Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1387 lines
43 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
using namespace cv;
using namespace std;
class CV_ImgWarpBaseTest : public cvtest::ArrayTest
{
public:
CV_ImgWarpBaseTest( bool warp_matrix );
protected:
int read_params( CvFileStorage* fs );
int prepare_test_case( int test_case_idx );
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high );
void fill_array( int test_case_idx, int i, int j, Mat& arr );
int interpolation;
int max_interpolation;
double spatial_scale_zoom, spatial_scale_decimate;
};
CV_ImgWarpBaseTest::CV_ImgWarpBaseTest( bool warp_matrix )
{
test_array[INPUT].push_back(NULL);
if( warp_matrix )
test_array[INPUT].push_back(NULL);
test_array[INPUT_OUTPUT].push_back(NULL);
test_array[REF_INPUT_OUTPUT].push_back(NULL);
max_interpolation = 5;
interpolation = 0;
element_wise_relative_error = false;
spatial_scale_zoom = 0.01;
spatial_scale_decimate = 0.005;
}
int CV_ImgWarpBaseTest::read_params( CvFileStorage* fs )
{
int code = cvtest::ArrayTest::read_params( fs );
return code;
}
void CV_ImgWarpBaseTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high )
{
cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high );
if( CV_MAT_DEPTH(type) == CV_32F )
{
low = Scalar::all(-10.);
high = Scalar::all(10);
}
}
void CV_ImgWarpBaseTest::get_test_array_types_and_sizes( int test_case_idx,
vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
RNG& rng = ts->get_rng();
int depth = cvtest::randInt(rng) % 3;
int cn = cvtest::randInt(rng) % 3 + 1;
cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
depth = depth == 0 ? CV_8U : depth == 1 ? CV_16U : CV_32F;
cn += cn == 2;
types[INPUT][0] = types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = CV_MAKETYPE(depth, cn);
if( test_array[INPUT].size() > 1 )
types[INPUT][1] = cvtest::randInt(rng) & 1 ? CV_32FC1 : CV_64FC1;
interpolation = cvtest::randInt(rng) % max_interpolation;
}
void CV_ImgWarpBaseTest::fill_array( int test_case_idx, int i, int j, Mat& arr )
{
if( i != INPUT || j != 0 )
cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr );
}
int CV_ImgWarpBaseTest::prepare_test_case( int test_case_idx )
{
int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
Mat& img = test_mat[INPUT][0];
int i, j, cols = img.cols;
int type = img.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
double scale = depth == CV_16U ? 1000. : 255.*0.5;
double space_scale = spatial_scale_decimate;
vector<float> buffer(img.cols*cn);
if( code <= 0 )
return code;
if( test_mat[INPUT_OUTPUT][0].cols >= img.cols &&
test_mat[INPUT_OUTPUT][0].rows >= img.rows )
space_scale = spatial_scale_zoom;
for( i = 0; i < img.rows; i++ )
{
uchar* ptr = img.ptr(i);
switch( cn )
{
case 1:
for( j = 0; j < cols; j++ )
buffer[j] = (float)((sin((i+1)*space_scale)*sin((j+1)*space_scale)+1.)*scale);
break;
case 2:
for( j = 0; j < cols; j++ )
{
buffer[j*2] = (float)((sin((i+1)*space_scale)+1.)*scale);
buffer[j*2+1] = (float)((sin((i+j)*space_scale)+1.)*scale);
}
break;
case 3:
for( j = 0; j < cols; j++ )
{
buffer[j*3] = (float)((sin((i+1)*space_scale)+1.)*scale);
buffer[j*3+1] = (float)((sin(j*space_scale)+1.)*scale);
buffer[j*3+2] = (float)((sin((i+j)*space_scale)+1.)*scale);
}
break;
case 4:
for( j = 0; j < cols; j++ )
{
buffer[j*4] = (float)((sin((i+1)*space_scale)+1.)*scale);
