPix_##flavor##_C1R \ |
|
( const srctype * src, int src_step, CvSize src_size, \ |
|
dsttype *dst, int dst_step, CvSize win_size, const float *matrix ) \ |
|
{ \ |
|
int x, y; \ |
|
double dx = (win_size.width - 1)*0.5; \ |
|
double dy = (win_size.height - 1)*0.5; \ |
|
double A11 = matrix[0], A12 = matrix[1], A13 = matrix[2]-A11*dx-A12*dy; \ |
|
double A21 = matrix[3], A22 = matrix[4], A23 = matrix[5]-A21*dx-A22*dy; \ |
|
\ |
|
src_step /= sizeof(srctype); \ |
|
dst_step /= sizeof(dsttype); \ |
|
\ |
|
for( y = 0; y < win_size.height; y++, dst += dst_step ) \ |
|
{ \ |
|
double xs = A12*y + A13; \ |
|
double ys = A22*y + A23; \ |
|
double xe = A11*(win_size.width-1) + A12*y + A13; \ |
|
double ye = A21*(win_size.width-1) + A22*y + A23; \ |
|
\ |
|
if( (unsigned)(cvFloor(xs)-1) < (unsigned)(src_size.width - 3) && \ |
|
(unsigned)(cvFloor(ys)-1) < (unsigned)(src_size.height - 3) && \ |
|
(unsigned)(cvFloor(xe)-1) < (unsigned)(src_size.width - 3) && \ |
|
(unsigned)(cvFloor(ye)-1) < (unsigned)(src_size.height - 3)) \ |
|
{ \ |
|
for( x = 0; x < win_size.width; x++ ) \ |
|
{ \ |
|
int ixs = cvFloor( xs ); \ |
|
int iys = cvFloor( ys ); \ |
|
const srctype *ptr = src + src_step*iys + ixs; \ |
|
double a = xs - ixs, b = ys - iys, a1 = 1.f - a; \ |
|
worktype p0 = cvt(ptr[0])*a1 + cvt(ptr[1])*a; \ |
|
worktype p1 = cvt(ptr[src_step])*a1 + cvt(ptr[src_step+1])*a; \ |
|
xs += A11; \ |
|
ys += A21; \ |
|
\ |
|
dst[x] = cast_macro(p0 + b * (p1 - p0)); \ |
|
} \ |
|
} \ |
|
else \ |
|
{ \ |
|
for( x = 0; x < win_size.width; x++ ) \ |
|
{ \ |
|
int ixs = cvFloor( xs ), iys = cvFloor( ys ); \ |
|
double a = xs - ixs, b = ys - iys, a1 = 1.f - a; \ |
|
const srctype *ptr0, *ptr1; \ |
|
worktype p0, p1; \ |
|
xs += A11; ys += A21; \ |
|
\ |
|
if( (unsigned)iys < (unsigned)(src_size.height-1) ) \ |
|
ptr0 = src + src_step*iys, ptr1 = ptr0 + src_step; \ |
|
else \ |
|
ptr0 = ptr1 = src + (iys < 0 ? 0 : src_size.height-1)*src_step; \ |
|
\ |
|
if( (unsigned)ixs < (unsigned)(src_size.width-1) ) \ |
|
{ \ |
|
p0 = cvt(ptr0[ixs])*a1 + cvt(ptr0[ixs+1])*a; \ |
|
p1 = cvt(ptr1[ixs])*a1 + cvt(ptr1[ixs+1])*a; \ |
|
} \ |
|
else \ |
|
{ \ |
|
ixs = ixs < 0 ? 0 : src_size.width - 1; \ |
|
p0 = cvt(ptr0[ixs]); p1 = cvt(ptr1[ixs]); \ |
|
} \ |
|
dst[x] = cast_macro(p0 + b * (p1 - p0)); \ |
|
} \ |
|
} \ |
|
} \ |
|
\ |
|
return CV_OK; \ |
|
} |
|
|
|
ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( 8u32f, uchar, float, double, cv::saturate_cast<float>, CV_8TO32F ) |
|
|
|
/* Affine tracking algorithm */ |
|
|
|
CV_IMPL void |
|
cvCalcAffineFlowPyrLK( const void* arrA, const void* arrB, |
|
void* pyrarrA, void* pyrarrB, |
|
const CvPoint2D32f * featuresA, |
|
CvPoint2D32f * featuresB, |
|
float *matrices, int count, |
|
CvSize winSize, int level, |
|
char *status, float *error, |
|
CvTermCriteria criteria, int flags ) |
|
{ |
|
const int MAX_ITERS = 100; |
|
|
|
cv::AutoBuffer<char> _status; |
|
cv::AutoBuffer<uchar> buffer; |
|
cv::AutoBuffer<uchar> pyr_buffer; |
|
|
