Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2034 lines
63 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <climits>
namespace cv
{
template<typename T> static inline Scalar rawToScalar(const T& v)
{
Scalar s;
typedef typename DataType<T>::channel_type T1;
int i, n = DataType<T>::channels;
for( i = 0; i < n; i++ )
s.val[i] = ((T1*)&v)[i];
return s;
}
/****************************************************************************************\
* sum *
\****************************************************************************************/
template<typename T, typename ST>
static int sum_(const T* src0, const uchar* mask, ST* dst, int len, int cn )
{
const T* src = src0;
if( !mask )
{
int i=0;
int k = cn % 4;
if( k == 1 )
{
ST s0 = dst[0];
#if CV_ENABLE_UNROLLED
for(; i <= len - 4; i += 4, src += cn*4 )
s0 += src[0] + src[cn] + src[cn*2] + src[cn*3];
#endif
for( ; i < len; i++, src += cn )
s0 += src[0];
dst[0] = s0;
}
else if( k == 2 )
{
ST s0 = dst[0], s1 = dst[1];
for( i = 0; i < len; i++, src += cn )
{
s0 += src[0];
s1 += src[1];
}
dst[0] = s0;
dst[1] = s1;
}
else if( k == 3 )
{
ST s0 = dst[0], s1 = dst[1], s2 = dst[2];
for( i = 0; i < len; i++, src += cn )
{
s0 += src[0];
s1 += src[1];
s2 += src[2];
}
dst[0] = s0;
dst[1] = s1;
dst[2] = s2;
}
for( ; k < cn; k += 4 )
{
src = src0 + k;
ST s0 = dst[k], s1 = dst[k+1], s2 = dst[k+2], s3 = dst[k+3];
for( i = 0; i < len; i++, src += cn )
{
s0 += src[0]; s1 += src[1];
s2 += src[2]; s3 += src[3];
}
dst[k] = s0;
dst[k+1] = s1;
dst[k+2] = s2;
dst[k+3] = s3;
}
return len;
}
int i, nzm = 0;
if( cn == 1 )
{
ST s = dst[0];
for( i = 0; i < len; i++ )
if( mask[i] )
{
s += src[i];
nzm++;
}
dst[0] = s;
}
else if( cn == 3 )
{
ST s0 = dst[0], s1 = dst[1], s2 = dst[2];
for( i = 0; i < len; i++, src += 3 )
if( mask[i] )
{
s0 += src[0];
s1 += src[1];
s2 += src[2];
nzm++;
}
dst[0] = s0;
dst[1] = s1;
dst[2] = s2;
}
else
{
for( i = 0; i < len; i++, src += cn )
if( mask[i] )
{
int k = 0;
#if CV_ENABLE_UNROLLED
for( ; k <= cn - 4; k += 4 )
{
ST s0, s1;
s0 = dst[k] + src[k];
s1 = dst[k+1] + src[k+1];
dst[k] = s0; dst[k+1] = s1;
s0 = dst[k+2] + src[k+2];
s1 = dst[k+3] + src[k+3];
dst[k+2] = s0; dst[k+3] = s1;
}
#endif
for( ; k < cn; k++ )
dst[k] += src[k];
nzm++;
}
}
return nzm;
}
static int sum8u( const uchar* src, const uchar* mask, int* dst, int len, int cn )
{ return sum_(src, mask, dst, len, cn); }
static int sum8s( const schar* src, const uchar* mask, int* dst, int len, int cn )
{ return sum_(src, mask, dst, len, cn); }
static int sum16u( const ushort* src, const uchar* mask, int* dst, int len, int cn )
{ return sum_(src, mask, dst, len, cn); }
static int sum16s( const short* src, const uchar* mask, int* dst, int len, int cn )
{ return sum_(src, mask, dst, len, cn); }
static int sum32s( const int* src, const uchar* mask, double* dst, int len, int cn )
{ return sum_(src, mask, dst, len, cn); }
static int sum32f( const float* src, const uchar* mask, double* dst, int len, int cn )
{ return sum_(src, mask, dst, len, cn); }
static int sum64f( const double* src, const uchar* mask, double* dst, int len, int cn )
{ return sum_(src, mask, dst, len, cn); }
typedef int (*SumFunc)(const uchar*, const uchar* mask, uchar*, int, int);
static SumFunc sumTab[] =
{
(SumFunc)GET_OPTIMIZED(sum8u), (SumFunc)sum8s,
(SumFunc)sum16u, (SumFunc)sum16s,
(SumFunc)sum32s,
(SumFunc)GET_OPTIMIZED(sum32f), (SumFunc)sum64f,
0
};
template<typename T>
static int countNonZero_(const T* src, int len )
{
int i=0, nz = 0;
#if CV_ENABLE_UNROLLED
for(; i <= len - 4; i += 4 )
nz += (src[i] != 0) + (src[i+1] != 0) + (src[i+2] != 0) + (src[i+3] != 0);
#endif
for( ; i < len; i++ )
nz += src[i] != 0;
return nz;
}
static int countNonZero8u( const uchar* src, int len )
{
int i=0, nz = 0;
#if CV_SSE2
if(USE_SSE2)//5x-6x
{
__m128i pattern = _mm_setzero_si128 ();
static uchar tab[256];
static volatile bool initialized = false;
if( !initialized )
{
// we compute inverse popcount table,
// since we pass (img[x] == 0) mask as index in the table.
for( int j = 0; j < 256; j++ )
{
int val = 0;
for( int mask = 1; mask < 256; mask += mask )
val += (j & mask) == 0;
tab[j] = (uchar)val;
}
initialized = true;
}
for (; i<=len-16; i+=16)
{
__m128i r0 = _mm_loadu_si128((const __m128i*)(src+i));
int val = _mm_movemask_epi8(_mm_cmpeq_epi8(r0, pattern));
nz += tab[val & 255] + tab[val >> 8];
}
}
#endif
for( ; i < len; i++ )
nz += src[i] != 0;
return nz;
}
static int countNonZero16u( const ushort* src, int len )
{ return countNonZero_(src, len); }
static int countNonZero32s( const int* src, int len )
{ return countNonZero_(src, len); }
static int countNonZero32f( const float* src, int len )
{ return countNonZero_(src, len); }
static int countNonZero64f( const double* src, int len )
{ return countNonZero_(src, len); }
typedef int (*CountNonZeroFunc)(const uchar*, int);
static CountNonZeroFunc countNonZeroTab[] =
{
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero8u), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero8u),
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero16u), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero16u),
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero32s), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero32f),
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero64f), 0
};
template<typename T, typename ST, typename SQT>
static int sumsqr_(const T* src0, const uchar* mask, ST* sum, SQT* sqsum, int len, int cn )
{
const T* src = src0;
if( !mask )
{
int i;
int k = cn % 4;
if( k == 1 )
{
ST s0 = sum[0];
SQT sq0 = sqsum[0];
for( i = 0; i < len; i++, src += cn )
{
T v = src[0];
s0 += v; sq0 += (SQT)v*v;
}
sum[0] = s0;
sqsum[0] = sq0;
}
else if( k == 2 )
{
ST s0 = sum[0], s1 = sum[1];
SQT sq0 = sqsum[0], sq1 = sqsum[1];
for( i = 0; i < len; i++, src += cn )
{
T v0 = src[0], v1 = src[1];
s0 += v0; sq0 += (SQT)v0*v0;
s1 += v1; sq1 += (SQT)v1*v1;
}
sum[0] = s0; sum[1] = s1;
sqsum[0] = sq0; sqsum[1] = sq1;
}
else if( k == 3 )
{
ST s0 = sum[0], s1 = sum[1], s2 = sum[2];
SQT sq0 = sqsum[0], sq1 = sqsum[1], sq2 = sqsum[2];
