mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
128 lines
5.4 KiB
128 lines
5.4 KiB
Background Segmentation |
|
======================= |
|
|
|
.. highlight:: cpp |
|
|
|
|
|
|
|
cuda::BackgroundSubtractorMOG |
|
----------------------------- |
|
Gaussian Mixture-based Background/Foreground Segmentation Algorithm. |
|
|
|
.. ocv:class:: cuda::BackgroundSubtractorMOG : public cv::BackgroundSubtractorMOG |
|
|
|
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [MOG2001]_. |
|
|
|
.. seealso:: :ocv:class:`BackgroundSubtractorMOG` |
|
|
|
.. note:: |
|
|
|
* An example on gaussian mixture based background/foreground segmantation can be found at opencv_source_code/samples/gpu/bgfg_segm.cpp |
|
|
|
|
|
|
|
cuda::createBackgroundSubtractorMOG |
|
----------------------------------- |
|
Creates mixture-of-gaussian background subtractor |
|
|
|
.. ocv:function:: Ptr<cuda::BackgroundSubtractorMOG> cuda::createBackgroundSubtractorMOG(int history=200, int nmixtures=5, double backgroundRatio=0.7, double noiseSigma=0) |
|
|
|
:param history: Length of the history. |
|
|
|
:param nmixtures: Number of Gaussian mixtures. |
|
|
|
:param backgroundRatio: Background ratio. |
|
|
|
:param noiseSigma: Noise strength (standard deviation of the brightness or each color channel). 0 means some automatic value. |
|
|
|
|
|
|
|
cuda::BackgroundSubtractorMOG2 |
|
------------------------------ |
|
Gaussian Mixture-based Background/Foreground Segmentation Algorithm. |
|
|
|
.. ocv:class:: cuda::BackgroundSubtractorMOG2 : public cv::BackgroundSubtractorMOG2 |
|
|
|
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [MOG2004]_. |
|
|
|
.. seealso:: :ocv:class:`BackgroundSubtractorMOG2` |
|
|
|
|
|
|
|
cuda::createBackgroundSubtractorMOG2 |
|
------------------------------------ |
|
Creates MOG2 Background Subtractor |
|
|
|
.. ocv:function:: Ptr<cuda::BackgroundSubtractorMOG2> cuda::createBackgroundSubtractorMOG2( int history=500, double varThreshold=16, bool detectShadows=true ) |
|
|
|
:param history: Length of the history. |
|
|
|
:param varThreshold: Threshold on the squared Mahalanobis distance between the pixel and the model to decide whether a pixel is well described by the background model. This parameter does not affect the background update. |
|
|
|
:param detectShadows: If true, the algorithm will detect shadows and mark them. It decreases the speed a bit, so if you do not need this feature, set the parameter to false. |
|
|
|
|
|
|
|
cuda::BackgroundSubtractorGMG |
|
----------------------------- |
|
Background/Foreground Segmentation Algorithm. |
|
|
|
.. ocv:class:: cuda::BackgroundSubtractorGMG : public cv::BackgroundSubtractorGMG |
|
|
|
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [GMG2012]_. |
|
|
|
|
|
|
|
cuda::createBackgroundSubtractorGMG |
|
----------------------------------- |
|
Creates GMG Background Subtractor |
|
|
|
.. ocv:function:: Ptr<cuda::BackgroundSubtractorGMG> cuda::createBackgroundSubtractorGMG(int initializationFrames = 120, double decisionThreshold = 0.8) |
|
|
|
:param initializationFrames: Number of frames of video to use to initialize histograms. |
|
|
|
:param decisionThreshold: Value above which pixel is determined to be FG. |
|
|
|
|
|
|
|
cuda::BackgroundSubtractorFGD |
|
----------------------------- |
|
|
|
.. ocv:class:: cuda::BackgroundSubtractorFGD : public cv::BackgroundSubtractor |
|
|
|
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [FGD2003]_. :: |
|
|
|
class CV_EXPORTS BackgroundSubtractorFGD : public cv::BackgroundSubtractor |
|
{ |
|
public: |
|
virtual void getForegroundRegions(OutputArrayOfArrays foreground_regions) = 0; |
|
}; |
|
|
|
.. seealso:: :ocv:class:`BackgroundSubtractor` |
|
|
|
|
|
|
|
cuda::BackgroundSubtractorFGD::getForegroundRegions |
|
--------------------------------------------------- |
|
Returns the output foreground regions calculated by :ocv:func:`findContours`. |
|
|
|
.. ocv:function:: void cuda::BackgroundSubtractorFGD::getForegroundRegions(OutputArrayOfArrays foreground_regions) |
|
|
|
:params foreground_regions: Output array (CPU memory). |
|
|
|
|
|
|
|
cuda::createBackgroundSubtractorFGD |
|
----------------------------------- |
|
Creates FGD Background Subtractor |
|
|
|
.. ocv:function:: Ptr<cuda::BackgroundSubtractorGMG> cuda::createBackgroundSubtractorFGD(const FGDParams& params = FGDParams()) |
|
|
|
:param params: Algorithm's parameters. See [FGD2003]_ for explanation. |
|
|
|
|
|
|
|
.. [FGD2003] Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian. *Foreground Object Detection from Videos Containing Complex Background*. ACM MM2003 9p, 2003. |
|
.. [MOG2001] P. KadewTraKuPong and R. Bowden. *An improved adaptive background mixture model for real-time tracking with shadow detection*. Proc. 2nd European Workshop on Advanced Video-Based Surveillance Systems, 2001 |
|
.. [MOG2004] Z. Zivkovic. *Improved adaptive Gausian mixture model for background subtraction*. International Conference Pattern Recognition, UK, August, 2004 |
|
.. [GMG2012] A. Godbehere, A. Matsukawa and K. Goldberg. *Visual Tracking of Human Visitors under Variable-Lighting Conditions for a Responsive Audio Art Installation*. American Control Conference, Montreal, June 2012
|
|
|