buffer[j*4+1] = (float)((sin(j*space_scale)+1.)*scale);
buffer[j*4+2] = (float)((sin((i+j)*space_scale)+1.)*scale);
buffer[j*4+3] = (float)((sin((i-j)*space_scale)+1.)*scale);
}
break;
default:
assert(0);
}
/*switch( depth )
{
case CV_8U:
for( j = 0; j < cols*cn; j++ )
ptr[j] = (uchar)cvRound(buffer[j]);
break;
case CV_16U:
for( j = 0; j < cols*cn; j++ )
((ushort*)ptr)[j] = (ushort)cvRound(buffer[j]);
break;
case CV_32F:
for( j = 0; j < cols*cn; j++ )
((float*)ptr)[j] = (float)buffer[j];
break;
default:
assert(0);
}*/
cv::Mat src(1, cols*cn, CV_32F, &buffer[0]);
cv::Mat dst(1, cols*cn, depth, ptr);
src.convertTo(dst, dst.type());
}
return code;
}
/////////////////////////
class CV_ResizeTest : public CV_ImgWarpBaseTest
{
public:
CV_ResizeTest();
protected:
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
void run_func();
void prepare_to_validation( int /*test_case_idx*/ );
double get_success_error_level( int test_case_idx, int i, int j );
};
CV_ResizeTest::CV_ResizeTest() : CV_ImgWarpBaseTest( false )
{
}
void CV_ResizeTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
RNG& rng = ts->get_rng();
CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
CvSize sz;
sz.width = (cvtest::randInt(rng) % sizes[INPUT][0].width) + 1;
sz.height = (cvtest::randInt(rng) % sizes[INPUT][0].height) + 1;
if( cvtest::randInt(rng) & 1 )
{
int xfactor = cvtest::randInt(rng) % 10 + 1;
int yfactor = cvtest::randInt(rng) % 10 + 1;
if( cvtest::randInt(rng) & 1 )
yfactor = xfactor;
sz.width = sizes[INPUT][0].width / xfactor;
sz.width = MAX(sz.width,1);
sz.height = sizes[INPUT][0].height / yfactor;
sz.height = MAX(sz.height,1);
sizes[INPUT][0].width = sz.width * xfactor;
sizes[INPUT][0].height = sz.height * yfactor;
}
if( cvtest::randInt(rng) & 1 )
sizes[INPUT_OUTPUT][0] = sizes[REF_INPUT_OUTPUT][0] = sz;
else
{
sizes[INPUT_OUTPUT][0] = sizes[REF_INPUT_OUTPUT][0] = sizes[INPUT][0];
sizes[INPUT][0] = sz;
}
if( interpolation == 4 &&
(MIN(sizes[INPUT][0].width,sizes[INPUT_OUTPUT][0].width) < 4 ||
MIN(sizes[INPUT][0].height,sizes[INPUT_OUTPUT][0].height) < 4))
interpolation = 2;
}
void CV_ResizeTest::run_func()
{
cvResize( test_array[INPUT][0], test_array[INPUT_OUTPUT][0], interpolation );
}
double CV_ResizeTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
{
int depth = test_mat[INPUT][0].depth();
return depth == CV_8U ? 16 : depth == CV_16U ? 1024 : 1e-1;
}
void CV_ResizeTest::prepare_to_validation( int /*test_case_idx*/ )
{
CvMat _src = test_mat[INPUT][0], _dst = test_mat[REF_INPUT_OUTPUT][0];
CvMat *src = &_src, *dst = &_dst;
int i, j, k;
CvMat* x_idx = cvCreateMat( 1, dst->cols, CV_32SC1 );
CvMat* y_idx = cvCreateMat( 1, dst->rows, CV_32SC1 );
int* x_tab = x_idx->data.i;
int elem_size = CV_ELEM_SIZE(src->type);
int drows = dst->rows, dcols = dst->cols;
if( interpolation == CV_INTER_NN )
{
for( j = 0; j < dcols; j++ )
{
int t = (j*src->cols*2 + MIN(src->cols,dcols) - 1)/(dcols*2);
t -= t >= src->cols;
x_idx->data.i[j] = t*elem_size;
}
for( j = 0; j < drows; j++ )
{
int t = (j*src->rows*2 + MIN(src->rows,drows) - 1)/(drows*2);
t -= t >= src->rows;
y_idx->data.i[j] = t;
}
}
else
{
double scale_x = (double)src->cols/dcols;
double scale_y = (double)src->rows/drows;
for( j = 0; j < dcols; j++ )
{
double f = ((j+0.5)*scale_x - 0.5);