for( i = 0; i < len; i++, src += cn )
{
T v0 = src[0], v1 = src[1], v2 = src[2];
s0 += v0; sq0 += (SQT)v0*v0;
s1 += v1; sq1 += (SQT)v1*v1;
s2 += v2; sq2 += (SQT)v2*v2;
}
sum[0] = s0; sum[1] = s1; sum[2] = s2;
sqsum[0] = sq0; sqsum[1] = sq1; sqsum[2] = sq2;
}
for( ; k < cn; k += 4 )
{
src = src0 + k;
ST s0 = sum[k], s1 = sum[k+1], s2 = sum[k+2], s3 = sum[k+3];
SQT sq0 = sqsum[k], sq1 = sqsum[k+1], sq2 = sqsum[k+2], sq3 = sqsum[k+3];
for( i = 0; i < len; i++, src += cn )
{
T v0, v1;
v0 = src[0], v1 = src[1];
s0 += v0; sq0 += (SQT)v0*v0;
s1 += v1; sq1 += (SQT)v1*v1;
v0 = src[2], v1 = src[3];
s2 += v0; sq2 += (SQT)v0*v0;
s3 += v1; sq3 += (SQT)v1*v1;
}
sum[k] = s0; sum[k+1] = s1;
sum[k+2] = s2; sum[k+3] = s3;
sqsum[k] = sq0; sqsum[k+1] = sq1;
sqsum[k+2] = sq2; sqsum[k+3] = sq3;
}
return len;
}
int i, nzm = 0;
if( cn == 1 )
{
ST s0 = sum[0];
SQT sq0 = sqsum[0];
for( i = 0; i < len; i++ )
if( mask[i] )
{
T v = src[i];
s0 += v; sq0 += (SQT)v*v;
nzm++;
}
sum[0] = s0;
sqsum[0] = sq0;
}
else if( cn == 3 )
{
ST s0 = sum[0], s1 = sum[1], s2 = sum[2];
SQT sq0 = sqsum[0], sq1 = sqsum[1], sq2 = sqsum[2];
for( i = 0; i < len; i++, src += 3 )
if( mask[i] )
{
T v0 = src[0], v1 = src[1], v2 = src[2];
s0 += v0; sq0 += (SQT)v0*v0;
s1 += v1; sq1 += (SQT)v1*v1;
s2 += v2; sq2 += (SQT)v2*v2;
nzm++;
}
sum[0] = s0; sum[1] = s1; sum[2] = s2;
sqsum[0] = sq0; sqsum[1] = sq1; sqsum[2] = sq2;
}
else
{
for( i = 0; i < len; i++, src += cn )
if( mask[i] )
{
for( int k = 0; k < cn; k++ )
{
T v = src[k];
ST s = sum[k] + v;
SQT sq = sqsum[k] + (SQT)v*v;
sum[k] = s; sqsum[k] = sq;
}
nzm++;
}
}
return nzm;
}
static int sqsum8u( const uchar* src, const uchar* mask, int* sum, int* sqsum, int len, int cn )
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
static int sqsum8s( const schar* src, const uchar* mask, int* sum, int* sqsum, int len, int cn )
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
static int sqsum16u( const ushort* src, const uchar* mask, int* sum, double* sqsum, int len, int cn )
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
static int sqsum16s( const short* src, const uchar* mask, int* sum, double* sqsum, int len, int cn )
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
static int sqsum32s( const int* src, const uchar* mask, double* sum, double* sqsum, int len, int cn )
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
static int sqsum32f( const float* src, const uchar* mask, double* sum, double* sqsum, int len, int cn )
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
static int sqsum64f( const double* src, const uchar* mask, double* sum, double* sqsum, int len, int cn )
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
typedef int (*SumSqrFunc)(const uchar*, const uchar* mask, uchar*, uchar*, int, int);
static SumSqrFunc sumSqrTab[] =
{
(SumSqrFunc)GET_OPTIMIZED(sqsum8u), (SumSqrFunc)sqsum8s, (SumSqrFunc)sqsum16u, (SumSqrFunc)sqsum16s,
(SumSqrFunc)sqsum32s, (SumSqrFunc)GET_OPTIMIZED(sqsum32f), (SumSqrFunc)sqsum64f, 0
};
}
cv::Scalar cv::sum( InputArray _src )
{
Mat src = _src.getMat();
int k, cn = src.channels(), depth = src.depth();
SumFunc func = sumTab[depth];
CV_Assert( cn <= 4 && func != 0 );
const Mat* arrays[] = {&src, 0};
uchar* ptrs[1];
NAryMatIterator it(arrays, ptrs);
Scalar s;
int total = (int)it.size, blockSize = total, intSumBlockSize = 0;
int j, count = 0;
AutoBuffer<int> _buf;
int* buf = (int*)&s[0];
size_t esz = 0;
bool blockSum = depth < CV_32S;
if( blockSum )
{
intSumBlockSize = depth <= CV_8S ? (1 << 23) : (1 << 15);
blockSize = std::min(blockSize, intSumBlockSize);
_buf.allocate(cn);
buf = _buf;
for( k = 0; k < cn; k++ )
buf[k] = 0;
esz = src.elemSize();
}
for( size_t i = 0; i < it.nplanes; i++, ++it )
{
for( j = 0; j < total; j += blockSize )
{
int bsz = std::min(total - j, blockSize);
func( ptrs[0], 0, (uchar*)buf, bsz, cn );
count += bsz;
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) )
{
for( k = 0; k < cn; k++ )
{
s[k] += buf[k];
buf[k] = 0;
}
count = 0;
}
ptrs[0] += bsz*esz;
}
}
return s;
}
int cv::countNonZero( InputArray _src )
{
Mat src = _src.getMat();
CountNonZeroFunc func = countNonZeroTab[src.depth()];
CV_Assert( src.channels() == 1 && func != 0 );
const Mat* arrays[] = {&src, 0};
uchar* ptrs[1];
NAryMatIterator it(arrays, ptrs);
int total = (int)it.size, nz = 0;
for( size_t i = 0; i < it.nplanes; i++, ++it )
nz += func( ptrs[0], total );
return nz;
}
cv::Scalar cv::mean( InputArray _src, InputArray _mask )
{
Mat src = _src.getMat(), mask = _mask.getMat();
CV_Assert( mask.empty() || mask.type() == CV_8U );
int k, cn = src.channels(), depth = src.depth();
SumFunc func = sumTab[depth];
CV_Assert( cn <= 4 && func != 0 );
const Mat* arrays[] = {&src, &mask, 0};
uchar* ptrs[2];
NAryMatIterator it(arrays, ptrs);
Scalar s;
int total = (int)it.size, blockSize = total, intSumBlockSize = 0;
int j, count = 0;
AutoBuffer<int> _buf;
int* buf = (int*)&s[0];
bool blockSum = depth <= CV_16S;
size_t esz = 0, nz0 = 0;
if( blockSum )
{
intSumBlockSize = depth <= CV_8S ? (1 << 23) : (1 << 15);
blockSize = std::min(blockSize, intSumBlockSize);
_buf.allocate(cn);
buf = _buf;
for( k = 0; k < cn; k++ )
buf[k] = 0;
esz = src.elemSize();
}
for( size_t i = 0; i < it.nplanes; i++, ++it )
{
for( j = 0; j < total; j += blockSize )
{
int bsz = std::min(total - j, blockSize);
int nz = func( ptrs[0], ptrs[1], (uchar*)buf, bsz, cn );
count += nz;
nz0 += nz;
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) )
{
for( k = 0; k < cn; k++ )
{
s[k] += buf[k];
buf[k] = 0;
}
count = 0;
}
ptrs[0] += bsz*esz;
if( ptrs[1] )
ptrs[1] += bsz;
}
}
return s*(nz0 ? 1./nz0 : 0);
}
void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, InputArray _mask )
{
Mat src = _src.getMat(), mask = _mask.getMat();
CV_Assert( mask.empty() || mask.type() == CV_8U );
int k, cn = src.channels(), depth = src.depth();
SumSqrFunc func = sumSqrTab[depth];
CV_Assert( func != 0 );
const Mat* arrays[] = {&src, &mask, 0};
uchar* ptrs[2];
NAryMatIterator it(arrays, ptrs);
int total = (int)it.size, blockSize = total, intSumBlockSize = 0;
