Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

259 lines
7.2 KiB

/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef _OPENCV_FLANN_BASE_HPP_
#define _OPENCV_FLANN_BASE_HPP_
#include <vector>
#include <string>
#include <cassert>
#include <cstdio>
#include "opencv2/flann/general.h"
#include "opencv2/flann/matrix.h"
#include "opencv2/flann/result_set.h"
#include "opencv2/flann/index_testing.h"
#include "opencv2/flann/object_factory.h"
#include "opencv2/flann/saving.h"
#include "opencv2/flann/all_indices.h"
namespace cvflann
{
/**
Sets the log level used for all flann functions
Params:
level = verbosity level
*/
CV_EXPORTS void log_verbosity(int level);
/**
* Sets the distance type to use throughout FLANN.
* If distance type specified is MINKOWSKI, the second argument
* specifies which order the minkowski distance should have.
*/
CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order);
struct CV_EXPORTS SavedIndexParams : public IndexParams {
SavedIndexParams(std::string filename_) : IndexParams(FLANN_INDEX_SAVED), filename(filename_) {}
std::string filename; // filename of the stored index
void print() const
{
logger().info("Index type: %d\n",(int)algorithm);
logger().info("Filename: %s\n", filename.c_str());
}
};
template<typename T>
class CV_EXPORTS Index {
NNIndex<T>* nnIndex;
bool built;
public:
Index(const Matrix<T>& features, const IndexParams& params);
~Index();
void buildIndex();
void knnSearch(const Matrix<T>& queries, Matrix<int>& indices, Matrix<float>& dists, int knn, const SearchParams& params);
int radiusSearch(const Matrix<T>& query, Matrix<int>& indices, Matrix<float>& dists, float radius, const SearchParams& params);
void save(std::string filename);
int veclen() const;
int size() const;
NNIndex<T>* getIndex() { return nnIndex; }
const IndexParams* getIndexParameters() { return nnIndex->getParameters(); }
};
template<typename T>
NNIndex<T>* load_saved_index(const Matrix<T>& dataset, const std::string& filename)
{
FILE* fin = fopen(filename.c_str(), "rb");
if (fin==NULL) {
return NULL;
}
IndexHeader header = load_header(fin);
if (header.data_type!=Datatype<T>::type()) {
throw FLANNException("Datatype of saved index is different than of the one to be created.");
}
if (size_t(header.rows)!=dataset.rows || size_t(header.cols)!=dataset.cols) {
throw FLANNException("The index saved belongs to a different dataset");
}
IndexParams* params = ParamsFactory_instance().create(header.index_type);
NNIndex<T>* nnIndex = create_index_by_type(dataset, *params);
nnIndex->loadIndex(fin);
fclose(fin);
return nnIndex;
}
template<typename T>
Index<T>::Index(const Matrix<T>& dataset, const IndexParams& params)
{
flann_algorithm_t index_type = params.getIndexType();
built = false;
if (index_type==FLANN_INDEX_SAVED) {
nnIndex = load_saved_index(dataset, ((const SavedIndexParams&)params).filename);
built = true;
}
else {
nnIndex = create_index_by_type(dataset, params);
}
}
template<typename T>
Index<T>::~Index()
{
delete nnIndex;
}
template<typename T>
void Index<T>::buildIndex()
{
if (!built) {
nnIndex->buildIndex();
built = true;
}
}
template<typename T>
void Index<T>::knnSearch(const Matrix<T>& queries, Matrix<int>& indices, Matrix<float>& dists, int knn, const SearchParams& searchParams)
{
if (!built) {
throw FLANNException("You must build the index before searching.");
}
assert(queries.cols==nnIndex->veclen());
assert(indices.rows>=queries.rows);
assert(dists.rows>=queries.rows);
assert(int(indices.cols)>=knn);
assert(int(dists.cols)>=knn);
KNNResultSet<T> resultSet(knn);
for (size_t i = 0; i < queries.rows; i++) {
T* target = queries[i];
resultSet.init(target, (int)queries.cols);
nnIndex->findNeighbors(resultSet, target, searchParams);
int* neighbors = resultSet.getNeighbors();
float* distances = resultSet.getDistances();
memcpy(indices[i], neighbors, knn*sizeof(int));
memcpy(dists[i], distances, knn*sizeof(float));
}
}
template<typename T>
int Index<T>::radiusSearch(const Matrix<T>& query, Matrix<int>& indices, Matrix<float>& dists, float radius, const SearchParams& searchParams)
{
if (!built) {
throw FLANNException("You must build the index before searching.");
}
if (query.rows!=1) {
fprintf(stderr, "I can only search one feature at a time for range search\n");
return -1;
}
assert(query.cols==nnIndex->veclen());
RadiusResultSet<T> resultSet(radius);
resultSet.init(query.data, (int)query.cols);
nnIndex->findNeighbors(resultSet,query.data,searchParams);
// TODO: optimise here
int* neighbors = resultSet.getNeighbors();
float* distances = resultSet.getDistances();
size_t count_nn = std::min(resultSet.size(), indices.cols);
assert (dists.cols>=count_nn);
for (size_t i=0;i<count_nn;++i) {
indices[0][i] = neighbors[i];
dists[0][i] = distances[i];
}
return (int)count_nn;
}
template<typename T>
void Index<T>::save(std::string filename)
{
FILE* fout = fopen(filename.c_str(), "wb");
if (fout==NULL) {
throw FLANNException("Cannot open file");
}
save_header(fout, *nnIndex);
nnIndex->saveIndex(fout);
fclose(fout);
}
template<typename T>
int Index<T>::size() const
{
return nnIndex->size();
}
template<typename T>
int Index<T>::veclen() const
{
return nnIndex->veclen();
}
template <typename ELEM_TYPE, typename DIST_TYPE>
int hierarchicalClustering(const Matrix<ELEM_TYPE>& features, Matrix<DIST_TYPE>& centers, const KMeansIndexParams& params)
{
KMeansIndex<ELEM_TYPE, DIST_TYPE> kmeans(features, params);
kmeans.buildIndex();
int clusterNum = kmeans.getClusterCenters(centers);
return clusterNum;
}
} // namespace cvflann
#endif /* _OPENCV_FLANN_BASE_HPP_ */