i = cvRound(f);
x_idx->data.i[j] = (i < 0 ? 0 : i >= src->cols ? src->cols - 1 : i)*elem_size;
}
for( j = 0; j < drows; j++ )
{
double f = ((j+0.5)*scale_y - 0.5);
i = cvRound(f);
y_idx->data.i[j] = i < 0 ? 0 : i >= src->rows ? src->rows - 1 : i;
}
}
for( i = 0; i < drows; i++ )
{
uchar* dptr = dst->data.ptr + dst->step*i;
const uchar* sptr0 = src->data.ptr + src->step*y_idx->data.i[i];
for( j = 0; j < dcols; j++, dptr += elem_size )
{
const uchar* sptr = sptr0 + x_tab[j];
for( k = 0; k < elem_size; k++ )
dptr[k] = sptr[k];
}
}
cvReleaseMat( &x_idx );
cvReleaseMat( &y_idx );
}
/////////////////////////
static void test_remap( const Mat& src, Mat& dst, const Mat& mapx, const Mat& mapy,
Mat* mask=0, int interpolation=CV_INTER_LINEAR )
{
int x, y, k;
int drows = dst.rows, dcols = dst.cols;
int srows = src.rows, scols = src.cols;
uchar* sptr0 = src.data;
int depth = src.depth(), cn = src.channels();
int elem_size = (int)src.elemSize();
int step = src.step / CV_ELEM_SIZE(depth);
int delta;
if( interpolation != CV_INTER_CUBIC )
{
delta = 0;
scols -= 1; srows -= 1;
}
else
{
delta = 1;
scols = MAX(scols - 3, 0);
srows = MAX(srows - 3, 0);
}
int scols1 = MAX(scols - 2, 0);
int srows1 = MAX(srows - 2, 0);
if( mask )
*mask = Scalar::all(0);
for( y = 0; y < drows; y++ )
{
uchar* dptr = dst.ptr(y);
const float* mx = mapx.ptr<float>(y);
const float* my = mapy.ptr<float>(y);
uchar* m = mask ? mask->ptr(y) : 0;
for( x = 0; x < dcols; x++, dptr += elem_size )
{
float xs = mx[x];
float ys = my[x];
int ixs = cvFloor(xs);
int iys = cvFloor(ys);
if( (unsigned)(ixs - delta - 1) >= (unsigned)scols1 ||
(unsigned)(iys - delta - 1) >= (unsigned)srows1 )
{
if( m )
m[x] = 1;
if( (unsigned)(ixs - delta) >= (unsigned)scols ||
(unsigned)(iys - delta) >= (unsigned)srows )
continue;
}
xs -= ixs;
ys -= iys;
switch( depth )
{
case CV_8U:
{
const uchar* sptr = sptr0 + iys*step + ixs*cn;
for( k = 0; k < cn; k++ )
{
float v00 = sptr[k];
float v01 = sptr[cn + k];
float v10 = sptr[step + k];
float v11 = sptr[step + cn + k];
v00 = v00 + xs*(v01 - v00);
v10 = v10 + xs*(v11 - v10);
v00 = v00 + ys*(v10 - v00);
dptr[k] = (uchar)cvRound(v00);
}
}
break;
case CV_16U:
{
const ushort* sptr = (const ushort*)sptr0 + iys*step + ixs*cn;
for( k = 0; k < cn; k++ )
{
float v00 = sptr[k];
float v01 = sptr[cn + k];
float v10 = sptr[step + k];
float v11 = sptr[step + cn + k];
v00 = v00 + xs*(v01 - v00);
v10 = v10 + xs*(v11 - v10);
v00 = v00 + ys*(v10 - v00);
((ushort*)dptr)[k] = (ushort)cvRound(v00);
}
}
break;
case CV_32F:
{
const float* sptr = (const float*)sptr0 + iys*step + ixs*cn;
for( k = 0; k < cn; k++ )
{
float v00 = sptr[k];
float v01 = sptr[cn + k];
float v10 = sptr[step + k];
float v11 = sptr[step + cn + k];
v00 = v00 + xs*(v01 - v00);
v10 = v10 + xs*(v11 - v10);
v00 = v00 + ys*(v10 - v00);
((float*)dptr)[k] = (float)v00;
}
}
break;
default:
assert(0);
}
}
}
}
/////////////////////////
class CV_WarpAffineTest : public CV_ImgWarpBaseTest
{
public:
CV_WarpAffineTest();
protected:
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
void run_func();
int prepare_test_case( int test_case_idx );
void prepare_to_validation( int /*test_case_idx*/ );
double get_success_error_level( int test_case_idx, int i, int j );
};
CV_WarpAffineTest::CV_WarpAffineTest() : CV_ImgWarpBaseTest( true )
{