int j, count = 0, nz0 = 0;
AutoBuffer<double> _buf(cn*4);
double *s = (double*)_buf, *sq = s + cn;
int *sbuf = (int*)s, *sqbuf = (int*)sq;
bool blockSum = depth <= CV_16S, blockSqSum = depth <= CV_8S;
size_t esz = 0;
for( k = 0; k < cn; k++ )
s[k] = sq[k] = 0;
if( blockSum )
{
intSumBlockSize = 1 << 15;
blockSize = std::min(blockSize, intSumBlockSize);
sbuf = (int*)(sq + cn);
if( blockSqSum )
sqbuf = sbuf + cn;
for( k = 0; k < cn; k++ )
sbuf[k] = sqbuf[k] = 0;
esz = src.elemSize();
}
for( size_t i = 0; i < it.nplanes; i++, ++it )
{
for( j = 0; j < total; j += blockSize )
{
int bsz = std::min(total - j, blockSize);
int nz = func( ptrs[0], ptrs[1], (uchar*)sbuf, (uchar*)sqbuf, bsz, cn );
count += nz;
nz0 += nz;
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) )
{
for( k = 0; k < cn; k++ )
{
s[k] += sbuf[k];
sbuf[k] = 0;
}
if( blockSqSum )
{
for( k = 0; k < cn; k++ )
{
sq[k] += sqbuf[k];
sqbuf[k] = 0;
}
}
count = 0;
}
ptrs[0] += bsz*esz;
if( ptrs[1] )
ptrs[1] += bsz;
}
}
double scale = nz0 ? 1./nz0 : 0.;
for( k = 0; k < cn; k++ )
{
s[k] *= scale;
sq[k] = std::sqrt(std::max(sq[k]*scale - s[k]*s[k], 0.));
}
for( j = 0; j < 2; j++ )
{
const double* sptr = j == 0 ? s : sq;
_OutputArray _dst = j == 0 ? _mean : _sdv;
if( !_dst.needed() )
continue;
if( !_dst.fixedSize() )
_dst.create(cn, 1, CV_64F, -1, true);
Mat dst = _dst.getMat();
int dcn = (int)dst.total();
CV_Assert( dst.type() == CV_64F && dst.isContinuous() &&
(dst.cols == 1 || dst.rows == 1) && dcn >= cn );
double* dptr = dst.ptr<double>();
for( k = 0; k < cn; k++ )
dptr[k] = sptr[k];
for( ; k < dcn; k++ )
dptr[k] = 0;
}
}
/****************************************************************************************\
* minMaxLoc *
\****************************************************************************************/
namespace cv
{
template<typename T, typename WT> static void
minMaxIdx_( const T* src, const uchar* mask, WT* _minVal, WT* _maxVal,
size_t* _minIdx, size_t* _maxIdx, int len, size_t startIdx )
{
WT minVal = *_minVal, maxVal = *_maxVal;
size_t minIdx = *_minIdx, maxIdx = *_maxIdx;
if( !mask )
{
for( int i = 0; i < len; i++ )
{
T val = src[i];
if( val < minVal )
{
minVal = val;
minIdx = startIdx + i;
}
if( val > maxVal )
{
maxVal = val;
maxIdx = startIdx + i;
}
}
}
else
{
for( int i = 0; i < len; i++ )
{
T val = src[i];
if( mask[i] && val < minVal )
{
minVal = val;
minIdx = startIdx + i;
}
if( mask[i] && val > maxVal )
{
maxVal = val;
maxIdx = startIdx + i;
}
}
}
*_minIdx = minIdx;
*_maxIdx = maxIdx;
*_minVal = minVal;
*_maxVal = maxVal;
}
static void minMaxIdx_8u(const uchar* src, const uchar* mask, int* minval, int* maxval,
size_t* minidx, size_t* maxidx, int len, size_t startidx )
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); }
static void minMaxIdx_8s(const schar* src, const uchar* mask, int* minval, int* maxval,
size_t* minidx, size_t* maxidx, int len, size_t startidx )
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); }
static void minMaxIdx_16u(const ushort* src, const uchar* mask, int* minval, int* maxval,
size_t* minidx, size_t* maxidx, int len, size_t startidx )
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); }
static void minMaxIdx_16s(const short* src, const uchar* mask, int* minval, int* maxval,
size_t* minidx, size_t* maxidx, int len, size_t startidx )
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); }
static void minMaxIdx_32s(const int* src, const uchar* mask, int* minval, int* maxval,
size_t* minidx, size_t* maxidx, int len, size_t startidx )
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); }
static void minMaxIdx_32f(const float* src, const uchar* mask, float* minval, float* maxval,
size_t* minidx, size_t* maxidx, int len, size_t startidx )
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); }
static void minMaxIdx_64f(const double* src, const uchar* mask, double* minval, double* maxval,
size_t* minidx, size_t* maxidx, int len, size_t startidx )
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); }
typedef void (*MinMaxIdxFunc)(const uchar*, const uchar*, int*, int*, size_t*, size_t*, int, size_t);
static MinMaxIdxFunc minmaxTab[] =
{
(MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_8u), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_8s),
(MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_16u), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_16s),
(MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_32s),
(MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_32f), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_64f),
0
};
static void ofs2idx(const Mat& a, size_t ofs, int* idx)
{
int i, d = a.dims;
if( ofs > 0 )
{
ofs--;
for( i = d-1; i >= 0; i-- )
{
int sz = a.size[i];
idx[i] = (int)(ofs % sz);
ofs /= sz;
}
}
else
{
for( i = d-1; i >= 0; i-- )
idx[i] = -1;
}
}
}
void cv::minMaxIdx(InputArray _src, double* minVal,
double* maxVal, int* minIdx, int* maxIdx,
InputArray _mask)
{
Mat src = _src.getMat(), mask = _mask.getMat();
int depth = src.depth(), cn = src.channels();
CV_Assert( (cn == 1 && (mask.empty() || mask.type() == CV_8U)) ||
(cn >= 1 && mask.empty() && !minIdx && !maxIdx) );
MinMaxIdxFunc func = minmaxTab[depth];
CV_Assert( func != 0 );
const Mat* arrays[] = {&src, &mask, 0};
uchar* ptrs[2];
NAryMatIterator it(arrays, ptrs);
size_t minidx = 0, maxidx = 0;
int iminval = INT_MAX, imaxval = INT_MIN;
float fminval = FLT_MAX, fmaxval = -FLT_MAX;
double dminval = DBL_MAX, dmaxval = -DBL_MAX;
size_t startidx = 1;
int *minval = &iminval, *maxval = &imaxval;
int planeSize = (int)it.size*cn;
if( depth == CV_32F )
minval = (int*)&fminval, maxval = (int*)&fmaxval;
else if( depth == CV_64F )
minval = (int*)&dminval, maxval = (int*)&dmaxval;
for( size_t i = 0; i < it.nplanes; i++, ++it, startidx += planeSize )
func( ptrs[0], ptrs[1], minval, maxval, &minidx, &maxidx, planeSize, startidx );
if( minidx == 0 )
dminval = dmaxval = 0;
else if( depth == CV_32F )
dminval = fminval, dmaxval = fmaxval;
else if( depth <= CV_32S )
dminval = iminval, dmaxval = imaxval;
