mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
148 lines
5.7 KiB
148 lines
5.7 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include "opencv2/photo/photo.hpp" |
|
#include <string> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
//#define DUMP_RESULTS |
|
|
|
#ifdef DUMP_RESULTS |
|
# define DUMP(image, path) imwrite(path, image) |
|
#else |
|
# define DUMP(image, path) |
|
#endif |
|
|
|
|
|
TEST(Imgproc_DenoisingGrayscale, regression) |
|
{ |
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "denoising/"; |
|
string original_path = folder + "lena_noised_gaussian_sigma=10.png"; |
|
string expected_path = folder + "lena_noised_denoised_grayscale_tw=7_sw=21_h=10.png"; |
|
|
|
Mat original = imread(original_path, CV_LOAD_IMAGE_GRAYSCALE); |
|
Mat expected = imread(expected_path, CV_LOAD_IMAGE_GRAYSCALE); |
|
|
|
ASSERT_FALSE(original.empty()) << "Could not load input image " << original_path; |
|
ASSERT_FALSE(expected.empty()) << "Could not load reference image " << expected_path; |
|
|
|
Mat result; |
|
fastNlMeansDenoising(original, result, 10); |
|
|
|
DUMP(result, expected_path + ".res.png"); |
|
|
|
ASSERT_EQ(0, norm(result != expected)); |
|
} |
|
|
|
TEST(Imgproc_DenoisingColored, regression) |
|
{ |
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "denoising/"; |
|
string original_path = folder + "lena_noised_gaussian_sigma=10.png"; |
|
string expected_path = folder + "lena_noised_denoised_lab12_tw=7_sw=21_h=10_h2=10.png"; |
|
|
|
Mat original = imread(original_path, CV_LOAD_IMAGE_COLOR); |
|
Mat expected = imread(expected_path, CV_LOAD_IMAGE_COLOR); |
|
|
|
ASSERT_FALSE(original.empty()) << "Could not load input image " << original_path; |
|
ASSERT_FALSE(expected.empty()) << "Could not load reference image " << expected_path; |
|
|
|
Mat result; |
|
fastNlMeansDenoisingColored(original, result, 10, 10); |
|
|
|
DUMP(result, expected_path + ".res.png"); |
|
|
|
ASSERT_EQ(0, norm(result != expected)); |
|
} |
|
|
|
TEST(Imgproc_DenoisingGrayscaleMulti, regression) |
|
{ |
|
const int imgs_count = 3; |
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "denoising/"; |
|
|
|
string expected_path = folder + "lena_noised_denoised_multi_tw=7_sw=21_h=15.png"; |
|
Mat expected = imread(expected_path, CV_LOAD_IMAGE_GRAYSCALE); |
|
ASSERT_FALSE(expected.empty()) << "Could not load reference image " << expected_path; |
|
|
|
vector<Mat> original(imgs_count); |
|
for (int i = 0; i < imgs_count; i++) |
|
{ |
|
string original_path = format("%slena_noised_gaussian_sigma=20_multi_%d.png", folder.c_str(), i); |
|
original[i] = imread(original_path, CV_LOAD_IMAGE_GRAYSCALE); |
|
ASSERT_FALSE(original[i].empty()) << "Could not load input image " << original_path; |
|
} |
|
|
|
Mat result; |
|
fastNlMeansDenoisingMulti(original, result, imgs_count / 2, imgs_count, 15); |
|
|
|
DUMP(result, expected_path + ".res.png"); |
|
|
|
ASSERT_EQ(0, norm(result != expected)); |
|
} |
|
|
|
TEST(Imgproc_DenoisingColoredMulti, regression) |
|
{ |
|
const int imgs_count = 3; |
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "denoising/"; |
|
|
|
string expected_path = folder + "lena_noised_denoised_multi_lab12_tw=7_sw=21_h=10_h2=15.png"; |
|
Mat expected = imread(expected_path, CV_LOAD_IMAGE_COLOR); |
|
ASSERT_FALSE(expected.empty()) << "Could not load reference image " << expected_path; |
|
|
|
vector<Mat> original(imgs_count); |
|
for (int i = 0; i < imgs_count; i++) |
|
{ |
|
string original_path = format("%slena_noised_gaussian_sigma=20_multi_%d.png", folder.c_str(), i); |
|
original[i] = imread(original_path, CV_LOAD_IMAGE_COLOR); |
|
ASSERT_FALSE(original[i].empty()) << "Could not load input image " << original_path; |
|
} |
|
|
|
Mat result; |
|
fastNlMeansDenoisingColoredMulti(original, result, imgs_count / 2, imgs_count, 10, 15); |
|
|
|
DUMP(result, expected_path + ".res.png"); |
|
|
|
ASSERT_EQ(0, norm(result != expected)); |
|
} |
|
|
|
|