|
CvMat stubA, *imgA = (CvMat*)arrA; |
|
CvMat stubB, *imgB = (CvMat*)arrB; |
|
CvMat pstubA, *pyrA = (CvMat*)pyrarrA; |
|
CvMat pstubB, *pyrB = (CvMat*)pyrarrB; |
|
|
|
static const float smoothKernel[] = { 0.09375, 0.3125, 0.09375 }; /* 3/32, 10/32, 3/32 */ |
|
|
|
int bufferBytes = 0; |
|
|
|
uchar **imgI = 0; |
|
uchar **imgJ = 0; |
|
int *step = 0; |
|
double *scale = 0; |
|
CvSize* size = 0; |
|
|
|
float *patchI; |
|
float *patchJ; |
|
float *Ix; |
|
float *Iy; |
|
|
|
int i, j, k, l; |
|
|
|
CvSize patchSize = cvSize( winSize.width * 2 + 1, winSize.height * 2 + 1 ); |
|
int patchLen = patchSize.width * patchSize.height; |
|
int patchStep = patchSize.width * sizeof( patchI[0] ); |
|
|
|
CvSize srcPatchSize = cvSize( patchSize.width + 2, patchSize.height + 2 ); |
|
int srcPatchLen = srcPatchSize.width * srcPatchSize.height; |
|
int srcPatchStep = srcPatchSize.width * sizeof( patchI[0] ); |
|
CvSize imgSize; |
|
float eps = (float)MIN(winSize.width, winSize.height); |
|
|
|
imgA = cvGetMat( imgA, &stubA ); |
|
imgB = cvGetMat( imgB, &stubB ); |
|
|
|
if( CV_MAT_TYPE( imgA->type ) != CV_8UC1 ) |
|
CV_Error( CV_StsUnsupportedFormat, "" ); |
|
|
|
if( !CV_ARE_TYPES_EQ( imgA, imgB )) |
|
CV_Error( CV_StsUnmatchedFormats, "" ); |
|
|
|
if( !CV_ARE_SIZES_EQ( imgA, imgB )) |
|
CV_Error( CV_StsUnmatchedSizes, "" ); |
|
|
|
if( imgA->step != imgB->step ) |
|
CV_Error( CV_StsUnmatchedSizes, "imgA and imgB must have equal steps" ); |
|
|
|
if( !matrices ) |
|
CV_Error( CV_StsNullPtr, "" ); |
|
|
|
imgSize = cv::Size(imgA->cols, imgA->rows); |
|
|
|
if( pyrA ) |
|
{ |
|
pyrA = cvGetMat( pyrA, &pstubA ); |
|
|
|
if( pyrA->step*pyrA->height < icvMinimalPyramidSize( imgSize ) ) |
|
CV_Error( CV_StsBadArg, "pyramid A has insufficient size" ); |
|
} |
|
else |
|
{ |
|
pyrA = &pstubA; |
|
pyrA->data.ptr = 0; |
|
} |
|
|
|
if( pyrB ) |
|
{ |
|
pyrB = cvGetMat( pyrB, &pstubB ); |
|
|
|
if( pyrB->step*pyrB->height < icvMinimalPyramidSize( imgSize ) ) |
|
CV_Error( CV_StsBadArg, "pyramid B has insufficient size" ); |
|
} |
|
else |
|
{ |
|
pyrB = &pstubB; |
|
pyrB->data.ptr = 0; |
|
} |
|
|
|
if( count == 0 ) |
|
return; |
|
|
|
/* check input arguments */ |
|
if( !featuresA || !featuresB || !matrices ) |
|
CV_Error( CV_StsNullPtr, "" ); |
|
|
|
if( winSize.width <= 1 || winSize.height <= 1 ) |
|
CV_Error( CV_StsOutOfRange, "the search window is too small" ); |
|
|
|
if( count < 0 ) |
|
CV_Error( CV_StsOutOfRange, "" ); |
|
|
|
icvInitPyramidalAlgorithm( imgA, imgB, |
|
pyrA, pyrB, level, &criteria, MAX_ITERS, flags, |
|
&imgI, &imgJ, &step, &size, &scale, &pyr_buffer ); |
|
|
|
/* buffer_size = <size for patches> + <size for pyramids> */ |
|
bufferBytes = (srcPatchLen + patchLen*3)*sizeof(patchI[0]) + (36*2 + 6)*sizeof(double); |
|
|
|
buffer.allocate(bufferBytes); |
|
|
|
if( !status ) |
|
{ |
|
_status.allocate(count); |
|
status = _status; |
|
} |
|
|
|
patchI = (float *)(uchar*)buffer; |
|
patchJ = patchI + srcPatchLen; |
|
Ix = patchJ + patchLen; |
|