//spatial_scale_zoom = spatial_scale_decimate;
spatial_scale_decimate = spatial_scale_zoom;
}
void CV_WarpAffineTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
CvSize sz = sizes[INPUT][0];
// run for the second time to get output of a different size
CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
sizes[INPUT][0] = sz;
sizes[INPUT][1] = cvSize( 3, 2 );
}
void CV_WarpAffineTest::run_func()
{
CvMat mtx = test_mat[INPUT][1];
cvWarpAffine( test_array[INPUT][0], test_array[INPUT_OUTPUT][0], &mtx, interpolation );
}
double CV_WarpAffineTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
{
int depth = test_mat[INPUT][0].depth();
return depth == CV_8U ? 16 : depth == CV_16U ? 1024 : 5e-2;
}
int CV_WarpAffineTest::prepare_test_case( int test_case_idx )
{
RNG& rng = ts->get_rng();
int code = CV_ImgWarpBaseTest::prepare_test_case( test_case_idx );
const Mat& src = test_mat[INPUT][0];
const Mat& dst = test_mat[INPUT_OUTPUT][0];
Mat& mat = test_mat[INPUT][1];
CvPoint2D32f center;
double scale, angle;
if( code <= 0 )
return code;
double buf[6];
Mat tmp( 2, 3, mat.type(), buf );
center.x = (float)((cvtest::randReal(rng)*1.2 - 0.1)*src.cols);
center.y = (float)((cvtest::randReal(rng)*1.2 - 0.1)*src.rows);
angle = cvtest::randReal(rng)*360;
scale = ((double)dst.rows/src.rows + (double)dst.cols/src.cols)*0.5;
getRotationMatrix2D(center, angle, scale).convertTo(mat, mat.depth());
rng.fill( tmp, CV_RAND_NORMAL, cvScalarAll(1.), cvScalarAll(0.01) );
cv::max(tmp, 0.9, tmp);
cv::min(tmp, 1.1, tmp);
cv::multiply(tmp, mat, mat, 1.);
return code;
}
void CV_WarpAffineTest::prepare_to_validation( int /*test_case_idx*/ )
{
const Mat& src = test_mat[INPUT][0];
Mat& dst = test_mat[REF_INPUT_OUTPUT][0];
Mat& dst0 = test_mat[INPUT_OUTPUT][0];
Mat mapx(dst.size(), CV_32F), mapy(dst.size(), CV_32F);
double m[6];
Mat srcAb, dstAb( 2, 3, CV_64FC1, m );
//cvInvert( &tM, &M, CV_LU );
// [R|t] -> [R^-1 | -(R^-1)*t]
test_mat[INPUT][1].convertTo( srcAb, CV_64F );
Mat A = srcAb.colRange(0, 2);
Mat b = srcAb.col(2);
Mat invA = dstAb.colRange(0, 2);
Mat invAb = dstAb.col(2);
cv::invert(A, invA, CV_SVD);
cv::gemm(invA, b, -1, Mat(), 0, invAb);
for( int y = 0; y < dst.rows; y++ )
for( int x = 0; x < dst.cols; x++ )
{
mapx.at<float>(y, x) = (float)(x*m[0] + y*m[1] + m[2]);
mapy.at<float>(y, x) = (float)(x*m[3] + y*m[4] + m[5]);
}
Mat mask( dst.size(), CV_8U );
test_remap( src, dst, mapx, mapy, &mask );
dst.setTo(Scalar::all(0), mask);
dst0.setTo(Scalar::all(0), mask);
}
/////////////////////////
class CV_WarpPerspectiveTest : public CV_ImgWarpBaseTest
{
public:
CV_WarpPerspectiveTest();
protected:
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
void run_func();
int prepare_test_case( int test_case_idx );
void prepare_to_validation( int /*test_case_idx*/ );
double get_success_error_level( int test_case_idx, int i, int j );
};
CV_WarpPerspectiveTest::CV_WarpPerspectiveTest() : CV_ImgWarpBaseTest( true )
{
//spatial_scale_zoom = spatial_scale_decimate;
spatial_scale_decimate = spatial_scale_zoom;
}
void CV_WarpPerspectiveTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
CvSize sz = sizes[INPUT][0];
// run for the second time to get output of a different size
CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
sizes[INPUT][0] = sz;
sizes[INPUT][1] = cvSize( 3, 3 );
}
