mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
127 lines
5.1 KiB
127 lines
5.1 KiB
import cv2 as cv |
|
import argparse |
|
import numpy as np |
|
import sys |
|
|
|
from common import * |
|
|
|
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV) |
|
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD) |
|
|
|
parser = argparse.ArgumentParser(add_help=False) |
|
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'), |
|
help='An optional path to file with preprocessing parameters.') |
|
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.') |
|
parser.add_argument('--framework', choices=['caffe', 'tensorflow', 'torch', 'darknet'], |
|
help='Optional name of an origin framework of the model. ' |
|
'Detect it automatically if it does not set.') |
|
parser.add_argument('--colors', help='Optional path to a text file with colors for an every class. ' |
|
'An every color is represented with three values from 0 to 255 in BGR channels order.') |
|
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int, |
|
help="Choose one of computation backends: " |
|
"%d: automatically (by default), " |
|
"%d: Halide language (http://halide-lang.org/), " |
|
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " |
|
"%d: OpenCV implementation" % backends) |
|
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int, |
|
help='Choose one of target computation devices: ' |
|
'%d: CPU target (by default), ' |
|
'%d: OpenCL, ' |
|
'%d: OpenCL fp16 (half-float precision), ' |
|
'%d: VPU' % targets) |
|
args, _ = parser.parse_known_args() |
|
add_preproc_args(args.zoo, parser, 'segmentation') |
|
parser = argparse.ArgumentParser(parents=[parser], |
|
description='Use this script to run semantic segmentation deep learning networks using OpenCV.', |
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
|
args = parser.parse_args() |
|
|
|
args.model = findFile(args.model) |
|
args.config = findFile(args.config) |
|
args.classes = findFile(args.classes) |
|
|
|
np.random.seed(324) |
|
|
|
# Load names of classes |
|
classes = None |
|
if args.classes: |
|
with open(args.classes, 'rt') as f: |
|
classes = f.read().rstrip('\n').split('\n') |
|
|
|
# Load colors |
|
colors = None |
|
if args.colors: |
|
with open(args.colors, 'rt') as f: |
|
colors = [np.array(color.split(' '), np.uint8) for color in f.read().rstrip('\n').split('\n')] |
|
|
|
legend = None |
|
def showLegend(classes): |
|
global legend |
|
if not classes is None and legend is None: |
|
blockHeight = 30 |
|
assert(len(classes) == len(colors)) |
|
|
|
legend = np.zeros((blockHeight * len(colors), 200, 3), np.uint8) |
|
for i in range(len(classes)): |
|
block = legend[i * blockHeight:(i + 1) * blockHeight] |
|
block[:,:] = colors[i] |
|
cv.putText(block, classes[i], (0, blockHeight//2), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255)) |
|
|
|
cv.namedWindow('Legend', cv.WINDOW_NORMAL) |
|
cv.imshow('Legend', legend) |
|
classes = None |
|
|
|
# Load a network |
|
net = cv.dnn.readNet(args.model, args.config, args.framework) |
|
net.setPreferableBackend(args.backend) |
|
net.setPreferableTarget(args.target) |
|
|
|
winName = 'Deep learning semantic segmentation in OpenCV' |
|
cv.namedWindow(winName, cv.WINDOW_NORMAL) |
|
|
|
cap = cv.VideoCapture(args.input if args.input else 0) |
|
legend = None |
|
while cv.waitKey(1) < 0: |
|
hasFrame, frame = cap.read() |
|
if not hasFrame: |
|
cv.waitKey() |
|
break |
|
|
|
frameHeight = frame.shape[0] |
|
frameWidth = frame.shape[1] |
|
|
|
# Create a 4D blob from a frame. |
|
inpWidth = args.width if args.width else frameWidth |
|
inpHeight = args.height if args.height else frameHeight |
|
blob = cv.dnn.blobFromImage(frame, args.scale, (inpWidth, inpHeight), args.mean, args.rgb, crop=False) |
|
|
|
# Run a model |
|
net.setInput(blob) |
|
score = net.forward() |
|
|
|
numClasses = score.shape[1] |
|
height = score.shape[2] |
|
width = score.shape[3] |
|
|
|
# Draw segmentation |
|
if not colors: |
|
# Generate colors |
|
colors = [np.array([0, 0, 0], np.uint8)] |
|
for i in range(1, numClasses): |
|
colors.append((colors[i - 1] + np.random.randint(0, 256, [3], np.uint8)) / 2) |
|
|
|
classIds = np.argmax(score[0], axis=0) |
|
segm = np.stack([colors[idx] for idx in classIds.flatten()]) |
|
segm = segm.reshape(height, width, 3) |
|
|
|
segm = cv.resize(segm, (frameWidth, frameHeight), interpolation=cv.INTER_NEAREST) |
|
frame = (0.1 * frame + 0.9 * segm).astype(np.uint8) |
|
|
|
# Put efficiency information. |
|
t, _ = net.getPerfProfile() |
|
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency()) |
|
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0)) |
|
|
|
showLegend(classes) |
|
|
|
cv.imshow(winName, frame)
|
|
|