if( minVal )
*minVal = dminval;
if( maxVal )
*maxVal = dmaxval;
if( minIdx )
ofs2idx(src, minidx, minIdx);
if( maxIdx )
ofs2idx(src, maxidx, maxIdx);
}
void cv::minMaxLoc( InputArray _img, double* minVal, double* maxVal,
Point* minLoc, Point* maxLoc, InputArray mask )
{
Mat img = _img.getMat();
CV_Assert(img.dims <= 2);
minMaxIdx(_img, minVal, maxVal, (int*)minLoc, (int*)maxLoc, mask);
if( minLoc )
std::swap(minLoc->x, minLoc->y);
if( maxLoc )
std::swap(maxLoc->x, maxLoc->y);
}
/****************************************************************************************\
* norm *
\****************************************************************************************/
namespace cv
{
float normL2Sqr_(const float* a, const float* b, int n)
{
int j = 0; float d = 0.f;
#if CV_SSE
if( USE_SSE2 )
{
float CV_DECL_ALIGNED(16) buf[4];
__m128 d0 = _mm_setzero_ps(), d1 = _mm_setzero_ps();
for( ; j <= n - 8; j += 8 )
{
__m128 t0 = _mm_sub_ps(_mm_loadu_ps(a + j), _mm_loadu_ps(b + j));
__m128 t1 = _mm_sub_ps(_mm_loadu_ps(a + j + 4), _mm_loadu_ps(b + j + 4));
d0 = _mm_add_ps(d0, _mm_mul_ps(t0, t0));
d1 = _mm_add_ps(d1, _mm_mul_ps(t1, t1));
}
_mm_store_ps(buf, _mm_add_ps(d0, d1));
d = buf[0] + buf[1] + buf[2] + buf[3];
}
else
#endif
{
for( ; j <= n - 4; j += 4 )
{
float t0 = a[j] - b[j], t1 = a[j+1] - b[j+1], t2 = a[j+2] - b[j+2], t3 = a[j+3] - b[j+3];
d += t0*t0 + t1*t1 + t2*t2 + t3*t3;
}
}
for( ; j < n; j++ )
{
float t = a[j] - b[j];
d += t*t;
}
return d;
}
float normL1_(const float* a, const float* b, int n)
{
int j = 0; float d = 0.f;
#if CV_SSE
if( USE_SSE2 )
{
float CV_DECL_ALIGNED(16) buf[4];
static const int CV_DECL_ALIGNED(16) absbuf[4] = {0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff};
__m128 d0 = _mm_setzero_ps(), d1 = _mm_setzero_ps();
__m128 absmask = _mm_load_ps((const float*)absbuf);
for( ; j <= n - 8; j += 8 )
{
__m128 t0 = _mm_sub_ps(_mm_loadu_ps(a + j), _mm_loadu_ps(b + j));
__m128 t1 = _mm_sub_ps(_mm_loadu_ps(a + j + 4), _mm_loadu_ps(b + j + 4));
d0 = _mm_add_ps(d0, _mm_and_ps(t0, absmask));
d1 = _mm_add_ps(d1, _mm_and_ps(t1, absmask));
}
_mm_store_ps(buf, _mm_add_ps(d0, d1));
d = buf[0] + buf[1] + buf[2] + buf[3];
}
else
#endif
{
for( ; j <= n - 4; j += 4 )
{
d += std::abs(a[j] - b[j]) + std::abs(a[j+1] - b[j+1]) +
std::abs(a[j+2] - b[j+2]) + std::abs(a[j+3] - b[j+3]);
}
}
for( ; j < n; j++ )
d += std::abs(a[j] - b[j]);
return d;
}
int normL1_(const uchar* a, const uchar* b, int n)
{
int j = 0, d = 0;
#if CV_SSE
if( USE_SSE2 )
{
__m128i d0 = _mm_setzero_si128();
for( ; j <= n - 16; j += 16 )
{
__m128i t0 = _mm_loadu_si128((const __m128i*)(a + j));
__m128i t1 = _mm_loadu_si128((const __m128i*)(b + j));
d0 = _mm_add_epi32(d0, _mm_sad_epu8(t0, t1));
}
for( ; j <= n - 4; j += 4 )
{
__m128i t0 = _mm_cvtsi32_si128(*(const int*)(a + j));
__m128i t1 = _mm_cvtsi32_si128(*(const int*)(b + j));
d0 = _mm_add_epi32(d0, _mm_sad_epu8(t0, t1));
}
d = _mm_cvtsi128_si32(_mm_add_epi32(d0, _mm_unpackhi_epi64(d0, d0)));
}
else
#endif
{
for( ; j <= n - 4; j += 4 )
{
d += std::abs(a[j] - b[j]) + std::abs(a[j+1] - b[j+1]) +
std::abs(a[j+2] - b[j+2]) + std::abs(a[j+3] - b[j+3]);
}
}
for( ; j < n; j++ )
d += std::abs(a[j] - b[j]);
return d;
}
static const uchar popCountTable[] =
{
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
};
static const uchar popCountTable2[] =
{
0, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3,
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3,
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4,
2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4,
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4,
2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4,
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4,
2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4
};
static const uchar popCountTable4[] =
{
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
};
static int normHamming(const uchar* a, int n)
{
int i = 0, result = 0;
#if CV_NEON
uint32x4_t bits = vmovq_n_u32(0);
for (; i <= n - 16; i += 16) {
uint8x16_t A_vec = vld1q_u8 (a + i);
uint8x16_t bitsSet = vcntq_u8 (A_vec);
uint16x8_t bitSet8 = vpaddlq_u8 (bitsSet);
uint32x4_t bitSet4 = vpaddlq_u16 (bitSet8);
bits = vaddq_u32(bits, bitSet4);
}
uint64x2_t bitSet2 = vpaddlq_u32 (bits);
result = vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),0);
result += vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),2);
#else
for( ; i <= n - 4; i += 4 )
result += popCountTable[a[i]] + popCountTable[a[i+1]] +
popCountTable[a[i+2]] + popCountTable[a[i+3]];
#endif
for( ; i < n; i++ )
result += popCountTable[a[i]];
return result;
}
int normHamming(const uchar* a, const uchar* b, int n)
{
int i = 0, result = 0;
#if CV_NEON
uint32x4_t bits = vmovq_n_u32(0);
for (; i <= n - 16; i += 16) {
uint8x16_t A_vec = vld1q_u8 (a + i);
uint8x16_t B_vec = vld1q_u8 (b + i);
uint8x16_t AxorB = veorq_u8 (A_vec, B_vec);
uint8x16_t bitsSet = vcntq_u8 (AxorB);
uint16x8_t bitSet8 = vpaddlq_u8 (bitsSet);
uint32x4_t bitSet4 = vpaddlq_u16 (bitSet8);
bits = vaddq_u32(bits, bitSet4);
}
uint64x2_t bitSet2 = vpaddlq_u32 (bits);
result = vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),0);
result += vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),2);
#else
for( ; i <= n - 4; i += 4 )
result += popCountTable[a[i] ^ b[i]] + popCountTable[a[i+1] ^ b[i+1]] +
popCountTable[a[i+2] ^ b[i+2]] + popCountTable[a[i+3] ^ b[i+3]];
#endif
for( ; i < n; i++ )
result += popCountTable[a[i] ^ b[i]];
return result;
}
static int normHamming(const uchar* a, int n, int cellSize)
{
if( cellSize == 1 )
return normHamming(a, n);
const uchar* tab = 0;
if( cellSize == 2 )
tab = popCountTable2;
else if( cellSize == 4 )
tab = popCountTable4;
else
CV_Error( CV_StsBadSize, "bad cell size (not 1, 2 or 4) in normHamming" );
int i = 0, result = 0;
#if CV_ENABLE_UNROLLED
for( ; i <= n - 4; i += 4 )
result += tab[a[i]] + tab[a[i+1]] + tab[a[i+2]] + tab[a[i+3]];
#endif
for( ; i < n; i++ )
result += tab[a[i]];
return result;
}
int normHamming(const uchar* a, const uchar* b, int n, int cellSize)
