Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
684 lines
24 KiB
684 lines
24 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::detail; |
|
using namespace cv::cuda; |
|
|
|
#ifdef HAVE_OPENCV_XFEATURES2D |
|
#include "opencv2/xfeatures2d.hpp" |
|
#endif |
|
|
|
using xfeatures2d::SURF; |
|
|
|
namespace { |
|
|
|
struct DistIdxPair |
|
{ |
|
bool operator<(const DistIdxPair &other) const { return dist < other.dist; } |
|
double dist; |
|
int idx; |
|
}; |
|
|
|
|
|
struct MatchPairsBody : ParallelLoopBody |
|
{ |
|
MatchPairsBody(FeaturesMatcher &_matcher, const std::vector<ImageFeatures> &_features, |
|
std::vector<MatchesInfo> &_pairwise_matches, std::vector<std::pair<int,int> > &_near_pairs) |
|
: matcher(_matcher), features(_features), |
|
pairwise_matches(_pairwise_matches), near_pairs(_near_pairs) {} |
|
|
|
void operator ()(const Range &r) const |
|
{ |
|
const int num_images = static_cast<int>(features.size()); |
|
for (int i = r.start; i < r.end; ++i) |
|
{ |
|
int from = near_pairs[i].first; |
|
int to = near_pairs[i].second; |
|
int pair_idx = from*num_images + to; |
|
|
|
matcher(features[from], features[to], pairwise_matches[pair_idx]); |
|
pairwise_matches[pair_idx].src_img_idx = from; |
|
pairwise_matches[pair_idx].dst_img_idx = to; |
|
|
|
size_t dual_pair_idx = to*num_images + from; |
|
|
|
pairwise_matches[dual_pair_idx] = pairwise_matches[pair_idx]; |
|
pairwise_matches[dual_pair_idx].src_img_idx = to; |
|
pairwise_matches[dual_pair_idx].dst_img_idx = from; |
|
|
|
if (!pairwise_matches[pair_idx].H.empty()) |
|
pairwise_matches[dual_pair_idx].H = pairwise_matches[pair_idx].H.inv(); |
|
|
|
for (size_t j = 0; j < pairwise_matches[dual_pair_idx].matches.size(); ++j) |
|
std::swap(pairwise_matches[dual_pair_idx].matches[j].queryIdx, |
|
pairwise_matches[dual_pair_idx].matches[j].trainIdx); |
|
LOG("."); |
|
} |
|
} |
|
|
|
FeaturesMatcher &matcher; |
|
const std::vector<ImageFeatures> &features; |
|
std::vector<MatchesInfo> &pairwise_matches; |
|
std::vector<std::pair<int,int> > &near_pairs; |
|
|
|
private: |
|
void operator =(const MatchPairsBody&); |
|
}; |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
|
|
typedef std::set<std::pair<int,int> > MatchesSet; |
|
|
|
// These two classes are aimed to find features matches only, not to |
|
// estimate homography |
|
|
|
class CpuMatcher : public FeaturesMatcher |
|
{ |
|
public: |
|
CpuMatcher(float match_conf) : FeaturesMatcher(true), match_conf_(match_conf) {} |
|
void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info); |
|
|
|
private: |
|
float match_conf_; |
|
}; |
|
|
|
#ifdef HAVE_OPENCV_CUDAFEATURES2D |
|
class GpuMatcher : public FeaturesMatcher |
|
{ |
|
public: |
|
GpuMatcher(float match_conf) : match_conf_(match_conf) {} |
|
void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info); |
|
|
|
void collectGarbage(); |
|
|
|
private: |
|
float match_conf_; |
|
GpuMat descriptors1_, descriptors2_; |
|
GpuMat train_idx_, distance_, all_dist_; |
|
std::vector< std::vector<DMatch> > pair_matches; |
|
}; |
|
#endif |
|
|
|
|
|
void CpuMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info) |
|
{ |
|
CV_Assert(features1.descriptors.type() == features2.descriptors.type()); |
|
CV_Assert(features2.descriptors.depth() == CV_8U || features2.descriptors.depth() == CV_32F); |
|
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION |
|
if (tegra::match2nearest(features1, features2, matches_info, match_conf_)) |
|
return; |
|
#endif |
|
|
|
matches_info.matches.clear(); |
|
|
|
Ptr<DescriptorMatcher> matcher; |
|
#if 0 // TODO check this |
|
if (ocl::useOpenCL()) |
|
{ |
|
matcher = makePtr<BFMatcher>((int)NORM_L2); |
|
} |
|
else |
|
#endif |
|
{ |
|
Ptr<flann::IndexParams> indexParams = makePtr<flann::KDTreeIndexParams>(); |
|
Ptr<flann::SearchParams> searchParams = makePtr<flann::SearchParams>(); |
|
|
|
if (features2.descriptors.depth() == CV_8U) |
|
{ |
|
indexParams->setAlgorithm(cvflann::FLANN_INDEX_LSH); |
|
searchParams->setAlgorithm(cvflann::FLANN_INDEX_LSH); |
|
} |
|
|
|
matcher = makePtr<FlannBasedMatcher>(indexParams, searchParams); |
|
} |
|
std::vector< std::vector<DMatch> > pair_matches; |
|
MatchesSet matches; |
|
|
|
// Find 1->2 matches |
|
matcher->knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2); |
|
for (size_t i = 0; i < pair_matches.size(); ++i) |
|
{ |
|
if (pair_matches[i].size() < 2) |
|
continue; |
|
const DMatch& m0 = pair_matches[i][0]; |
|
const DMatch& m1 = pair_matches[i][1]; |
|
if (m0.distance < (1.f - match_conf_) * m1.distance) |
|
{ |
|
matches_info.matches.push_back(m0); |
|
matches.insert(std::make_pair(m0.queryIdx, m0.trainIdx)); |
|
} |
|
} |
|
LOG("\n1->2 matches: " << matches_info.matches.size() << endl); |
|
|
|
// Find 2->1 matches |
|
pair_matches.clear(); |
|
matcher->knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2); |
|
for (size_t i = 0; i < pair_matches.size(); ++i) |
|
{ |
|
if (pair_matches[i].size() < 2) |
|
continue; |
|
const DMatch& m0 = pair_matches[i][0]; |
|
const DMatch& m1 = pair_matches[i][1]; |
|
if (m0.distance < (1.f - match_conf_) * m1.distance) |
|
if (matches.find(std::make_pair(m0.trainIdx, m0.queryIdx)) == matches.end()) |
|
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance)); |
|
} |
|
LOG("1->2 & 2->1 matches: " << matches_info.matches.size() << endl); |
|
} |
|
|
|
#ifdef HAVE_OPENCV_CUDAFEATURES2D |
|
void GpuMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info) |
|
{ |
|
matches_info.matches.clear(); |
|
|
|
ensureSizeIsEnough(features1.descriptors.size(), features1.descriptors.type(), descriptors1_); |
|
ensureSizeIsEnough(features2.descriptors.size(), features2.descriptors.type(), descriptors2_); |
|
|
|
descriptors1_.upload(features1.descriptors); |
|
descriptors2_.upload(features2.descriptors); |
|
|
|
BFMatcher_CUDA matcher(NORM_L2); |
|
MatchesSet matches; |
|
|
|
// Find 1->2 matches |
|
pair_matches.clear(); |
|
matcher.knnMatchSingle(descriptors1_, descriptors2_, train_idx_, distance_, all_dist_, 2); |
|
matcher.knnMatchDownload(train_idx_, distance_, pair_matches); |
|
for (size_t i = 0; i < pair_matches.size(); ++i) |
|
{ |
|
if (pair_matches[i].size() < 2) |
|
continue; |
|
