Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
711 lines
27 KiB
711 lines
27 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_OBJDETECT_HPP__ |
|
#define __OPENCV_OBJDETECT_HPP__ |
|
|
|
#include "opencv2/core/core.hpp" |
|
#include "opencv2/features2d/features2d.hpp" |
|
|
|
#ifdef __cplusplus |
|
extern "C" { |
|
#endif |
|
|
|
/****************************************************************************************\ |
|
* Haar-like Object Detection functions * |
|
\****************************************************************************************/ |
|
|
|
#define CV_HAAR_MAGIC_VAL 0x42500000 |
|
#define CV_TYPE_NAME_HAAR "opencv-haar-classifier" |
|
|
|
#define CV_IS_HAAR_CLASSIFIER( haar ) \ |
|
((haar) != NULL && \ |
|
(((const CvHaarClassifierCascade*)(haar))->flags & CV_MAGIC_MASK)==CV_HAAR_MAGIC_VAL) |
|
|
|
#define CV_HAAR_FEATURE_MAX 3 |
|
|
|
typedef struct CvHaarFeature |
|
{ |
|
int tilted; |
|
struct |
|
{ |
|
CvRect r; |
|
float weight; |
|
} rect[CV_HAAR_FEATURE_MAX]; |
|
} CvHaarFeature; |
|
|
|
typedef struct CvHaarClassifier |
|
{ |
|
int count; |
|
CvHaarFeature* haar_feature; |
|
float* threshold; |
|
int* left; |
|
int* right; |
|
float* alpha; |
|
} CvHaarClassifier; |
|
|
|
typedef struct CvHaarStageClassifier |
|
{ |
|
int count; |
|
float threshold; |
|
CvHaarClassifier* classifier; |
|
|
|
int next; |
|
int child; |
|
int parent; |
|
} CvHaarStageClassifier; |
|
|
|
typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade; |
|
|
|
typedef struct CvHaarClassifierCascade |
|
{ |
|
int flags; |
|
int count; |
|
CvSize orig_window_size; |
|
CvSize real_window_size; |
|
double scale; |
|
CvHaarStageClassifier* stage_classifier; |
|
CvHidHaarClassifierCascade* hid_cascade; |
|
} CvHaarClassifierCascade; |
|
|
|
typedef struct CvAvgComp |
|
{ |
|
CvRect rect; |
|
int neighbors; |
|
} CvAvgComp; |
|
|
|
/* Loads haar classifier cascade from a directory. |
|
It is obsolete: convert your cascade to xml and use cvLoad instead */ |
|
CVAPI(CvHaarClassifierCascade*) cvLoadHaarClassifierCascade( |
|
const char* directory, CvSize orig_window_size); |
|
|
|
CVAPI(void) cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** cascade ); |
|
|
|
#define CV_HAAR_DO_CANNY_PRUNING 1 |
|
#define CV_HAAR_SCALE_IMAGE 2 |
|
#define CV_HAAR_FIND_BIGGEST_OBJECT 4 |
|
#define CV_HAAR_DO_ROUGH_SEARCH 8 |
|
|
|
//CVAPI(CvSeq*) cvHaarDetectObjectsForROC( const CvArr* image, |
|
// CvHaarClassifierCascade* cascade, CvMemStorage* storage, |
|
// CvSeq** rejectLevels, CvSeq** levelWeightds, |
|
// double scale_factor CV_DEFAULT(1.1), |
|
// int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0), |
|
// CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)), |
|
// bool outputRejectLevels = false ); |
|
|
|
|
|
CVAPI(CvSeq*) cvHaarDetectObjects( const CvArr* image, |
|
CvHaarClassifierCascade* cascade, CvMemStorage* storage, |
|
double scale_factor CV_DEFAULT(1.1), |
|
int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0), |
|
CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0))); |
|
|
|
/* sets images for haar classifier cascade */ |
|
CVAPI(void) cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* cascade, |
|
const CvArr* sum, const CvArr* sqsum, |
|
const CvArr* tilted_sum, double scale ); |
|
|
|
/* runs the cascade on the specified window */ |
|
CVAPI(int) cvRunHaarClassifierCascade( const CvHaarClassifierCascade* cascade, |
|
CvPoint pt, int start_stage CV_DEFAULT(0)); |
|
|
|
|
|
/****************************************************************************************\ |
|
* Latent SVM Object Detection functions * |
|
\****************************************************************************************/ |
|
|
|
// DataType: STRUCT position |
|
