mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
259 lines
7.2 KiB
259 lines
7.2 KiB
/*********************************************************************** |
|
* Software License Agreement (BSD License) |
|
* |
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. |
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. |
|
* |
|
* THE BSD LICENSE |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
*************************************************************************/ |
|
|
|
#ifndef _OPENCV_FLANN_BASE_HPP_ |
|
#define _OPENCV_FLANN_BASE_HPP_ |
|
|
|
#include <vector> |
|
#include <string> |
|
#include <cassert> |
|
#include <cstdio> |
|
|
|
#include "opencv2/flann/general.h" |
|
#include "opencv2/flann/matrix.h" |
|
#include "opencv2/flann/result_set.h" |
|
#include "opencv2/flann/index_testing.h" |
|
#include "opencv2/flann/object_factory.h" |
|
#include "opencv2/flann/saving.h" |
|
|
|
#include "opencv2/flann/all_indices.h" |
|
|
|
namespace cvflann |
|
{ |
|
|
|
|
|
/** |
|
Sets the log level used for all flann functions |
|
|
|
Params: |
|
level = verbosity level |
|
*/ |
|
CV_EXPORTS void log_verbosity(int level); |
|
|
|
|
|
/** |
|
* Sets the distance type to use throughout FLANN. |
|
* If distance type specified is MINKOWSKI, the second argument |
|
* specifies which order the minkowski distance should have. |
|
*/ |
|
CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order); |
|
|
|
|
|
struct CV_EXPORTS SavedIndexParams : public IndexParams { |
|
SavedIndexParams(std::string filename_) : IndexParams(FLANN_INDEX_SAVED), filename(filename_) {} |
|
|
|
std::string filename; // filename of the stored index |
|
|
|
void print() const |
|
{ |
|
logger().info("Index type: %d\n",(int)algorithm); |
|
logger().info("Filename: %s\n", filename.c_str()); |
|
} |
|
}; |
|
|
|
template<typename T> |
|
class CV_EXPORTS Index { |
|
NNIndex<T>* nnIndex; |
|
bool built; |
|
|
|
public: |
|
Index(const Matrix<T>& features, const IndexParams& params); |
|
|
|
~Index(); |
|
|
|
void buildIndex(); |
|
|
|
void knnSearch(const Matrix<T>& queries, Matrix<int>& indices, Matrix<float>& dists, int knn, const SearchParams& params); |
|
|
|
int radiusSearch(const Matrix<T>& query, Matrix<int>& indices, Matrix<float>& dists, float radius, const SearchParams& params); |
|
|
|
void save(std::string filename); |
|
|
|
int veclen() const; |
|
|
|
int size() const; |
|
|
|
NNIndex<T>* getIndex() { return nnIndex; } |
|
|
|
const IndexParams* getIndexParameters() { return nnIndex->getParameters(); } |
|
}; |
|
|
|
|
|
template<typename T> |
|
NNIndex<T>* load_saved_index(const Matrix<T>& dataset, const std::string& filename) |
|
{ |
|
FILE* fin = fopen(filename.c_str(), "rb"); |
|
if (fin==NULL) { |
|
return NULL; |
|
} |
|
IndexHeader header = load_header(fin); |
|
if (header.data_type!=Datatype<T>::type()) { |
|
throw FLANNException("Datatype of saved index is different than of the one to be created."); |
|
} |
|
if (size_t(header.rows)!=dataset.rows || size_t(header.cols)!=dataset.cols) { |
|
throw FLANNException("The index saved belongs to a different dataset"); |
|
} |
|
|
|
IndexParams* params = ParamsFactory_instance().create(header.index_type); |
|
NNIndex<T>* nnIndex = create_index_by_type(dataset, *params); |
|
nnIndex->loadIndex(fin); |
|
fclose(fin); |
|
|
|
return nnIndex; |
|
} |
|
|
|
|
|
template<typename T> |
|
Index<T>::Index(const Matrix<T>& dataset, const IndexParams& params) |