void CV_WarpPerspectiveTest::run_func()
{
CvMat mtx = test_mat[INPUT][1];
cvWarpPerspective( test_array[INPUT][0], test_array[INPUT_OUTPUT][0], &mtx, interpolation );
}
double CV_WarpPerspectiveTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
{
int depth = test_mat[INPUT][0].depth();
return depth == CV_8U ? 16 : depth == CV_16U ? 1024 : 5e-2;
}
int CV_WarpPerspectiveTest::prepare_test_case( int test_case_idx )
{
RNG& rng = ts->get_rng();
int code = CV_ImgWarpBaseTest::prepare_test_case( test_case_idx );
const CvMat& src = test_mat[INPUT][0];
const CvMat& dst = test_mat[INPUT_OUTPUT][0];
Mat& mat = test_mat[INPUT][1];
Point2f s[4], d[4];
int i;
if( code <= 0 )
return code;
s[0] = Point2f(0,0);
d[0] = Point2f(0,0);
s[1] = Point2f(src.cols-1,0);
d[1] = Point2f(dst.cols-1,0);
s[2] = Point2f(src.cols-1,src.rows-1);
d[2] = Point2f(dst.cols-1,dst.rows-1);
s[3] = Point2f(0,src.rows-1);
d[3] = Point2f(0,dst.rows-1);
float buf[16];
Mat tmp( 1, 16, CV_32FC1, buf );
rng.fill( tmp, CV_RAND_NORMAL, cvScalarAll(0.), cvScalarAll(0.1) );
for( i = 0; i < 4; i++ )
{
s[i].x += buf[i*4]*src.cols/2;
s[i].y += buf[i*4+1]*src.rows/2;
d[i].x += buf[i*4+2]*dst.cols/2;
d[i].y += buf[i*4+3]*dst.rows/2;
}
cv::getPerspectiveTransform( s, d ).convertTo( mat, mat.depth() );
return code;
}
void CV_WarpPerspectiveTest::prepare_to_validation( int /*test_case_idx*/ )
{
Mat& src = test_mat[INPUT][0];
Mat& dst = test_mat[REF_INPUT_OUTPUT][0];
Mat& dst0 = test_mat[INPUT_OUTPUT][0];
Mat mapx(dst.size(), CV_32F), mapy(dst.size(), CV_32F);
double m[9];
Mat srcM, dstM(3, 3, CV_64F, m);
//cvInvert( &tM, &M, CV_LU );
// [R|t] -> [R^-1 | -(R^-1)*t]
test_mat[INPUT][1].convertTo( srcM, CV_64F );
cv::invert(srcM, dstM, CV_SVD);
for( int y = 0; y < dst.rows; y++ )
{
for( int x = 0; x < dst.cols; x++ )
{
double xs = x*m[0] + y*m[1] + m[2];
double ys = x*m[3] + y*m[4] + m[5];
double ds = x*m[6] + y*m[7] + m[8];
ds = ds ? 1./ds : 0;
xs *= ds;
ys *= ds;
mapx.at<float>(y, x) = (float)xs;
mapy.at<float>(y, x) = (float)ys;
}
}
Mat mask( dst.size(), CV_8U );
test_remap( src, dst, mapx, mapy, &mask );
dst.setTo(Scalar::all(0), mask);
dst0.setTo(Scalar::all(0), mask);
}
/////////////////////////
class CV_RemapTest : public CV_ImgWarpBaseTest
{
public:
CV_RemapTest();
protected:
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
void run_func();
int prepare_test_case( int test_case_idx );
void prepare_to_validation( int /*test_case_idx*/ );
double get_success_error_level( int test_case_idx, int i, int j );
void fill_array( int test_case_idx, int i, int j, Mat& arr );
};
CV_RemapTest::CV_RemapTest() : CV_ImgWarpBaseTest( false )
{
//spatial_scale_zoom = spatial_scale_decimate;
test_array[INPUT].push_back(NULL);
test_array[INPUT].push_back(NULL);
spatial_scale_decimate = spatial_scale_zoom;
}
void CV_RemapTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
types[INPUT][1] = types[INPUT][2] = CV_32FC1;
interpolation = CV_INTER_LINEAR;
}
void CV_RemapTest::fill_array( int test_case_idx, int i, int j, Mat& arr )
{
if( i != INPUT )
CV_ImgWarpBaseTest::fill_array( test_case_idx, i, j, arr );
}
void CV_RemapTest::run_func()
{
cvRemap( test_array[INPUT][0], test_array[INPUT_OUTPUT][0],
test_array[INPUT][1], test_array[INPUT][2], interpolation );
}
double CV_RemapTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