// Structure describes the position of the filter in the feature pyramid |
|
// l - level in the feature pyramid |
|
// (x, y) - coordinate in level l |
|
typedef struct |
|
{ |
|
unsigned int x; |
|
unsigned int y; |
|
unsigned int l; |
|
} CvLSVMFilterPosition; |
|
|
|
// DataType: STRUCT filterObject |
|
// Description of the filter, which corresponds to the part of the object |
|
// V - ideal (penalty = 0) position of the partial filter |
|
// from the root filter position (V_i in the paper) |
|
// penaltyFunction - vector describes penalty function (d_i in the paper) |
|
// pf[0] * x + pf[1] * y + pf[2] * x^2 + pf[3] * y^2 |
|
// FILTER DESCRIPTION |
|
// Rectangular map (sizeX x sizeY), |
|
// every cell stores feature vector (dimension = p) |
|
// H - matrix of feature vectors |
|
// to set and get feature vectors (i,j) |
|
// used formula H[(j * sizeX + i) * p + k], where |
|
// k - component of feature vector in cell (i, j) |
|
// END OF FILTER DESCRIPTION |
|
// xp - auxillary parameter for internal use |
|
// size of row in feature vectors |
|
// (yp = (int) (p / xp); p = xp * yp) |
|
typedef struct{ |
|
CvLSVMFilterPosition V; |
|
float fineFunction[4]; |
|
unsigned int sizeX; |
|
unsigned int sizeY; |
|
unsigned int p; |
|
unsigned int xp; |
|
float *H; |
|
} CvLSVMFilterObject; |
|
|
|
// data type: STRUCT CvLatentSvmDetector |
|
// structure contains internal representation of trained Latent SVM detector |
|
// num_filters - total number of filters (root plus part) in model |
|
// num_components - number of components in model |
|
// num_part_filters - array containing number of part filters for each component |
|
// filters - root and part filters for all model components |
|
// b - biases for all model components |
|
// score_threshold - confidence level threshold |
|
typedef struct CvLatentSvmDetector |
|
{ |
|
int num_filters; |
|
int num_components; |
|
int* num_part_filters; |
|
CvLSVMFilterObject** filters; |
|
float* b; |
|
float score_threshold; |
|
} |
|
CvLatentSvmDetector; |
|
|
|
// data type: STRUCT CvObjectDetection |
|
// structure contains the bounding box and confidence level for detected object |
|
// rect - bounding box for a detected object |
|
// score - confidence level |
|
typedef struct CvObjectDetection |
|
{ |
|
CvRect rect; |
|
float score; |
|
} CvObjectDetection; |
|
|
|
//////////////// Object Detection using Latent SVM ////////////// |
|
|
|
|
|
/* |
|
// load trained detector from a file |
|
// |
|
// API |
|
// CvLatentSvmDetector* cvLoadLatentSvmDetector(const char* filename); |
|
// INPUT |
|
// filename - path to the file containing the parameters of |
|
- trained Latent SVM detector |
|
// OUTPUT |
|
// trained Latent SVM detector in internal representation |
|
*/ |
|
CVAPI(CvLatentSvmDetector*) cvLoadLatentSvmDetector(const char* filename); |
|
|
|
/* |
|
// release memory allocated for CvLatentSvmDetector structure |
|
// |
|
// API |
|
// void cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector); |
|
// INPUT |
|
// detector - CvLatentSvmDetector structure to be released |
|
// OUTPUT |
|
*/ |
|
CVAPI(void) cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector); |
|
|
|
/* |
|
// find rectangular regions in the given image that are likely |
|
// to contain objects and corresponding confidence levels |
|
// |
|
// API |
|
// CvSeq* cvLatentSvmDetectObjects(const IplImage* image, |
|
// CvLatentSvmDetector* detector, |
|
// CvMemStorage* storage, |
|
// float overlap_threshold = 0.5f, |
|
// int numThreads = -1); |
|
// INPUT |
|
// image - image to detect objects in |
|
// detector - Latent SVM detector in internal representation |
|
// storage - memory storage to store the resultant sequence |
|
// of the object candidate rectangles |
|
// overlap_threshold - threshold for the non-maximum suppression algorithm |