const DMatch& m0 = pair_matches[i][0]; |
|
const DMatch& m1 = pair_matches[i][1]; |
|
if (m0.distance < (1.f - match_conf_) * m1.distance) |
|
{ |
|
matches_info.matches.push_back(m0); |
|
matches.insert(std::make_pair(m0.queryIdx, m0.trainIdx)); |
|
} |
|
} |
|
|
|
// Find 2->1 matches |
|
pair_matches.clear(); |
|
matcher.knnMatchSingle(descriptors2_, descriptors1_, train_idx_, distance_, all_dist_, 2); |
|
matcher.knnMatchDownload(train_idx_, distance_, pair_matches); |
|
for (size_t i = 0; i < pair_matches.size(); ++i) |
|
{ |
|
if (pair_matches[i].size() < 2) |
|
continue; |
|
const DMatch& m0 = pair_matches[i][0]; |
|
const DMatch& m1 = pair_matches[i][1]; |
|
if (m0.distance < (1.f - match_conf_) * m1.distance) |
|
if (matches.find(std::make_pair(m0.trainIdx, m0.queryIdx)) == matches.end()) |
|
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance)); |
|
} |
|
} |
|
|
|
void GpuMatcher::collectGarbage() |
|
{ |
|
descriptors1_.release(); |
|
descriptors2_.release(); |
|
train_idx_.release(); |
|
distance_.release(); |
|
all_dist_.release(); |
|
std::vector< std::vector<DMatch> >().swap(pair_matches); |
|
} |
|
#endif |
|
|
|
} // namespace |
|
|
|
|
|
namespace cv { |
|
namespace detail { |
|
|
|
void FeaturesFinder::operator ()(InputArray image, ImageFeatures &features) |
|
{ |
|
find(image, features); |
|
features.img_size = image.size(); |
|
} |
|
|
|
|
|
void FeaturesFinder::operator ()(InputArray image, ImageFeatures &features, const std::vector<Rect> &rois) |
|
{ |
|
std::vector<ImageFeatures> roi_features(rois.size()); |
|
size_t total_kps_count = 0; |
|
int total_descriptors_height = 0; |
|
|
|
for (size_t i = 0; i < rois.size(); ++i) |
|
{ |
|
find(image.getUMat()(rois[i]), roi_features[i]); |
|
total_kps_count += roi_features[i].keypoints.size(); |
|
total_descriptors_height += roi_features[i].descriptors.rows; |
|
} |
|
|
|
features.img_size = image.size(); |
|
features.keypoints.resize(total_kps_count); |
|
features.descriptors.create(total_descriptors_height, |
|
roi_features[0].descriptors.cols, |
|
roi_features[0].descriptors.type()); |
|
|
|
int kp_idx = 0; |
|
int descr_offset = 0; |
|
for (size_t i = 0; i < rois.size(); ++i) |
|
{ |
|
for (size_t j = 0; j < roi_features[i].keypoints.size(); ++j, ++kp_idx) |
|
{ |
|
features.keypoints[kp_idx] = roi_features[i].keypoints[j]; |
|
features.keypoints[kp_idx].pt.x += (float)rois[i].x; |
|
features.keypoints[kp_idx].pt.y += (float)rois[i].y; |
|
} |
|
UMat subdescr = features.descriptors.rowRange( |
|
descr_offset, descr_offset + roi_features[i].descriptors.rows); |
|
roi_features[i].descriptors.copyTo(subdescr); |
|
descr_offset += roi_features[i].descriptors.rows; |
|
} |
|
} |
|
|
|
|
|
SurfFeaturesFinder::SurfFeaturesFinder(double hess_thresh, int num_octaves, int num_layers, |
|
int num_octaves_descr, int num_layers_descr) |
|
{ |
|
if (num_octaves_descr == num_octaves && num_layers_descr == num_layers) |
|
{ |
|
surf = SURF::create(); |
|
if( !surf ) |
|
CV_Error( Error::StsNotImplemented, "OpenCV was built without SURF support" ); |
|
surf->set(SURF::HESSIAN_THRESHOLD, hess_thresh); |