{
int depth = test_mat[INPUT][0].depth();
return depth == CV_8U ? 16 : depth == CV_16U ? 1024 : 5e-2;
}
int CV_RemapTest::prepare_test_case( int test_case_idx )
{
RNG& rng = ts->get_rng();
int code = CV_ImgWarpBaseTest::prepare_test_case( test_case_idx );
const Mat& src = test_mat[INPUT][0];
double a[9] = {0,0,0,0,0,0,0,0,1}, k[4];
Mat _a( 3, 3, CV_64F, a );
Mat _k( 4, 1, CV_64F, k );
double sz = MAX(src.rows, src.cols);
if( code <= 0 )
return code;
double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7;
a[2] = (src.cols - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
a[5] = (src.rows - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
a[0] = sz/(0.9 - cvtest::randReal(rng)*0.6);
a[4] = aspect_ratio*a[0];
k[0] = cvtest::randReal(rng)*0.06 - 0.03;
k[1] = cvtest::randReal(rng)*0.06 - 0.03;
if( k[0]*k[1] > 0 )
k[1] = -k[1];
k[2] = cvtest::randReal(rng)*0.004 - 0.002;
k[3] = cvtest::randReal(rng)*0.004 - 0.002;
cvtest::initUndistortMap( _a, _k, test_mat[INPUT][1].size(), test_mat[INPUT][1], test_mat[INPUT][2] );
return code;
}
void CV_RemapTest::prepare_to_validation( int /*test_case_idx*/ )
{
Mat& dst = test_mat[REF_INPUT_OUTPUT][0];
Mat& dst0 = test_mat[INPUT_OUTPUT][0];
Mat mask( dst.size(), CV_8U );
test_remap(test_mat[INPUT][0], dst, test_mat[INPUT][1],
test_mat[INPUT][2], &mask, interpolation );
dst.setTo(Scalar::all(0), mask);
dst0.setTo(Scalar::all(0), mask);
}
////////////////////////////// undistort /////////////////////////////////
class CV_UndistortTest : public CV_ImgWarpBaseTest
{
public:
CV_UndistortTest();
protected:
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
void run_func();
int prepare_test_case( int test_case_idx );
void prepare_to_validation( int /*test_case_idx*/ );
double get_success_error_level( int test_case_idx, int i, int j );
void fill_array( int test_case_idx, int i, int j, Mat& arr );
private:
bool useCPlus;
cv::Mat input0;
cv::Mat input1;
cv::Mat input2;
cv::Mat input_new_cam;
cv::Mat input_output;
bool zero_new_cam;
bool zero_distortion;
};
CV_UndistortTest::CV_UndistortTest() : CV_ImgWarpBaseTest( false )
{
//spatial_scale_zoom = spatial_scale_decimate;
test_array[INPUT].push_back(NULL);
test_array[INPUT].push_back(NULL);
test_array[INPUT].push_back(NULL);
spatial_scale_decimate = spatial_scale_zoom;
}
void CV_UndistortTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
RNG& rng = ts->get_rng();
CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
int type = types[INPUT][0];
type = CV_MAKETYPE( CV_8U, CV_MAT_CN(type) );
types[INPUT][0] = types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = type;
types[INPUT][1] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F;
types[INPUT][2] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F;
sizes[INPUT][1] = cvSize(3,3);
sizes[INPUT][2] = cvtest::randInt(rng)%2 ? cvSize(4,1) : cvSize(1,4);
types[INPUT][3] = types[INPUT][1];
sizes[INPUT][3] = sizes[INPUT][1];
interpolation = CV_INTER_LINEAR;
}
void CV_UndistortTest::fill_array( int test_case_idx, int i, int j, Mat& arr )
{
if( i != INPUT )
CV_ImgWarpBaseTest::fill_array( test_case_idx, i, j, arr );
}
void CV_UndistortTest::run_func()
{
if (!useCPlus)
{
CvMat a = test_mat[INPUT][1], k = test_mat[INPUT][2];
cvUndistort2( test_array[INPUT][0], test_array[INPUT_OUTPUT][0], &a, &k);