|
= 0.5f [here will be the reference to original paper] |
|
// OUTPUT |
|
// sequence of detected objects (bounding boxes and confidence levels stored in CvObjectDetection structures) |
|
*/ |
|
CVAPI(CvSeq*) cvLatentSvmDetectObjects(IplImage* image, |
|
CvLatentSvmDetector* detector, |
|
CvMemStorage* storage, |
|
float overlap_threshold CV_DEFAULT(0.5f), |
|
int numThreads CV_DEFAULT(-1)); |
|
|
|
#ifdef __cplusplus |
|
} |
|
|
|
CV_EXPORTS CvSeq* cvHaarDetectObjectsForROC( const CvArr* image, |
|
CvHaarClassifierCascade* cascade, CvMemStorage* storage, |
|
std::vector<int>& rejectLevels, std::vector<double>& levelWeightds, |
|
double scale_factor CV_DEFAULT(1.1), |
|
int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0), |
|
CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)), |
|
bool outputRejectLevels = false ); |
|
|
|
namespace cv |
|
{ |
|
|
|
///////////////////////////// Object Detection //////////////////////////// |
|
|
|
CV_EXPORTS_W void groupRectangles(vector<Rect>& rectList, int groupThreshold, double eps=0.2); |
|
CV_EXPORTS_W void groupRectangles(vector<Rect>& rectList, CV_OUT vector<int>& weights, int groupThreshold, double eps=0.2); |
|
CV_EXPORTS void groupRectangles(vector<Rect>& rectList, vector<int>& rejectLevels, |
|
vector<double>& levelWeights, int groupThreshold, double eps=0.2); |
|
CV_EXPORTS void groupRectangles_meanshift(vector<Rect>& rectList, vector<double>& foundWeights, vector<double>& foundScales, |
|
double detectThreshold = 0.0, Size winDetSize = Size(64, 128)); |
|
|
|
|
|
class CV_EXPORTS FeatureEvaluator |
|
{ |
|
public: |
|
enum { HAAR = 0, LBP = 1 }; |
|
virtual ~FeatureEvaluator(); |
|
|
|
virtual bool read(const FileNode& node); |
|
virtual Ptr<FeatureEvaluator> clone() const; |
|
virtual int getFeatureType() const; |
|
|
|
virtual bool setImage(const Mat&, Size origWinSize); |
|
virtual bool setWindow(Point p); |
|
|
|
virtual double calcOrd(int featureIdx) const; |
|
virtual int calcCat(int featureIdx) const; |
|
|
|
static Ptr<FeatureEvaluator> create(int type); |
|
}; |
|
|
|
template<> CV_EXPORTS void Ptr<CvHaarClassifierCascade>::delete_obj(); |
|
|
|
class CV_EXPORTS_W CascadeClassifier |
|
{ |
|
public: |
|
CV_WRAP CascadeClassifier(); |
|
CV_WRAP CascadeClassifier( const string& filename ); |
|
virtual ~CascadeClassifier(); |
|
|
|
CV_WRAP virtual bool empty() const; |
|
CV_WRAP bool load( const string& filename ); |
|
virtual bool read( const FileNode& node ); |
|
CV_WRAP virtual void detectMultiScale( const Mat& image, |
|
CV_OUT vector<Rect>& objects, |
|
double scaleFactor=1.1, |
|
int minNeighbors=3, int flags=0, |
|
Size minSize=Size(), |
|
Size maxSize=Size() ); |
|
|
|
CV_WRAP virtual void detectMultiScale( const Mat& image, |
|
CV_OUT vector<Rect>& objects, |
|
vector<int>& rejectLevels, |
|
vector<double>& levelWeights, |
|
double scaleFactor=1.1, |
|
int minNeighbors=3, int flags=0, |
|
Size minSize=Size(), |
|
Size maxSize=Size(), |
|
bool outputRejectLevels=false ); |
|
|
|
|
|
bool isOldFormatCascade() const; |
|
virtual Size getOriginalWindowSize() const; |
|
int getFeatureType() const; |
|
bool setImage( const Mat& ); |
|
|
|
protected: |
|
//virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize, |
|
// int stripSize, int yStep, double factor, vector<Rect>& candidates ); |
|
|
|
virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize, |
|
int stripSize, int yStep, double factor, vector<Rect>& candidates, |
|
vector<int>& rejectLevels, vector<double>& levelWeights, bool outputRejectLevels=false); |
|
|
|
protected: |
|
enum { BOOST = 0 }; |
|
enum { DO_CANNY_PRUNING = 1, SCALE_IMAGE = 2, |
|
FIND_BIGGEST_OBJECT = 4, DO_ROUGH_SEARCH = 8 }; |
|
|
|
friend struct CascadeClassifierInvoker; |
|
|
|
template<class FEval> |
