mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
116 lines
4.6 KiB
116 lines
4.6 KiB
#include "test_precomp.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
struct CV_EXPORTS L2Fake : public L2<float> |
|
{ |
|
enum { normType = NORM_L2 }; |
|
}; |
|
|
|
class CV_BruteForceMatcherTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_BruteForceMatcherTest() {} |
|
protected: |
|
void run( int ) |
|
{ |
|
const int dimensions = 64; |
|
const int descriptorsNumber = 5000; |
|
|
|
Mat train = Mat( descriptorsNumber, dimensions, CV_32FC1); |
|
Mat query = Mat( descriptorsNumber, dimensions, CV_32FC1); |
|
|
|
Mat permutation( 1, descriptorsNumber, CV_32SC1 ); |
|
for( int i=0;i<descriptorsNumber;i++ ) |
|
permutation.at<int>( 0, i ) = i; |
|
|
|
//RNG rng = RNG( cvGetTickCount() ); |
|
RNG rng; |
|
randShuffle( permutation, 1, &rng ); |
|
|
|
float boundary = 500.f; |
|
for( int row=0;row<descriptorsNumber;row++ ) |
|
{ |
|
for( int col=0;col<dimensions;col++ ) |
|
{ |
|
int bit = rng( 2 ); |
|
train.at<float>( permutation.at<int>( 0, row ), col ) = bit*boundary + rng.uniform( 0.f, boundary ); |
|
query.at<float>( row, col ) = bit*boundary + rng.uniform( 0.f, boundary ); |
|
} |
|
} |
|
|
|
vector<DMatch> specMatches, genericMatches; |
|
BruteForceMatcher<L2<float> > specMatcher; |
|
BruteForceMatcher<L2Fake > genericMatcher; |
|
|
|
int64 time0 = cvGetTickCount(); |
|
specMatcher.match( query, train, specMatches ); |
|
int64 time1 = cvGetTickCount(); |
|
genericMatcher.match( query, train, genericMatches ); |
|
int64 time2 = cvGetTickCount(); |
|
|
|
float specMatcherTime = float(time1 - time0)/(float)cvGetTickFrequency(); |
|
ts->printf( cvtest::TS::LOG, "Matching by matrix multiplication time s: %f, us per pair: %f\n", |
|
specMatcherTime*1e-6, specMatcherTime/( descriptorsNumber*descriptorsNumber ) ); |
|
|
|
float genericMatcherTime = float(time2 - time1)/(float)cvGetTickFrequency(); |
|
ts->printf( cvtest::TS::LOG, "Matching without matrix multiplication time s: %f, us per pair: %f\n", |
|
genericMatcherTime*1e-6, genericMatcherTime/( descriptorsNumber*descriptorsNumber ) ); |
|
|
|
if( (int)specMatches.size() != descriptorsNumber || (int)genericMatches.size() != descriptorsNumber ) |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
for( int i=0;i<descriptorsNumber;i++ ) |
|
{ |
|
float epsilon = 0.01f; |
|
bool isEquiv = fabs( specMatches[i].distance - genericMatches[i].distance ) < epsilon && |
|
specMatches[i].queryIdx == genericMatches[i].queryIdx && |
|
specMatches[i].trainIdx == genericMatches[i].trainIdx; |
|
if( !isEquiv || specMatches[i].trainIdx != permutation.at<int>( 0, i ) ) |
|
{ |
|
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH ); |
|
break; |
|
} |
|
} |
|
|
|
|
|
//Test mask |
|
Mat mask( query.rows, train.rows, CV_8UC1 ); |
|
rng.fill( mask, RNG::UNIFORM, 0, 2 ); |
|
|
|
|
|
time0 = cvGetTickCount(); |
|
specMatcher.match( query, train, specMatches, mask ); |
|
time1 = cvGetTickCount(); |
|
genericMatcher.match( query, train, genericMatches, mask ); |
|
time2 = cvGetTickCount(); |
|
|
|
specMatcherTime = float(time1 - time0)/(float)cvGetTickFrequency(); |
|
ts->printf( cvtest::TS::LOG, "Matching by matrix multiplication time with mask s: %f, us per pair: %f\n", |
|
specMatcherTime*1e-6, specMatcherTime/( descriptorsNumber*descriptorsNumber ) ); |
|
|
|
genericMatcherTime = float(time2 - time1)/(float)cvGetTickFrequency(); |
|
ts->printf( cvtest::TS::LOG, "Matching without matrix multiplication time with mask s: %f, us per pair: %f\n", |
|
genericMatcherTime*1e-6, genericMatcherTime/( descriptorsNumber*descriptorsNumber ) ); |
|
|
|
if( specMatches.size() != genericMatches.size() ) |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
|
|
for( size_t i=0;i<specMatches.size();i++ ) |
|
{ |
|
//float epsilon = 1e-2; |
|
float epsilon = 10000000; |
|
bool isEquiv = fabs( specMatches[i].distance - genericMatches[i].distance ) < epsilon && |
|
specMatches[i].queryIdx == genericMatches[i].queryIdx && |
|
specMatches[i].trainIdx == genericMatches[i].trainIdx; |
|
if( !isEquiv ) |
|
{ |
|
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH ); |
|
break; |
|
} |
|
} |
|
} |
|
}; |
|
|
|
TEST(Legacy_BruteForceMatcher, accuracy) { CV_BruteForceMatcherTest test; test.safe_run(); } |
|
|
|
|