}
else
{
if (zero_distortion)
{
cv::undistort(input0,input_output,input1,cv::Mat());
}
else
{
cv::undistort(input0,input_output,input1,input2);
}
}
}
double CV_UndistortTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
{
int depth = test_mat[INPUT][0].depth();
return depth == CV_8U ? 16 : depth == CV_16U ? 1024 : 5e-2;
}
int CV_UndistortTest::prepare_test_case( int test_case_idx )
{
RNG& rng = ts->get_rng();
int code = CV_ImgWarpBaseTest::prepare_test_case( test_case_idx );
const Mat& src = test_mat[INPUT][0];
double k[4], a[9] = {0,0,0,0,0,0,0,0,1};
double new_cam[9] = {0,0,0,0,0,0,0,0,1};
double sz = MAX(src.rows, src.cols);
Mat& _new_cam0 = test_mat[INPUT][3];
Mat _new_cam(test_mat[INPUT][3].rows,test_mat[INPUT][3].cols,CV_64F,new_cam);
Mat& _a0 = test_mat[INPUT][1];
Mat _a(3,3,CV_64F,a);
Mat& _k0 = test_mat[INPUT][2];
Mat _k(_k0.rows,_k0.cols, CV_MAKETYPE(CV_64F,_k0.channels()),k);
if( code <= 0 )
return code;
double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7;
a[2] = (src.cols - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
a[5] = (src.rows - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
a[0] = sz/(0.9 - cvtest::randReal(rng)*0.6);
a[4] = aspect_ratio*a[0];
k[0] = cvtest::randReal(rng)*0.06 - 0.03;
k[1] = cvtest::randReal(rng)*0.06 - 0.03;
if( k[0]*k[1] > 0 )
k[1] = -k[1];
if( cvtest::randInt(rng)%4 != 0 )
{
k[2] = cvtest::randReal(rng)*0.004 - 0.002;
k[3] = cvtest::randReal(rng)*0.004 - 0.002;
}
else
k[2] = k[3] = 0;
new_cam[0] = a[0] + (cvtest::randReal(rng) - (double)0.5)*0.2*a[0]; //10%
new_cam[4] = a[4] + (cvtest::randReal(rng) - (double)0.5)*0.2*a[4]; //10%
new_cam[2] = a[2] + (cvtest::randReal(rng) - (double)0.5)*0.3*test_mat[INPUT][0].rows; //15%
new_cam[5] = a[5] + (cvtest::randReal(rng) - (double)0.5)*0.3*test_mat[INPUT][0].cols; //15%
_a.convertTo(_a0, _a0.depth());
zero_distortion = (cvtest::randInt(rng)%2) == 0 ? false : true;
_k.convertTo(_k0, _k0.depth());
zero_new_cam = (cvtest::randInt(rng)%2) == 0 ? false : true;
_new_cam.convertTo(_new_cam0, _new_cam0.depth());
//Testing C++ code
useCPlus = ((cvtest::randInt(rng) % 2)!=0);
if (useCPlus)
{
input0 = test_mat[INPUT][0];
input1 = test_mat[INPUT][1];
input2 = test_mat[INPUT][2];
input_new_cam = test_mat[INPUT][3];
}
return code;
}
void CV_UndistortTest::prepare_to_validation( int /*test_case_idx*/ )
{
if (useCPlus)
{
Mat& output = test_mat[INPUT_OUTPUT][0];
input_output.convertTo(output, output.type());
}
Mat& src = test_mat[INPUT][0];
Mat& dst = test_mat[REF_INPUT_OUTPUT][0];
Mat& dst0 = test_mat[INPUT_OUTPUT][0];
Mat mapx, mapy;
cvtest::initUndistortMap( test_mat[INPUT][1], test_mat[INPUT][2], dst.size(), mapx, mapy );
Mat mask( dst.size(), CV_8U );
test_remap( src, dst, mapx, mapy, &mask, interpolation );
dst.setTo(Scalar::all(0), mask);
dst0.setTo(Scalar::all(0), mask);
}
class CV_UndistortMapTest : public cvtest::ArrayTest
{
public:
CV_UndistortMapTest();
protected:
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
void run_func();
int prepare_test_case( int test_case_idx );
void prepare_to_validation( int /*test_case_idx*/ );
double get_success_error_level( int test_case_idx, int i, int j );
void fill_array( int test_case_idx, int i, int j, Mat& arr );
private:
bool dualChannel;
};
CV_UndistortMapTest::CV_UndistortMapTest()
{