|
surf->set(SURF::NOCTAVES, num_octaves); |
|
surf->set(SURF::NOCTAVE_LAYERS, num_layers); |
|
} |
|
else |
|
{ |
|
detector_ = SURF::create(); |
|
extractor_ = SURF::create(); |
|
|
|
if( !detector_ || !extractor_ ) |
|
CV_Error( Error::StsNotImplemented, "OpenCV was built without SURF support" ); |
|
|
|
detector_->set(SURF::HESSIAN_THRESHOLD, hess_thresh); |
|
detector_->set(SURF::NOCTAVES, num_octaves); |
|
detector_->set(SURF::NOCTAVE_LAYERS, num_layers); |
|
|
|
extractor_->set(SURF::NOCTAVES, num_octaves_descr); |
|
extractor_->set(SURF::NOCTAVE_LAYERS, num_layers_descr); |
|
} |
|
} |
|
|
|
void SurfFeaturesFinder::find(InputArray image, ImageFeatures &features) |
|
{ |
|
UMat gray_image; |
|
CV_Assert((image.type() == CV_8UC3) || (image.type() == CV_8UC1)); |
|
if(image.type() == CV_8UC3) |
|
{ |
|
cvtColor(image, gray_image, COLOR_BGR2GRAY); |
|
} |
|
else |
|
{ |
|
gray_image = image.getUMat(); |
|
} |
|
if (!surf) |
|
{ |
|
detector_->detect(gray_image, features.keypoints); |
|
extractor_->compute(gray_image, features.keypoints, features.descriptors); |
|
} |
|
else |
|
{ |
|
UMat descriptors; |
|
surf->detectAndCompute(gray_image, Mat(), features.keypoints, descriptors); |
|
features.descriptors = descriptors.reshape(1, (int)features.keypoints.size()); |
|
} |
|
} |
|
|
|
OrbFeaturesFinder::OrbFeaturesFinder(Size _grid_size, int n_features, float scaleFactor, int nlevels) |
|
{ |
|
grid_size = _grid_size; |
|
orb = ORB::create(n_features * (99 + grid_size.area())/100/grid_size.area(), scaleFactor, nlevels); |
|
} |
|
|
|
void OrbFeaturesFinder::find(InputArray image, ImageFeatures &features) |
|
{ |
|
UMat gray_image; |
|
|
|
CV_Assert((image.type() == CV_8UC3) || (image.type() == CV_8UC4) || (image.type() == CV_8UC1)); |
|
|
|
if (image.type() == CV_8UC3) { |
|
cvtColor(image, gray_image, COLOR_BGR2GRAY); |
|
} else if (image.type() == CV_8UC4) { |
|
cvtColor(image, gray_image, COLOR_BGRA2GRAY); |
|
} else if (image.type() == CV_8UC1) { |
|
gray_image = image.getUMat(); |
|
} else { |
|
CV_Error(Error::StsUnsupportedFormat, ""); |
|
} |
|
|
|
if (grid_size.area() == 1) |
|
orb->detectAndCompute(gray_image, Mat(), features.keypoints, features.descriptors); |
|
else |
|
{ |
|
features.keypoints.clear(); |
|
features.descriptors.release(); |
|
|
|
std::vector<KeyPoint> points; |
|
Mat _descriptors; |
|
UMat descriptors; |
|
|
|
for (int r = 0; r < grid_size.height; ++r) |
|
for (int c = 0; c < grid_size.width; ++c) |
|
{ |
|
int xl = c * gray_image.cols / grid_size.width; |
|
int yl = r * gray_image.rows / grid_size.height; |
|
int xr = (c+1) * gray_image.cols / grid_size.width; |
|
int yr = (r+1) * gray_image.rows / grid_size.height; |
|
|
|
// LOGLN("OrbFeaturesFinder::find: gray_image.empty=" << (gray_image.empty()?"true":"false") << ", " |
|
// << " gray_image.size()=(" << gray_image.size().width << "x" << gray_image.size().height << "), " |
|
// << " yl=" << yl << ", yr=" << yr << ", " |
|
// << " xl=" << xl << ", xr=" << xr << ", gray_image.data=" << ((size_t)gray_image.data) << ", " |
|