|
friend int predictOrdered( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight); |
|
|
|
template<class FEval> |
|
friend int predictCategorical( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight); |
|
|
|
template<class FEval> |
|
friend int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight); |
|
|
|
template<class FEval> |
|
friend int predictCategoricalStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight); |
|
|
|
bool setImage( Ptr<FeatureEvaluator>&, const Mat& ); |
|
virtual int runAt( Ptr<FeatureEvaluator>&, Point, double& weight ); |
|
|
|
class Data |
|
{ |
|
public: |
|
struct CV_EXPORTS DTreeNode |
|
{ |
|
int featureIdx; |
|
float threshold; // for ordered features only |
|
int left; |
|
int right; |
|
}; |
|
|
|
struct CV_EXPORTS DTree |
|
{ |
|
int nodeCount; |
|
}; |
|
|
|
struct CV_EXPORTS Stage |
|
{ |
|
int first; |
|
int ntrees; |
|
float threshold; |
|
}; |
|
|
|
bool read(const FileNode &node); |
|
|
|
bool isStumpBased; |
|
|
|
int stageType; |
|
int featureType; |
|
int ncategories; |
|
Size origWinSize; |
|
|
|
vector<Stage> stages; |
|
vector<DTree> classifiers; |
|
vector<DTreeNode> nodes; |
|
vector<float> leaves; |
|
vector<int> subsets; |
|
}; |
|
|
|
Data data; |
|
Ptr<FeatureEvaluator> featureEvaluator; |
|
Ptr<CvHaarClassifierCascade> oldCascade; |
|
}; |
|
|
|
void CV_EXPORTS_W groupRectangles( vector<Rect>& rectList, int groupThreshold, double eps, vector<int>* weights, vector<double>* levelWeights ); |
|
|
|
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector ////////////// |
|
|
|
struct CV_EXPORTS_W HOGDescriptor |
|
{ |
|
public: |
|
enum { L2Hys=0 }; |
|
enum { DEFAULT_NLEVELS=64 }; |
|
|
|
CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8), |
|
cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1), |
|
histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true), |
|
nlevels(HOGDescriptor::DEFAULT_NLEVELS) |
|
{} |
|
|
|
CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, |
|
Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1, |
|
int _histogramNormType=HOGDescriptor::L2Hys, |
|
double _L2HysThreshold=0.2, bool _gammaCorrection=false, |
|
int _nlevels=HOGDescriptor::DEFAULT_NLEVELS) |
|
: winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize), |
|
nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma), |
|
histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold), |
|
gammaCorrection(_gammaCorrection), nlevels(_nlevels) |
|
{} |
|
|
|
CV_WRAP HOGDescriptor(const String& filename) |
|
{ |
|
load(filename); |
|
} |
|
|
|
HOGDescriptor(const HOGDescriptor& d) |
|
{ |
|
d.copyTo(*this); |
|
} |
|
|
|
virtual ~HOGDescriptor() {} |
|
|
|
CV_WRAP size_t getDescriptorSize() const; |
|
CV_WRAP bool checkDetectorSize() const; |
|
CV_WRAP double getWinSigma() const; |
|
|
|
CV_WRAP virtual void setSVMDetector(const vector<float>& _svmdetector); |
|
|
|
virtual bool read(FileNode& fn); |
|
virtual void write(FileStorage& fs, const String& objname) const; |
|
|
|
CV_WRAP virtual bool load(const String& filename, const String& objname=String()); |
|
CV_WRAP virtual void save(const String& filename, const String& objname=String()) const; |
|
virtual void copyTo(HOGDescriptor& c) const; |
|
|
|
CV_WRAP virtual void compute(const Mat& img, |
|
CV_OUT vector<float>& descriptors, |
|
Size winStride=Size(), Size padding=Size(), |
|
const vector<Point>& locations=vector<Point>()) const; |
|
//with found weights output |
|
CV_WRAP virtual void detect(const Mat& img, CV_OUT vector<Point>& foundLocations, |
|
vector<double>& weights, |
|
double hitThreshold=0, Size winStride=Size(), |
|
Size padding=Size(), |
|
const vector<Point>& searchLocations=vector<Point>()) const; |
|
//without found weights output |
|