Iy = Ix + patchLen; |
|
|
|
if( status ) |
|
memset( status, 1, count ); |
|
|
|
if( !(flags & CV_LKFLOW_INITIAL_GUESSES) ) |
|
{ |
|
memcpy( featuresB, featuresA, count * sizeof( featuresA[0] )); |
|
for( i = 0; i < count * 4; i += 4 ) |
|
{ |
|
matrices[i] = matrices[i + 3] = 1.f; |
|
matrices[i + 1] = matrices[i + 2] = 0.f; |
|
} |
|
} |
|
|
|
for( i = 0; i < count; i++ ) |
|
{ |
|
featuresB[i].x = (float)(featuresB[i].x * scale[level] * 0.5); |
|
featuresB[i].y = (float)(featuresB[i].y * scale[level] * 0.5); |
|
} |
|
|
|
/* do processing from top pyramid level (smallest image) |
|
to the bottom (original image) */ |
|
for( l = level; l >= 0; l-- ) |
|
{ |
|
CvSize levelSize = size[l]; |
|
int levelStep = step[l]; |
|
|
|
/* find flow for each given point at the particular level */ |
|
for( i = 0; i < count; i++ ) |
|
{ |
|
CvPoint2D32f u; |
|
float Av[6]; |
|
double G[36]; |
|
double meanI = 0, meanJ = 0; |
|
int x, y; |
|
int pt_status = status[i]; |
|
CvMat mat; |
|
|
|
if( !pt_status ) |
|
continue; |
|
|
|
Av[0] = matrices[i*4]; |
|
Av[1] = matrices[i*4+1]; |
|
Av[3] = matrices[i*4+2]; |
|
Av[4] = matrices[i*4+3]; |
|
|
|
Av[2] = featuresB[i].x += featuresB[i].x; |
|
Av[5] = featuresB[i].y += featuresB[i].y; |
|
|
|
u.x = (float) (featuresA[i].x * scale[l]); |
|
u.y = (float) (featuresA[i].y * scale[l]); |
|
|
|
if( u.x < -eps || u.x >= levelSize.width+eps || |
|
u.y < -eps || u.y >= levelSize.height+eps || |
|
icvGetRectSubPix_8u32f_C1R( imgI[l], levelStep, |
|
levelSize, patchI, srcPatchStep, srcPatchSize, u ) < 0 ) |
|
{ |
|
/* point is outside the image. take the next */ |
|
if( l == 0 ) |
|
status[i] = 0; |
|
continue; |
|
} |
|
|
|
icvCalcIxIy_32f( patchI, srcPatchStep, Ix, Iy, |
|
(srcPatchSize.width-2)*sizeof(patchI[0]), srcPatchSize, |
|
smoothKernel, patchJ ); |
|
|
|
/* repack patchI (remove borders) */ |
|
for( k = 0; k < patchSize.height; k++ ) |
|
memcpy( patchI + k * patchSize.width, |
|
patchI + (k + 1) * srcPatchSize.width + 1, patchStep ); |
|
|
|
memset( G, 0, sizeof( G )); |
|
|
|
/* calculate G matrix */ |
|
for( y = -winSize.height, k = 0; y <= winSize.height; y++ ) |
|
{ |
|
for( x = -winSize.width; x <= winSize.width; x++, k++ ) |
|
{ |
|
double ixix = ((double) Ix[k]) * Ix[k]; |
|
double ixiy = ((double) Ix[k]) * Iy[k]; |
|
double iyiy = ((double) Iy[k]) * Iy[k]; |
|
|
|
double xx, xy, yy; |
|
|
|
G[0] += ixix; |
|
G[1] += ixiy; |
|
G[2] += x * ixix; |
|
G[3] += y * ixix; |
|
G[4] += x * ixiy; |
|
G[5] += y * ixiy; |
|
|
|
// G[6] == G[1] |
|
G[7] += iyiy; |
|
// G[8] == G[4] |
|
// G[9] == G[5] |
|
G[10] += x * iyiy; |
|
G[11] += y * iyiy; |
|
|
|
xx = x * x; |
|
xy = x * y; |
|
yy = y * y; |
|
|
|
// G[12] == G[2] |
|
// G[13] == G[8] == G[4] |
|
G[14] += xx * ixix; |
|
G[15] += xy * ixix; |
|
G[16] += xx * ixiy; |
|
G[17] += xy * ixiy; |
|
|
|
// G[18] == G[3] |
|
// G[19] == G[9] |
|
// G[20] == G[15] |
|
G[21] += yy * ixix; |
|
// G[22] == G[17] |
|
G[23] += yy * ixiy; |
|
|
|
// G[24] == G[4] |
|
// G[25] == G[10] |