// << "gray_image.dims=" << gray_image.dims << "\n"); |
|
|
|
UMat gray_image_part=gray_image(Range(yl, yr), Range(xl, xr)); |
|
// LOGLN("OrbFeaturesFinder::find: gray_image_part.empty=" << (gray_image_part.empty()?"true":"false") << ", " |
|
// << " gray_image_part.size()=(" << gray_image_part.size().width << "x" << gray_image_part.size().height << "), " |
|
// << " gray_image_part.dims=" << gray_image_part.dims << ", " |
|
// << " gray_image_part.data=" << ((size_t)gray_image_part.data) << "\n"); |
|
|
|
orb->detectAndCompute(gray_image_part, UMat(), points, descriptors); |
|
|
|
features.keypoints.reserve(features.keypoints.size() + points.size()); |
|
for (std::vector<KeyPoint>::iterator kp = points.begin(); kp != points.end(); ++kp) |
|
{ |
|
kp->pt.x += xl; |
|
kp->pt.y += yl; |
|
features.keypoints.push_back(*kp); |
|
} |
|
_descriptors.push_back(descriptors.getMat(ACCESS_READ)); |
|
} |
|
|
|
// TODO optimize copyTo() |
|
//features.descriptors = _descriptors.getUMat(ACCESS_READ); |
|
_descriptors.copyTo(features.descriptors); |
|
} |
|
} |
|
|
|
#ifdef HAVE_OPENCV_XFEATURES2D |
|
SurfFeaturesFinderGpu::SurfFeaturesFinderGpu(double hess_thresh, int num_octaves, int num_layers, |
|
int num_octaves_descr, int num_layers_descr) |
|
{ |
|
surf_.keypointsRatio = 0.1f; |
|
surf_.hessianThreshold = hess_thresh; |
|
surf_.extended = false; |
|
num_octaves_ = num_octaves; |
|
num_layers_ = num_layers; |
|
num_octaves_descr_ = num_octaves_descr; |
|
num_layers_descr_ = num_layers_descr; |
|
} |
|
|
|
|
|
void SurfFeaturesFinderGpu::find(InputArray image, ImageFeatures &features) |
|
{ |
|
CV_Assert(image.depth() == CV_8U); |
|
|
|
ensureSizeIsEnough(image.size(), image.type(), image_); |
|
image_.upload(image); |
|
|
|
ensureSizeIsEnough(image.size(), CV_8UC1, gray_image_); |
|
cvtColor(image_, gray_image_, COLOR_BGR2GRAY); |
|
|
|
surf_.nOctaves = num_octaves_; |
|
surf_.nOctaveLayers = num_layers_; |
|
surf_.upright = false; |
|
surf_(gray_image_, GpuMat(), keypoints_); |
|
|
|
surf_.nOctaves = num_octaves_descr_; |
|
surf_.nOctaveLayers = num_layers_descr_; |
|
surf_.upright = true; |
|
surf_(gray_image_, GpuMat(), keypoints_, descriptors_, true); |
|
surf_.downloadKeypoints(keypoints_, features.keypoints); |
|
|
|
descriptors_.download(features.descriptors); |
|
} |
|
|
|
void SurfFeaturesFinderGpu::collectGarbage() |
|
{ |
|
surf_.releaseMemory(); |
|
image_.release(); |
|
gray_image_.release(); |
|
keypoints_.release(); |
|
descriptors_.release(); |
|
} |
|
#endif |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
|
|
MatchesInfo::MatchesInfo() : src_img_idx(-1), dst_img_idx(-1), num_inliers(0), confidence(0) {} |
|
|
|
MatchesInfo::MatchesInfo(const MatchesInfo &other) { *this = other; } |
|
|
|
const MatchesInfo& MatchesInfo::operator =(const MatchesInfo &other) |
|
{ |
|
src_img_idx = other.src_img_idx; |
|
dst_img_idx = other.dst_img_idx; |
|
matches = other.matches; |
|
inliers_mask = other.inliers_mask; |
|
num_inliers = other.num_inliers; |
|
H = other.H.clone(); |
|
confidence = other.confidence; |
|
return *this; |
|
} |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