|
{ |
|
flann_algorithm_t index_type = params.getIndexType(); |
|
built = false; |
|
|
|
if (index_type==FLANN_INDEX_SAVED) { |
|
nnIndex = load_saved_index(dataset, ((const SavedIndexParams&)params).filename); |
|
built = true; |
|
} |
|
else { |
|
nnIndex = create_index_by_type(dataset, params); |
|
} |
|
} |
|
|
|
template<typename T> |
|
Index<T>::~Index() |
|
{ |
|
delete nnIndex; |
|
} |
|
|
|
template<typename T> |
|
void Index<T>::buildIndex() |
|
{ |
|
if (!built) { |
|
nnIndex->buildIndex(); |
|
built = true; |
|
} |
|
} |
|
|
|
template<typename T> |
|
void Index<T>::knnSearch(const Matrix<T>& queries, Matrix<int>& indices, Matrix<float>& dists, int knn, const SearchParams& searchParams) |
|
{ |
|
if (!built) { |
|
throw FLANNException("You must build the index before searching."); |
|
} |
|
assert(queries.cols==nnIndex->veclen()); |
|
assert(indices.rows>=queries.rows); |
|
assert(dists.rows>=queries.rows); |
|
assert(int(indices.cols)>=knn); |
|
assert(int(dists.cols)>=knn); |
|
|
|
KNNResultSet<T> resultSet(knn); |
|
|
|
for (size_t i = 0; i < queries.rows; i++) { |
|
T* target = queries[i]; |
|
resultSet.init(target, (int)queries.cols); |
|
|
|
nnIndex->findNeighbors(resultSet, target, searchParams); |
|
|
|
int* neighbors = resultSet.getNeighbors(); |
|
float* distances = resultSet.getDistances(); |
|
memcpy(indices[i], neighbors, knn*sizeof(int)); |
|
memcpy(dists[i], distances, knn*sizeof(float)); |
|
} |
|
} |
|
|
|
template<typename T> |
|
int Index<T>::radiusSearch(const Matrix<T>& query, Matrix<int>& indices, Matrix<float>& dists, float radius, const SearchParams& searchParams) |
|
{ |
|
if (!built) { |
|
throw FLANNException("You must build the index before searching."); |
|
} |
|
if (query.rows!=1) { |
|
fprintf(stderr, "I can only search one feature at a time for range search\n"); |
|
return -1; |
|
} |
|
assert(query.cols==nnIndex->veclen()); |
|
|
|
RadiusResultSet<T> resultSet(radius); |
|
resultSet.init(query.data, (int)query.cols); |
|
nnIndex->findNeighbors(resultSet,query.data,searchParams); |
|
|
|
// TODO: optimise here |
|
int* neighbors = resultSet.getNeighbors(); |
|
float* distances = resultSet.getDistances(); |
|
size_t count_nn = std::min(resultSet.size(), indices.cols); |
|
|
|
assert (dists.cols>=count_nn); |
|
|
|
for (size_t i=0;i<count_nn;++i) { |
|
indices[0][i] = neighbors[i]; |
|
dists[0][i] = distances[i]; |
|
} |
|
|
|
return (int)count_nn; |
|
} |
|
|
|
|
|
template<typename T> |
|
void Index<T>::save(std::string filename) |
|
{ |
|
FILE* fout = fopen(filename.c_str(), "wb"); |
|
if (fout==NULL) { |
|
throw FLANNException("Cannot open file"); |
|
} |
|
save_header(fout, *nnIndex); |
|
nnIndex->saveIndex(fout); |
|
fclose(fout); |
|
} |
|
|
|
|
|
template<typename T> |
|
int Index<T>::size() const |
|
{ |
|
return nnIndex->size(); |
|
} |
|
|
|
template<typename T> |
|
int Index<T>::veclen() const |
|
{ |
|
return nnIndex->veclen(); |
|
} |
|
|
|
|
|
template <typename ELEM_TYPE, typename DIST_TYPE> |
|
int hierarchicalClustering(const Matrix<ELEM_TYPE>& features, Matrix<DIST_TYPE>& centers, const KMeansIndexParams& params) |
|
{ |
|
KMeansIndex<ELEM_TYPE, DIST_TYPE> kmeans(features, params); |
|
kmeans.buildIndex(); |
|
|
|
int clusterNum = kmeans.getClusterCenters(centers); |
|
return clusterNum; |
|
} |
|
|
|
} // namespace cvflann |
|
#endif /* _OPENCV_FLANN_BASE_HPP_ */
|
|
|