|
// G[26] == G[16] |
|
// G[27] == G[22] |
|
G[28] += xx * iyiy; |
|
G[29] += xy * iyiy; |
|
|
|
// G[30] == G[5] |
|
// G[31] == G[11] |
|
// G[32] == G[17] |
|
// G[33] == G[23] |
|
// G[34] == G[29] |
|
G[35] += yy * iyiy; |
|
|
|
meanI += patchI[k]; |
|
} |
|
} |
|
|
|
meanI /= patchSize.width*patchSize.height; |
|
|
|
G[8] = G[4]; |
|
G[9] = G[5]; |
|
G[22] = G[17]; |
|
|
|
// fill part of G below its diagonal |
|
for( y = 1; y < 6; y++ ) |
|
for( x = 0; x < y; x++ ) |
|
G[y * 6 + x] = G[x * 6 + y]; |
|
|
|
cvInitMatHeader( &mat, 6, 6, CV_64FC1, G ); |
|
|
|
if( cvInvert( &mat, &mat, CV_SVD ) < 1e-4 ) |
|
{ |
|
/* bad matrix. take the next point */ |
|
if( l == 0 ) |
|
status[i] = 0; |
|
continue; |
|
} |
|
|
|
for( j = 0; j < criteria.max_iter; j++ ) |
|
{ |
|
double b[6] = {0,0,0,0,0,0}, eta[6]; |
|
double t0, t1, s = 0; |
|
|
|
if( Av[2] < -eps || Av[2] >= levelSize.width+eps || |
|
Av[5] < -eps || Av[5] >= levelSize.height+eps || |
|
icvGetQuadrangleSubPix_8u32f_C1R( imgJ[l], levelStep, |
|
levelSize, patchJ, patchStep, patchSize, Av ) < 0 ) |
|
{ |
|
pt_status = 0; |
|
break; |
|
} |
|
|
|
for( y = -winSize.height, k = 0, meanJ = 0; y <= winSize.height; y++ ) |
|
for( x = -winSize.width; x <= winSize.width; x++, k++ ) |
|
meanJ += patchJ[k]; |
|
|
|
meanJ = meanJ / (patchSize.width * patchSize.height) - meanI; |
|
|
|
for( y = -winSize.height, k = 0; y <= winSize.height; y++ ) |
|
{ |
|
for( x = -winSize.width; x <= winSize.width; x++, k++ ) |
|
{ |
|
double t = patchI[k] - patchJ[k] + meanJ; |
|
double ixt = Ix[k] * t; |
|
double iyt = Iy[k] * t; |
|
|
|
s += t; |
|
|
|
b[0] += ixt; |
|
b[1] += iyt; |
|
b[2] += x * ixt; |
|
b[3] += y * ixt; |
|
b[4] += x * iyt; |
|
b[5] += y * iyt; |
|
} |
|
} |
|
|
|
for( k = 0; k < 6; k++ ) |
|
eta[k] = G[k*6]*b[0] + G[k*6+1]*b[1] + G[k*6+2]*b[2] + |
|
G[k*6+3]*b[3] + G[k*6+4]*b[4] + G[k*6+5]*b[5]; |
|
|
|
Av[2] = (float)(Av[2] + Av[0] * eta[0] + Av[1] * eta[1]); |
|
Av[5] = (float)(Av[5] + Av[3] * eta[0] + Av[4] * eta[1]); |
|
|
|
t0 = Av[0] * (1 + eta[2]) + Av[1] * eta[4]; |
|
t1 = Av[0] * eta[3] + Av[1] * (1 + eta[5]); |
|
Av[0] = (float)t0; |
|
Av[1] = (float)t1; |
|
|
|
t0 = Av[3] * (1 + eta[2]) + Av[4] * eta[4]; |
|
t1 = Av[3] * eta[3] + Av[4] * (1 + eta[5]); |
|
Av[3] = (float)t0; |
|
Av[4] = (float)t1; |
|
|
|
if( eta[0] * eta[0] + eta[1] * eta[1] < criteria.epsilon ) |
|
break; |
|
} |
|
|
|
if( pt_status != 0 || l == 0 ) |
|
{ |
|
status[i] = (char)pt_status; |
|
featuresB[i].x = Av[2]; |
|
featuresB[i].y = Av[5]; |
|
|
|
matrices[i*4] = Av[0]; |
|
matrices[i*4+1] = Av[1]; |
|
matrices[i*4+2] = Av[3]; |
|
matrices[i*4+3] = Av[4]; |
|
} |
|
|
|
if( pt_status && l == 0 && error ) |
|
{ |
|
/* calc error */ |
|
double err = 0; |
|
|
|
for( y = 0, k = 0; y < patchSize.height; y++ ) |
|
{ |
|
for( x = 0; x < patchSize.width; x++, k++ ) |
|
{ |
|
double t = patchI[k] - patchJ[k] + meanJ; |
|
err += t * t; |
|
} |
|
} |
|
error[i] = (float)std::sqrt(err); |
|
} |
|
} |
|
} |
|
}
|
|
|