CV_WRAP virtual void detect(const Mat& img, CV_OUT vector<Point>& foundLocations, |
|
double hitThreshold=0, Size winStride=Size(), |
|
Size padding=Size(), |
|
const vector<Point>& searchLocations=vector<Point>()) const; |
|
//with result weights output |
|
CV_WRAP virtual void detectMultiScale(const Mat& img, CV_OUT vector<Rect>& foundLocations, |
|
vector<double>& foundWeights, double hitThreshold=0, |
|
Size winStride=Size(), Size padding=Size(), double scale=1.05, |
|
double finalThreshold=2.0,bool useMeanshiftGrouping = false) const; |
|
//without found weights output |
|
CV_WRAP virtual void detectMultiScale(const Mat& img, CV_OUT vector<Rect>& foundLocations, |
|
double hitThreshold=0, Size winStride=Size(), |
|
Size padding=Size(), double scale=1.05, |
|
double finalThreshold=2.0, bool useMeanshiftGrouping = false) const; |
|
|
|
CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs, |
|
Size paddingTL=Size(), Size paddingBR=Size()) const; |
|
|
|
static vector<float> getDefaultPeopleDetector(); |
|
static vector<float> getDaimlerPeopleDetector(); |
|
|
|
CV_PROP Size winSize; |
|
CV_PROP Size blockSize; |
|
CV_PROP Size blockStride; |
|
CV_PROP Size cellSize; |
|
CV_PROP int nbins; |
|
CV_PROP int derivAperture; |
|
CV_PROP double winSigma; |
|
CV_PROP int histogramNormType; |
|
CV_PROP double L2HysThreshold; |
|
CV_PROP bool gammaCorrection; |
|
CV_PROP vector<float> svmDetector; |
|
CV_PROP int nlevels; |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Planar Object Detection * |
|
\****************************************************************************************/ |
|
|
|
class CV_EXPORTS PlanarObjectDetector |
|
{ |
|
public: |
|
PlanarObjectDetector(); |
|
PlanarObjectDetector(const FileNode& node); |
|
PlanarObjectDetector(const vector<Mat>& pyr, int _npoints=300, |
|
int _patchSize=FernClassifier::PATCH_SIZE, |
|
int _nstructs=FernClassifier::DEFAULT_STRUCTS, |
|
int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE, |
|
int _nviews=FernClassifier::DEFAULT_VIEWS, |
|
const LDetector& detector=LDetector(), |
|
const PatchGenerator& patchGenerator=PatchGenerator()); |
|
virtual ~PlanarObjectDetector(); |
|
virtual void train(const vector<Mat>& pyr, int _npoints=300, |
|
int _patchSize=FernClassifier::PATCH_SIZE, |
|
int _nstructs=FernClassifier::DEFAULT_STRUCTS, |
|
int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE, |
|
int _nviews=FernClassifier::DEFAULT_VIEWS, |
|
const LDetector& detector=LDetector(), |
|
const PatchGenerator& patchGenerator=PatchGenerator()); |
|
virtual void train(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints, |
|
int _patchSize=FernClassifier::PATCH_SIZE, |
|
int _nstructs=FernClassifier::DEFAULT_STRUCTS, |
|
int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE, |
|
int _nviews=FernClassifier::DEFAULT_VIEWS, |
|
const LDetector& detector=LDetector(), |
|
const PatchGenerator& patchGenerator=PatchGenerator()); |
|
Rect getModelROI() const; |
|
vector<KeyPoint> getModelPoints() const; |
|
const LDetector& getDetector() const; |
|
const FernClassifier& getClassifier() const; |
|
void setVerbose(bool verbose); |
|
|
|
void read(const FileNode& node); |
|
void write(FileStorage& fs, const String& name=String()) const; |
|
bool operator()(const Mat& image, CV_OUT Mat& H, CV_OUT vector<Point2f>& corners) const; |
|
bool operator()(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints, |
|
CV_OUT Mat& H, CV_OUT vector<Point2f>& corners, |
|
CV_OUT vector<int>* pairs=0) const; |
|
|
|
protected: |
|
bool verbose; |
|
Rect modelROI; |
|
vector<KeyPoint> modelPoints; |
|
LDetector ldetector; |
|
FernClassifier fernClassifier; |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Dominant Orientation Templates * |
|
\****************************************************************************************/ |