{
if( cellSize == 1 )
return normHamming(a, b, n);
const uchar* tab = 0;
if( cellSize == 2 )
tab = popCountTable2;
else if( cellSize == 4 )
tab = popCountTable4;
else
CV_Error( CV_StsBadSize, "bad cell size (not 1, 2 or 4) in normHamming" );
int i = 0, result = 0;
#if CV_ENABLE_UNROLLED
for( ; i <= n - 4; i += 4 )
result += tab[a[i] ^ b[i]] + tab[a[i+1] ^ b[i+1]] +
tab[a[i+2] ^ b[i+2]] + tab[a[i+3] ^ b[i+3]];
#endif
for( ; i < n; i++ )
result += tab[a[i] ^ b[i]];
return result;
}
template<typename T, typename ST> int
normInf_(const T* src, const uchar* mask, ST* _result, int len, int cn)
{
ST result = *_result;
if( !mask )
{
result = std::max(result, normInf<T, ST>(src, len*cn));
}
else
{
for( int i = 0; i < len; i++, src += cn )
if( mask[i] )
{
for( int k = 0; k < cn; k++ )
result = std::max(result, ST(fast_abs(src[k])));
}
}
*_result = result;
return 0;
}
template<typename T, typename ST> int
normL1_(const T* src, const uchar* mask, ST* _result, int len, int cn)
{
ST result = *_result;
if( !mask )
{
result += normL1<T, ST>(src, len*cn);
}
else
{
for( int i = 0; i < len; i++, src += cn )
if( mask[i] )
{
for( int k = 0; k < cn; k++ )
result += fast_abs(src[k]);
}
}
*_result = result;
return 0;
}
template<typename T, typename ST> int
normL2_(const T* src, const uchar* mask, ST* _result, int len, int cn)
{
ST result = *_result;
if( !mask )
{
result += normL2Sqr<T, ST>(src, len*cn);
}
else
{
for( int i = 0; i < len; i++, src += cn )
if( mask[i] )
{
for( int k = 0; k < cn; k++ )
{
T v = src[k];
result += (ST)v*v;
}
}
}
*_result = result;
return 0;
}
template<typename T, typename ST> int
normDiffInf_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn)
{
ST result = *_result;
if( !mask )
{
result = std::max(result, normInf<T, ST>(src1, src2, len*cn));
}
else
{
for( int i = 0; i < len; i++, src1 += cn, src2 += cn )
if( mask[i] )
{
for( int k = 0; k < cn; k++ )
result = std::max(result, (ST)std::abs(src1[k] - src2[k]));
}
}
*_result = result;
return 0;
}
template<typename T, typename ST> int
normDiffL1_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn)
{
ST result = *_result;
if( !mask )
{
result += normL1<T, ST>(src1, src2, len*cn);
}
else
{
for( int i = 0; i < len; i++, src1 += cn, src2 += cn )
if( mask[i] )
{
for( int k = 0; k < cn; k++ )
result += std::abs(src1[k] - src2[k]);
}
}
*_result = result;
return 0;
}
template<typename T, typename ST> int
normDiffL2_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn)
{
ST result = *_result;
if( !mask )
{
result += normL2Sqr<T, ST>(src1, src2, len*cn);
}
else
{
for( int i = 0; i < len; i++, src1 += cn, src2 += cn )
if( mask[i] )
{
for( int k = 0; k < cn; k++ )
{
ST v = src1[k] - src2[k];
result += v*v;
}
}
}
*_result = result;
return 0;
}
#define CV_DEF_NORM_FUNC(L, suffix, type, ntype) \
static int norm##L##_##suffix(const type* src, const uchar* mask, ntype* r, int len, int cn) \
{ return norm##L##_(src, mask, r, len, cn); } \
static int normDiff##L##_##suffix(const type* src1, const type* src2, \
const uchar* mask, ntype* r, int len, int cn) \
{ return normDiff##L##_(src1, src2, mask, r, (int)len, cn); }
#define CV_DEF_NORM_ALL(suffix, type, inftype, l1type, l2type) \
CV_DEF_NORM_FUNC(Inf, suffix, type, inftype) \
CV_DEF_NORM_FUNC(L1, suffix, type, l1type) \
CV_DEF_NORM_FUNC(L2, suffix, type, l2type)
CV_DEF_NORM_ALL(8u, uchar, int, int, int)
CV_DEF_NORM_ALL(8s, schar, int, int, int)
CV_DEF_NORM_ALL(16u, ushort, int, int, double)
CV_DEF_NORM_ALL(16s, short, int, int, double)
CV_DEF_NORM_ALL(32s, int, int, double, double)
CV_DEF_NORM_ALL(32f, float, float, double, double)
CV_DEF_NORM_ALL(64f, double, double, double, double)
typedef int (*NormFunc)(const uchar*, const uchar*, uchar*, int, int);
typedef int (*NormDiffFunc)(const uchar*, const uchar*, const uchar*, uchar*, int, int);
static NormFunc normTab[3][8] =
{
{
(NormFunc)GET_OPTIMIZED(normInf_8u), (NormFunc)GET_OPTIMIZED(normInf_8s), (NormFunc)GET_OPTIMIZED(normInf_16u), (NormFunc)GET_OPTIMIZED(normInf_16s),
(NormFunc)GET_OPTIMIZED(normInf_32s), (NormFunc)GET_OPTIMIZED(normInf_32f), (NormFunc)normInf_64f, 0
},
{
(NormFunc)GET_OPTIMIZED(normL1_8u), (NormFunc)GET_OPTIMIZED(normL1_8s), (NormFunc)GET_OPTIMIZED(normL1_16u), (NormFunc)GET_OPTIMIZED(normL1_16s),
(NormFunc)GET_OPTIMIZED(normL1_32s), (NormFunc)GET_OPTIMIZED(normL1_32f), (NormFunc)normL1_64f, 0
},
{
(NormFunc)GET_OPTIMIZED(normL2_8u), (NormFunc)GET_OPTIMIZED(normL2_8s), (NormFunc)GET_OPTIMIZED(normL2_16u), (NormFunc)GET_OPTIMIZED(normL2_16s),
(NormFunc)GET_OPTIMIZED(normL2_32s), (NormFunc)GET_OPTIMIZED(normL2_32f), (NormFunc)normL2_64f, 0
}
};
static NormDiffFunc normDiffTab[3][8] =
{
{
(NormDiffFunc)GET_OPTIMIZED(normDiffInf_8u), (NormDiffFunc)normDiffInf_8s,
(NormDiffFunc)normDiffInf_16u, (NormDiffFunc)normDiffInf_16s,
(NormDiffFunc)normDiffInf_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffInf_32f),
(NormDiffFunc)normDiffInf_64f, 0
},
{
(NormDiffFunc)GET_OPTIMIZED(normDiffL1_8u), (NormDiffFunc)normDiffL1_8s,
(NormDiffFunc)normDiffL1_16u, (NormDiffFunc)normDiffL1_16s,
(NormDiffFunc)normDiffL1_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffL1_32f),
(NormDiffFunc)normDiffL1_64f, 0
},
{
(NormDiffFunc)GET_OPTIMIZED(normDiffL2_8u), (NormDiffFunc)normDiffL2_8s,
(NormDiffFunc)normDiffL2_16u, (NormDiffFunc)normDiffL2_16s,
(NormDiffFunc)normDiffL2_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffL2_32f),
(NormDiffFunc)normDiffL2_64f, 0
}
};
}
double cv::norm( InputArray _src, int normType, InputArray _mask )
{
Mat src = _src.getMat(), mask = _mask.getMat();
int depth = src.depth(), cn = src.channels();
normType &= 7;
CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR ||
((normType == NORM_HAMMING || normType == NORM_HAMMING2) && src.type() == CV_8U) );
if( src.isContinuous() && mask.empty() )
{
size_t len = src.total()*cn;
if( len == (size_t)(int)len )
{
if( depth == CV_32F )
{
const float* data = src.ptr<float>();
if( normType == NORM_L2 )
{
double result = 0;
GET_OPTIMIZED(normL2_32f)(data, 0, &result, (int)len, 1);