|
|
void FeaturesMatcher::operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches, |
|
const UMat &mask) |
|
{ |
|
const int num_images = static_cast<int>(features.size()); |
|
|
|
CV_Assert(mask.empty() || (mask.type() == CV_8U && mask.cols == num_images && mask.rows)); |
|
Mat_<uchar> mask_(mask.getMat(ACCESS_READ)); |
|
if (mask_.empty()) |
|
mask_ = Mat::ones(num_images, num_images, CV_8U); |
|
|
|
std::vector<std::pair<int,int> > near_pairs; |
|
for (int i = 0; i < num_images - 1; ++i) |
|
for (int j = i + 1; j < num_images; ++j) |
|
if (features[i].keypoints.size() > 0 && features[j].keypoints.size() > 0 && mask_(i, j)) |
|
near_pairs.push_back(std::make_pair(i, j)); |
|
|
|
pairwise_matches.resize(num_images * num_images); |
|
MatchPairsBody body(*this, features, pairwise_matches, near_pairs); |
|
|
|
if (is_thread_safe_) |
|
parallel_for_(Range(0, static_cast<int>(near_pairs.size())), body); |
|
else |
|
body(Range(0, static_cast<int>(near_pairs.size()))); |
|
LOGLN_CHAT(""); |
|
} |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
|
|
BestOf2NearestMatcher::BestOf2NearestMatcher(bool try_use_gpu, float match_conf, int num_matches_thresh1, int num_matches_thresh2) |
|
{ |
|
(void)try_use_gpu; |
|
|
|
#ifdef HAVE_OPENCV_CUDAFEATURES2D |
|
if (try_use_gpu && getCudaEnabledDeviceCount() > 0) |
|
{ |
|
impl_ = makePtr<GpuMatcher>(match_conf); |
|
} |
|
else |
|
#endif |
|
{ |
|
impl_ = makePtr<CpuMatcher>(match_conf); |
|
} |
|
|
|
is_thread_safe_ = impl_->isThreadSafe(); |
|
num_matches_thresh1_ = num_matches_thresh1; |
|
num_matches_thresh2_ = num_matches_thresh2; |
|
} |
|
|
|
|
|
void BestOf2NearestMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2, |
|
MatchesInfo &matches_info) |
|
{ |
|
(*impl_)(features1, features2, matches_info); |
|
|
|
// Check if it makes sense to find homography |
|
if (matches_info.matches.size() < static_cast<size_t>(num_matches_thresh1_)) |
|
return; |
|
|
|
// Construct point-point correspondences for homography estimation |
|
Mat src_points(1, static_cast<int>(matches_info.matches.size()), CV_32FC2); |
|
Mat dst_points(1, static_cast<int>(matches_info.matches.size()), CV_32FC2); |
|
for (size_t i = 0; i < matches_info.matches.size(); ++i) |
|
{ |
|
const DMatch& m = matches_info.matches[i]; |
|
|
|
Point2f p = features1.keypoints[m.queryIdx].pt; |
|
p.x -= features1.img_size.width * 0.5f; |
|
p.y -= features1.img_size.height * 0.5f; |
|
src_points.at<Point2f>(0, static_cast<int>(i)) = p; |
|
|
|
p = features2.keypoints[m.trainIdx].pt; |
|
p.x -= features2.img_size.width * 0.5f; |
|
p.y -= features2.img_size.height * 0.5f; |
|
dst_points.at<Point2f>(0, static_cast<int>(i)) = p; |
|
} |
|
|
|
// Find pair-wise motion |
|
matches_info.H = findHomography(src_points, dst_points, matches_info.inliers_mask, RANSAC); |
|
if (matches_info.H.empty() || std::abs(determinant(matches_info.H)) < std::numeric_limits<double>::epsilon()) |
|
return; |
|
|
|
// Find number of inliers |
|
matches_info.num_inliers = 0; |
|
for (size_t i = 0; i < matches_info.inliers_mask.size(); ++i) |
|