|
|
|
class CV_EXPORTS DOTDetector |
|
{ |
|
public: |
|
struct CV_EXPORTS TrainParams |
|
{ |
|
enum { BIN_COUNT = 7 }; |
|
static double BIN_RANGE() { return 180.0 / BIN_COUNT; } |
|
|
|
TrainParams(); |
|
TrainParams( const Size& winSize, int regionSize=7, int minMagnitude=60, |
|
int maxStrongestCount=7, int maxNonzeroBits=6, |
|
float minRatio=0.85f ); |
|
|
|
void read( FileNode& fn ); |
|
void write( FileStorage& fs ) const; |
|
|
|
void isConsistent() const; |
|
|
|
Size winSize; |
|
int regionSize; |
|
|
|
int minMagnitude; |
|
int maxStrongestCount; |
|
int maxNonzeroBits; |
|
|
|
float minRatio; |
|
}; |
|
|
|
struct CV_EXPORTS DetectParams |
|
{ |
|
DetectParams(); |
|
DetectParams( float minRatio, int minRegionSize, int maxRegionSize, int regionSizeStep, |
|
bool isGroup, int groupThreshold=3, double groupEps=0.2f ); |
|
|
|
void isConsistent( float minTrainRatio=1.f ) const; |
|
|
|
float minRatio; |
|
|
|
int minRegionSize; |
|
int maxRegionSize; |
|
int regionSizeStep; |
|
|
|
bool isGroup; |
|
int groupThreshold; |
|
double groupEps; |
|
}; |
|
|
|
struct CV_EXPORTS DOTTemplate |
|
{ |
|
struct CV_EXPORTS TrainData |
|
{ |
|
TrainData(); |
|
TrainData( const Mat& maskedImage, const cv::Mat& strongestGradientsMask ); |
|
|
|
cv::Mat maskedImage; |
|
cv::Mat strongestGradientsMask; |
|
}; |
|
|
|
DOTTemplate(); |
|
DOTTemplate( const cv::Mat& quantizedImage, int objectClassID, |
|
const cv::Mat& maskedImage=cv::Mat(), const cv::Mat& strongestGradientsMask=cv::Mat() ); |
|
|
|
void addObjectClassID( int objectClassID, const cv::Mat& maskedImage=cv::Mat(), const cv::Mat& strongestGradientsMask=cv::Mat() ); |
|
const TrainData* getTrainData( int objectClassID ) const; |
|
|
|
static float computeTexturelessRatio( const cv::Mat& quantizedImage ); |
|
|
|
void read( FileNode& fn ); |
|
void write( FileStorage& fs ) const; |
|
|
|
cv::Mat quantizedImage; |
|
float texturelessRatio; |
|
std::vector<int> objectClassIDs; |
|
std::vector<TrainData> trainData; |
|
}; |
|
|
|
DOTDetector(); |
|
DOTDetector( const std::string& filename ); // load from xml-file |
|
|
|
virtual ~DOTDetector(); |
|
void clear(); |
|
|
|
void read( FileNode& fn ); |
|
void write( FileStorage& fs ) const; |
|
|
|
void load( const std::string& filename ); |
|
void save( const std::string& filename ) const; |
|
|
|
void train( const string& baseDirName, const TrainParams& trainParams=TrainParams(), bool isAddImageAndGradientMask=false ); |
|
void detectMultiScale( const Mat& image, vector<vector<Rect> >& rects, const DetectParams& detectParams=DetectParams(), |
|
vector<vector<float> >* ratios=0, vector<vector<int> >* dotTemplateIndices=0 ) const; |
|
|
|
const vector<DOTTemplate>& getDOTTemplates() const; |
|
const vector<string>& getObjectClassNames() const; |
|
|
|
static void groupRectanglesList( std::vector<std::vector<cv::Rect> >& rectList, int groupThreshold, double eps ); |
|
|
|
protected: |
|
void detectQuantized( const Mat& queryQuantizedImage, float minRatio, |
|
vector<vector<Rect> >& rects, |
|
vector<vector<float> >& ratios, |
|
vector<vector<int> >& dotTemplateIndices ) const; |
|
|
|
TrainParams trainParams; |
|
|
|
std::vector<std::string> objectClassNames; |
|
std::vector<DOTTemplate> dotTemplates; |
|
}; |
|
|
|
} |
|
|
|
/****************************************************************************************\ |
|
* Datamatrix * |
|
\****************************************************************************************/ |
|
|
|
typedef unsigned char uint8; |
|
|
|
class CV_EXPORTS DataMatrixCode { |
|
public: |
|
char msg[4]; |
|
CvMat *original; |
|
CvMat *corners; |
|
}; |
|
#include <deque> |
|
CV_EXPORTS std::deque<DataMatrixCode> cvFindDataMatrix(CvMat *im); |
|
|
|
#endif |
|
|
|
#endif
|
|
|