return std::sqrt(result);
}
if( normType == NORM_L2SQR )
{
double result = 0;
GET_OPTIMIZED(normL2_32f)(data, 0, &result, (int)len, 1);
return result;
}
if( normType == NORM_L1 )
{
double result = 0;
GET_OPTIMIZED(normL1_32f)(data, 0, &result, (int)len, 1);
return result;
}
if( normType == NORM_INF )
{
float result = 0;
GET_OPTIMIZED(normInf_32f)(data, 0, &result, (int)len, 1);
return result;
}
}
if( depth == CV_8U )
{
const uchar* data = src.ptr<uchar>();
if( normType == NORM_HAMMING )
return normHamming(data, (int)len);
if( normType == NORM_HAMMING2 )
return normHamming(data, (int)len, 2);
}
}
}
CV_Assert( mask.empty() || mask.type() == CV_8U );
if( normType == NORM_HAMMING || normType == NORM_HAMMING2 )
{
if( !mask.empty() )
{
Mat temp;
bitwise_and(src, mask, temp);
return norm(temp, normType);
}
int cellSize = normType == NORM_HAMMING ? 1 : 2;
const Mat* arrays[] = {&src, 0};
uchar* ptrs[1];
NAryMatIterator it(arrays, ptrs);
int total = (int)it.size;
int result = 0;
for( size_t i = 0; i < it.nplanes; i++, ++it )
result += normHamming(ptrs[0], total, cellSize);
return result;
}
NormFunc func = normTab[normType >> 1][depth];
CV_Assert( func != 0 );
const Mat* arrays[] = {&src, &mask, 0};
uchar* ptrs[2];
union
{
double d;
int i;
float f;
}
result;
result.d = 0;
NAryMatIterator it(arrays, ptrs);
int j, total = (int)it.size, blockSize = total, intSumBlockSize = 0, count = 0;
bool blockSum = (normType == NORM_L1 && depth <= CV_16S) ||
((normType == NORM_L2 || normType == NORM_L2SQR) && depth <= CV_8S);
int isum = 0;
int *ibuf = &result.i;
size_t esz = 0;
if( blockSum )
{
intSumBlockSize = (normType == NORM_L1 && depth <= CV_8S ? (1 << 23) : (1 << 15))/cn;
blockSize = std::min(blockSize, intSumBlockSize);
ibuf = &isum;
esz = src.elemSize();
}
for( size_t i = 0; i < it.nplanes; i++, ++it )
{
for( j = 0; j < total; j += blockSize )
{
int bsz = std::min(total - j, blockSize);
func( ptrs[0], ptrs[1], (uchar*)ibuf, bsz, cn );
count += bsz;
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) )
{
result.d += isum;
isum = 0;
count = 0;
}
ptrs[0] += bsz*esz;
if( ptrs[1] )
ptrs[1] += bsz;
}
}
if( normType == NORM_INF )
{
if( depth == CV_64F )
;
else if( depth == CV_32F )
result.d = result.f;
else
result.d = result.i;
}
else if( normType == NORM_L2 )
result.d = std::sqrt(result.d);
return result.d;
}
double cv::norm( InputArray _src1, InputArray _src2, int normType, InputArray _mask )
{
if( normType & CV_RELATIVE )
return norm(_src1, _src2, normType & ~CV_RELATIVE, _mask)/(norm(_src2, normType, _mask) + DBL_EPSILON);
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat();
int depth = src1.depth(), cn = src1.channels();
CV_Assert( src1.size == src2.size && src1.type() == src2.type() );
normType &= 7;
CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR ||
((normType == NORM_HAMMING || normType == NORM_HAMMING2) && src1.type() == CV_8U) );
if( src1.isContinuous() && src2.isContinuous() && mask.empty() )
{
size_t len = src1.total()*src1.channels();
if( len == (size_t)(int)len )
{
if( src1.depth() == CV_32F )
{
const float* data1 = src1.ptr<float>();
const float* data2 = src2.ptr<float>();
if( normType == NORM_L2 )
{
double result = 0;
GET_OPTIMIZED(normDiffL2_32f)(data1, data2, 0, &result, (int)len, 1);
return std::sqrt(result);
}
if( normType == NORM_L2SQR )
{
double result = 0;
GET_OPTIMIZED(normDiffL2_32f)(data1, data2, 0, &result, (int)len, 1);
return result;
}
if( normType == NORM_L1 )
{
double result = 0;
GET_OPTIMIZED(normDiffL1_32f)(data1, data2, 0, &result, (int)len, 1);
return result;
}
if( normType == NORM_INF )
{
float result = 0;
GET_OPTIMIZED(normDiffInf_32f)(data1, data2, 0, &result, (int)len, 1);
return result;
}
}
}
}
CV_Assert( mask.empty() || mask.type() == CV_8U );
if( normType == NORM_HAMMING || normType == NORM_HAMMING2 )
{
if( !mask.empty() )
{
Mat temp;
bitwise_xor(src1, src2, temp);
bitwise_and(temp, mask, temp);
return norm(temp, normType);
}
int cellSize = normType == NORM_HAMMING ? 1 : 2;
const Mat* arrays[] = {&src1, &src2, 0};
uchar* ptrs[2];
NAryMatIterator it(arrays, ptrs);
int total = (int)it.size;
int result = 0;
for( size_t i = 0; i < it.nplanes; i++, ++it )
result += normHamming(ptrs[0], ptrs[1], total, cellSize);
return result;
}
NormDiffFunc func = normDiffTab[normType >> 1][depth];
CV_Assert( func != 0 );
const Mat* arrays[] = {&src1, &src2, &mask, 0};
uchar* ptrs[3];
union
{
double d;
float f;
int i;
unsigned u;
}
result;
result.d = 0;
NAryMatIterator it(arrays, ptrs);
int j, total = (int)it.size, blockSize = total, intSumBlockSize = 0, count = 0;
bool blockSum = (normType == NORM_L1 && depth <= CV_16S) ||
((normType == NORM_L2 || normType == NORM_L2SQR) && depth <= CV_8S);
unsigned isum = 0;
unsigned *ibuf = &result.u;
size_t esz = 0;
if( blockSum )
{
intSumBlockSize = normType == NORM_L1 && depth <= CV_8S ? (1 << 23) : (1 << 15);
blockSize = std::min(blockSize, intSumBlockSize);
ibuf = &isum;
esz = src1.elemSize();
}
for( size_t i = 0; i < it.nplanes; i++, ++it )
{
for( j = 0; j < total; j += blockSize )
{
int bsz = std::min(total - j, blockSize);
func( ptrs[0], ptrs[1], ptrs[2], (uchar*)ibuf, bsz, cn );
count += bsz;
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) )
{
result.d += isum;
isum = 0;
count = 0;
}
ptrs[0] += bsz*esz;
ptrs[1] += bsz*esz;
if( ptrs[2] )
ptrs[2] += bsz;
}
}
if( normType == NORM_INF )
{
if( depth == CV_64F )
;
else if( depth == CV_32F )
result.d = result.f;
else
result.d = result.u;
}
else if( normType == NORM_L2 )
result.d = std::sqrt(result.d);
return result.d;
}
///////////////////////////////////// batch distance ///////////////////////////////////////
namespace cv
{
template<typename _Tp, typename _Rt>
void batchDistL1_(const _Tp* src1, const _Tp* src2, size_t step2,
int nvecs, int len, _Rt* dist, const uchar* mask)
{
step2 /= sizeof(src2[0]);
if( !mask )
{
for( int i = 0; i < nvecs; i++ )
dist[i] = normL1<_Tp, _Rt>(src1, src2 + step2*i, len);
}
else
{
_Rt val0 = std::numeric_limits<_Rt>::max();
for( int i = 0; i < nvecs; i++ )