if (matches_info.inliers_mask[i]) |
|
matches_info.num_inliers++; |
|
|
|
// These coeffs are from paper M. Brown and D. Lowe. "Automatic Panoramic Image Stitching |
|
// using Invariant Features" |
|
matches_info.confidence = matches_info.num_inliers / (8 + 0.3 * matches_info.matches.size()); |
|
|
|
// Set zero confidence to remove matches between too close images, as they don't provide |
|
// additional information anyway. The threshold was set experimentally. |
|
matches_info.confidence = matches_info.confidence > 3. ? 0. : matches_info.confidence; |
|
|
|
// Check if we should try to refine motion |
|
if (matches_info.num_inliers < num_matches_thresh2_) |
|
return; |
|
|
|
// Construct point-point correspondences for inliers only |
|
src_points.create(1, matches_info.num_inliers, CV_32FC2); |
|
dst_points.create(1, matches_info.num_inliers, CV_32FC2); |
|
int inlier_idx = 0; |
|
for (size_t i = 0; i < matches_info.matches.size(); ++i) |
|
{ |
|
if (!matches_info.inliers_mask[i]) |
|
continue; |
|
|
|
const DMatch& m = matches_info.matches[i]; |
|
|
|
Point2f p = features1.keypoints[m.queryIdx].pt; |
|
p.x -= features1.img_size.width * 0.5f; |
|
p.y -= features1.img_size.height * 0.5f; |
|
src_points.at<Point2f>(0, inlier_idx) = p; |
|
|
|
p = features2.keypoints[m.trainIdx].pt; |
|
p.x -= features2.img_size.width * 0.5f; |
|
p.y -= features2.img_size.height * 0.5f; |
|
dst_points.at<Point2f>(0, inlier_idx) = p; |
|
|
|
inlier_idx++; |
|
} |
|
|
|
// Rerun motion estimation on inliers only |
|
matches_info.H = findHomography(src_points, dst_points, RANSAC); |
|
} |
|
|
|
void BestOf2NearestMatcher::collectGarbage() |
|
{ |
|
impl_->collectGarbage(); |
|
} |
|
|
|
|
|
BestOf2NearestRangeMatcher::BestOf2NearestRangeMatcher(int range_width, bool try_use_gpu, float match_conf, int num_matches_thresh1, int num_matches_thresh2): BestOf2NearestMatcher(try_use_gpu, match_conf, num_matches_thresh1, num_matches_thresh2) |
|
{ |
|
range_width_ = range_width; |
|
} |
|
|
|
|
|
void BestOf2NearestRangeMatcher::operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches, |
|
const UMat &mask) |
|
{ |
|
const int num_images = static_cast<int>(features.size()); |
|
|
|
CV_Assert(mask.empty() || (mask.type() == CV_8U && mask.cols == num_images && mask.rows)); |
|
Mat_<uchar> mask_(mask.getMat(ACCESS_READ)); |
|
if (mask_.empty()) |
|
mask_ = Mat::ones(num_images, num_images, CV_8U); |
|
|
|
std::vector<std::pair<int,int> > near_pairs; |
|
for (int i = 0; i < num_images - 1; ++i) |
|
for (int j = i + 1; j < std::min(num_images, i + range_width_); ++j) |
|
if (features[i].keypoints.size() > 0 && features[j].keypoints.size() > 0 && mask_(i, j)) |
|
near_pairs.push_back(std::make_pair(i, j)); |
|
|
|
pairwise_matches.resize(num_images * num_images); |
|
MatchPairsBody body(*this, features, pairwise_matches, near_pairs); |
|
|
|
if (is_thread_safe_) |
|
parallel_for_(Range(0, static_cast<int>(near_pairs.size())), body); |
|
else |
|
body(Range(0, static_cast<int>(near_pairs.size()))); |
|
LOGLN_CHAT(""); |
|
} |
|
|
|
|
|
} // namespace detail |
|
} // namespace cv
|
|
|