dist[i] = mask[i] ? normL1<_Tp, _Rt>(src1, src2 + step2*i, len) : val0;
}
}
template<typename _Tp, typename _Rt>
void batchDistL2Sqr_(const _Tp* src1, const _Tp* src2, size_t step2,
int nvecs, int len, _Rt* dist, const uchar* mask)
{
step2 /= sizeof(src2[0]);
if( !mask )
{
for( int i = 0; i < nvecs; i++ )
dist[i] = normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len);
}
else
{
_Rt val0 = std::numeric_limits<_Rt>::max();
for( int i = 0; i < nvecs; i++ )
dist[i] = mask[i] ? normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len) : val0;
}
}
template<typename _Tp, typename _Rt>
void batchDistL2_(const _Tp* src1, const _Tp* src2, size_t step2,
int nvecs, int len, _Rt* dist, const uchar* mask)
{
step2 /= sizeof(src2[0]);
if( !mask )
{
for( int i = 0; i < nvecs; i++ )
dist[i] = std::sqrt(normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len));
}
else
{
_Rt val0 = std::numeric_limits<_Rt>::max();
for( int i = 0; i < nvecs; i++ )
dist[i] = mask[i] ? std::sqrt(normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len)) : val0;
}
}
static void batchDistHamming(const uchar* src1, const uchar* src2, size_t step2,
int nvecs, int len, int* dist, const uchar* mask)
{
step2 /= sizeof(src2[0]);
if( !mask )
{
for( int i = 0; i < nvecs; i++ )
dist[i] = normHamming(src1, src2 + step2*i, len);
}
else
{
int val0 = INT_MAX;
for( int i = 0; i < nvecs; i++ )
dist[i] = mask[i] ? normHamming(src1, src2 + step2*i, len) : val0;
}
}
static void batchDistHamming2(const uchar* src1, const uchar* src2, size_t step2,
int nvecs, int len, int* dist, const uchar* mask)
{
step2 /= sizeof(src2[0]);
if( !mask )
{
for( int i = 0; i < nvecs; i++ )
dist[i] = normHamming(src1, src2 + step2*i, len, 2);
}
else
{
int val0 = INT_MAX;
for( int i = 0; i < nvecs; i++ )
dist[i] = mask[i] ? normHamming(src1, src2 + step2*i, len, 2) : val0;
}
}
static void batchDistL1_8u32s(const uchar* src1, const uchar* src2, size_t step2,
int nvecs, int len, int* dist, const uchar* mask)
{
batchDistL1_<uchar, int>(src1, src2, step2, nvecs, len, dist, mask);
}
static void batchDistL1_8u32f(const uchar* src1, const uchar* src2, size_t step2,
int nvecs, int len, float* dist, const uchar* mask)
{
batchDistL1_<uchar, float>(src1, src2, step2, nvecs, len, dist, mask);
}
static void batchDistL2Sqr_8u32s(const uchar* src1, const uchar* src2, size_t step2,
int nvecs, int len, int* dist, const uchar* mask)
{
batchDistL2Sqr_<uchar, int>(src1, src2, step2, nvecs, len, dist, mask);
}
static void batchDistL2Sqr_8u32f(const uchar* src1, const uchar* src2, size_t step2,
int nvecs, int len, float* dist, const uchar* mask)
{
batchDistL2Sqr_<uchar, float>(src1, src2, step2, nvecs, len, dist, mask);
}
static void batchDistL2_8u32f(const uchar* src1, const uchar* src2, size_t step2,
int nvecs, int len, float* dist, const uchar* mask)
{
batchDistL2_<uchar, float>(src1, src2, step2, nvecs, len, dist, mask);
}
static void batchDistL1_32f(const float* src1, const float* src2, size_t step2,
int nvecs, int len, float* dist, const uchar* mask)
{
batchDistL1_<float, float>(src1, src2, step2, nvecs, len, dist, mask);
}
static void batchDistL2Sqr_32f(const float* src1, const float* src2, size_t step2,
int nvecs, int len, float* dist, const uchar* mask)
{
batchDistL2Sqr_<float, float>(src1, src2, step2, nvecs, len, dist, mask);
}
static void batchDistL2_32f(const float* src1, const float* src2, size_t step2,
int nvecs, int len, float* dist, const uchar* mask)
{
batchDistL2_<float, float>(src1, src2, step2, nvecs, len, dist, mask);
}
typedef void (*BatchDistFunc)(const uchar* src1, const uchar* src2, size_t step2,
int nvecs, int len, uchar* dist, const uchar* mask);
struct BatchDistInvoker : public ParallelLoopBody
{
BatchDistInvoker( const Mat& _src1, const Mat& _src2,
Mat& _dist, Mat& _nidx, int _K,
const Mat& _mask, int _update,
BatchDistFunc _func)
{
src1 = &_src1;
src2 = &_src2;
dist = &_dist;
nidx = &_nidx;
K = _K;
mask = &_mask;
update = _update;
func = _func;
}
void operator()(const Range& range) const
{
AutoBuffer<int> buf(src2->rows);
int* bufptr = buf;
for( int i = range.start; i < range.end; i++ )
{
func(src1->ptr(i), src2->ptr(), src2->step, src2->rows, src2->cols,
K > 0 ? (uchar*)bufptr : dist->ptr(i), mask->data ? mask->ptr(i) : 0);
if( K > 0 )
{
int* nidxptr = nidx->ptr<int>(i);
// since positive float's can be compared just like int's,
// we handle both CV_32S and CV_32F cases with a single branch
int* distptr = (int*)dist->ptr(i);
int j, k;
for( j = 0; j < src2->rows; j++ )
{
int d = bufptr[j];
if( d < distptr[K-1] )
{
for( k = K-2; k >= 0 && distptr[k] > d; k-- )
{
nidxptr[k+1] = nidxptr[k];
distptr[k+1] = distptr[k];
}
nidxptr[k+1] = j + update;
distptr[k+1] = d;
}
}
}
}
}
const Mat *src1;
const Mat *src2;
Mat *dist;
Mat *nidx;
const Mat *mask;
int K;
int update;
BatchDistFunc func;
};
}
void cv::batchDistance( InputArray _src1, InputArray _src2,
OutputArray _dist, int dtype, OutputArray _nidx,
int normType, int K, InputArray _mask,
int update, bool crosscheck )
{
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat();
int type = src1.type();
CV_Assert( type == src2.type() && src1.cols == src2.cols &&
(type == CV_32F || type == CV_8U));
CV_Assert( _nidx.needed() == (K > 0) );
if( dtype == -1 )
{
dtype = normType == NORM_HAMMING || normType == NORM_HAMMING2 ? CV_32S : CV_32F;
}
CV_Assert( (type == CV_8U && dtype == CV_32S) || dtype == CV_32F);
K = std::min(K, src2.rows);
_dist.create(src1.rows, (K > 0 ? K : src2.rows), dtype);
Mat dist = _dist.getMat(), nidx;
if( _nidx.needed() )
{
_nidx.create(dist.size(), CV_32S);
nidx = _nidx.getMat();
}
if( update == 0 && K > 0 )
{
dist = Scalar::all(dtype == CV_32S ? (double)INT_MAX : (double)FLT_MAX);
nidx = Scalar::all(-1);
}
if( crosscheck )
{
CV_Assert( K == 1 && update == 0 && mask.empty() );
Mat tdist, tidx;
batchDistance(src2, src1, tdist, dtype, tidx, normType, K, mask, 0, false);
// if an idx-th element from src1 appeared to be the nearest to i-th element of src2,
// we update the minimum mutual distance between idx-th element of src1 and the whole src2 set.
// As a result, if nidx[idx] = i*, it means that idx-th element of src1 is the nearest
// to i*-th element of src2 and i*-th element of src2 is the closest to idx-th element of src1.
// If nidx[idx] = -1, it means that there is no such ideal couple for it in src2.
// This O(N) procedure is called cross-check and it helps to eliminate some false matches.
if( dtype == CV_32S )
{
for( int i = 0; i < tdist.rows; i++ )
{
int idx = tidx.at<int>(i);
int d = tdist.at<int>(i), d0 = dist.at<int>(idx);
if( d < d0 )
{
dist.at<int>(idx) = d;
nidx.at<int>(idx) = i + update;
}
}
}
else
{
for( int i = 0; i < tdist.rows; i++ )
{
int idx = tidx.at<int>(i);
float d = tdist.at<float>(i), d0 = dist.at<float>(idx);
if( d < d0 )
{
dist.at<float>(idx) = d;
nidx.at<int>(idx) = i + update;
}
}
}
return;
}
BatchDistFunc func = 0;
if( type == CV_8U )
{
if( normType == NORM_L1 && dtype == CV_32S )
func = (BatchDistFunc)batchDistL1_8u32s;
else if( normType == NORM_L1 && dtype == CV_32F )
func = (BatchDistFunc)batchDistL1_8u32f;
else if( normType == NORM_L2SQR && dtype == CV_32S )
func = (BatchDistFunc)batchDistL2Sqr_8u32s;
else if( normType == NORM_L2SQR && dtype == CV_32F )
func = (BatchDistFunc)batchDistL2Sqr_8u32f;
else if( normType == NORM_L2 && dtype == CV_32F )
func = (BatchDistFunc)batchDistL2_8u32f;
else if( normType == NORM_HAMMING && dtype == CV_32S )
func = (BatchDistFunc)batchDistHamming;
else if( normType == NORM_HAMMING2 && dtype == CV_32S )
func = (BatchDistFunc)batchDistHamming2;
}
else if( type == CV_32F && dtype == CV_32F )
{
if( normType == NORM_L1 )
func = (BatchDistFunc)batchDistL1_32f;
else if( normType == NORM_L2SQR )
func = (BatchDistFunc)batchDistL2Sqr_32f;
else if( normType == NORM_L2 )
func = (BatchDistFunc)batchDistL2_32f;
}
if( func == 0 )
CV_Error_(CV_StsUnsupportedFormat,
("The combination of type=%d, dtype=%d and normType=%d is not supported",
type, dtype, normType));
parallel_for_(Range(0, src1.rows),
BatchDistInvoker(src1, src2, dist, nidx, K, mask, update, func));
}
void cv::findNonZero( InputArray _src, OutputArray _idx )
{
Mat src = _src.getMat();
CV_Assert( src.type() == CV_8UC1 );
int n = countNonZero(src);
if( _idx.kind() == _InputArray::MAT && !_idx.getMatRef().isContinuous() )
_idx.release();
_idx.create(n, 1, CV_32SC2);
Mat idx = _idx.getMat();
CV_Assert(idx.isContinuous());
Point* idx_ptr = (Point*)idx.data;
for( int i = 0; i < src.rows; i++ )
{
const uchar* bin_ptr = src.ptr(i);
for( int j = 0; j < src.cols; j++ )
if( bin_ptr[j] )
*idx_ptr++ = Point(j, i);
}
}
CV_IMPL CvScalar cvSum( const CvArr* srcarr )
{
cv::Scalar sum = cv::sum(cv::cvarrToMat(srcarr, false, true, 1));
if( CV_IS_IMAGE(srcarr) )
{
int coi = cvGetImageCOI((IplImage*)srcarr);
if( coi )
{
CV_Assert( 0 < coi && coi <= 4 );
sum = cv::Scalar(sum[coi-1]);
}
}
return sum;
}
CV_IMPL int cvCountNonZero( const CvArr* imgarr )
{
cv::Mat img = cv::cvarrToMat(imgarr, false, true, 1);
if( img.channels() > 1 )
cv::extractImageCOI(imgarr, img);
return countNonZero(img);
}
CV_IMPL CvScalar
cvAvg( const void* imgarr, const void* maskarr )
{
cv::Mat img = cv::cvarrToMat(imgarr, false, true, 1);
cv::Scalar mean = !maskarr ? cv::mean(img) : cv::mean(img, cv::cvarrToMat(maskarr));
if( CV_IS_IMAGE(imgarr) )
{
int coi = cvGetImageCOI((IplImage*)imgarr);
if( coi )
{
CV_Assert( 0 < coi && coi <= 4 );
mean = cv::Scalar(mean[coi-1]);
}
}
return mean;
}
CV_IMPL void
cvAvgSdv( const CvArr* imgarr, CvScalar* _mean, CvScalar* _sdv, const void* maskarr )
{
cv::Scalar mean, sdv;
cv::Mat mask;
if( maskarr )
mask = cv::cvarrToMat(maskarr);
cv::meanStdDev(cv::cvarrToMat(imgarr, false, true, 1), mean, sdv, mask );
if( CV_IS_IMAGE(imgarr) )
{
int coi = cvGetImageCOI((IplImage*)imgarr);
if( coi )
{
CV_Assert( 0 < coi && coi <= 4 );
mean = cv::Scalar(mean[coi-1]);
sdv = cv::Scalar(sdv[coi-1]);
}
}
if( _mean )
*(cv::Scalar*)_mean = mean;
if( _sdv )
*(cv::Scalar*)_sdv = sdv;
}
CV_IMPL void
cvMinMaxLoc( const void* imgarr, double* _minVal, double* _maxVal,
CvPoint* _minLoc, CvPoint* _maxLoc, const void* maskarr )
{
cv::Mat mask, img = cv::cvarrToMat(imgarr, false, true, 1);
if( maskarr )
mask = cv::cvarrToMat(maskarr);
if( img.channels() > 1 )
cv::extractImageCOI(imgarr, img);
cv::minMaxLoc( img, _minVal, _maxVal,
(cv::Point*)_minLoc, (cv::Point*)_maxLoc, mask );
}
CV_IMPL double
cvNorm( const void* imgA, const void* imgB, int normType, const void* maskarr )
{
cv::Mat a, mask;
if( !imgA )
{
imgA = imgB;
imgB = 0;
}
a = cv::cvarrToMat(imgA, false, true, 1);
if( maskarr )
mask = cv::cvarrToMat(maskarr);
if( a.channels() > 1 && CV_IS_IMAGE(imgA) && cvGetImageCOI((const IplImage*)imgA) > 0 )
cv::extractImageCOI(imgA, a);
if( !imgB )
return !maskarr ? cv::norm(a, normType) : cv::norm(a, normType, mask);
cv::Mat b = cv::cvarrToMat(imgB, false, true, 1);
if( b.channels() > 1 && CV_IS_IMAGE(imgB) && cvGetImageCOI((const IplImage*)imgB) > 0 )
cv::extractImageCOI(imgB, b);
return !maskarr ? cv::norm(a, b, normType) : cv::norm(a, b, normType, mask);
}