test_array[INPUT].push_back(NULL);
test_array[INPUT].push_back(NULL);
test_array[OUTPUT].push_back(NULL);
test_array[OUTPUT].push_back(NULL);
test_array[REF_OUTPUT].push_back(NULL);
test_array[REF_OUTPUT].push_back(NULL);
element_wise_relative_error = false;
}
void CV_UndistortMapTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
RNG& rng = ts->get_rng();
cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
int depth = cvtest::randInt(rng)%2 ? CV_64F : CV_32F;
CvSize sz = sizes[OUTPUT][0];
types[INPUT][0] = types[INPUT][1] = depth;
dualChannel = cvtest::randInt(rng)%2 == 0;
types[OUTPUT][0] = types[OUTPUT][1] =
types[REF_OUTPUT][0] = types[REF_OUTPUT][1] = dualChannel ? CV_32FC2 : CV_32F;
sizes[INPUT][0] = cvSize(3,3);
sizes[INPUT][1] = cvtest::randInt(rng)%2 ? cvSize(4,1) : cvSize(1,4);
sz.width = MAX(sz.width,16);
sz.height = MAX(sz.height,16);
sizes[OUTPUT][0] = sizes[OUTPUT][1] =
sizes[REF_OUTPUT][0] = sizes[REF_OUTPUT][1] = sz;
}
void CV_UndistortMapTest::fill_array( int test_case_idx, int i, int j, Mat& arr )
{
if( i != INPUT )
cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr );
}
void CV_UndistortMapTest::run_func()
{
CvMat a = test_mat[INPUT][0], k = test_mat[INPUT][1];
if (!dualChannel )
cvInitUndistortMap( &a, &k, test_array[OUTPUT][0], test_array[OUTPUT][1] );
else
cvInitUndistortMap( &a, &k, test_array[OUTPUT][0], 0 );
}
double CV_UndistortMapTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
{
return 1e-3;
}
int CV_UndistortMapTest::prepare_test_case( int test_case_idx )
{
RNG& rng = ts->get_rng();
int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
const Mat& mapx = test_mat[OUTPUT][0];
double k[4], a[9] = {0,0,0,0,0,0,0,0,1};
double sz = MAX(mapx.rows, mapx.cols);
Mat& _a0 = test_mat[INPUT][0], &_k0 = test_mat[INPUT][1];
Mat _a(3,3,CV_64F,a);
Mat _k(_k0.rows,_k0.cols, CV_MAKETYPE(CV_64F,_k0.channels()),k);
if( code <= 0 )
return code;
double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7;
a[2] = (mapx.cols - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
a[5] = (mapx.rows - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
a[0] = sz/(0.9 - cvtest::randReal(rng)*0.6);
a[4] = aspect_ratio*a[0];
k[0] = cvtest::randReal(rng)*0.06 - 0.03;
k[1] = cvtest::randReal(rng)*0.06 - 0.03;
if( k[0]*k[1] > 0 )
k[1] = -k[1];
k[2] = cvtest::randReal(rng)*0.004 - 0.002;
k[3] = cvtest::randReal(rng)*0.004 - 0.002;
_a.convertTo(_a0, _a0.depth());
_k.convertTo(_k0, _k0.depth());
if (dualChannel)
{
test_mat[REF_OUTPUT][1] = Scalar::all(0);
test_mat[OUTPUT][1] = Scalar::all(0);
}
return code;
}
void CV_UndistortMapTest::prepare_to_validation( int )
{
Mat mapx, mapy;
cvtest::initUndistortMap( test_mat[INPUT][0], test_mat[INPUT][1], test_mat[REF_OUTPUT][0].size(), mapx, mapy );
if( !dualChannel )
{
mapx.copyTo(test_mat[REF_OUTPUT][0]);
mapy.copyTo(test_mat[REF_OUTPUT][1]);
}
else
{
Mat p[2] = {mapx, mapy};
cv::merge(p, 2, test_mat[REF_OUTPUT][0]);
}
}
////////////////////////////// GetRectSubPix /////////////////////////////////
static void
test_getQuadrangeSubPix( const Mat& src, Mat& dst, double* a )
{
int sstep = src.step / sizeof(float);
int scols = src.cols, srows = src.rows;
CV_Assert( src.depth() == CV_32F && src.type() == dst.type() );
int cn = dst.channels();
for( int y = 0; y < dst.rows; y++ )
for( int x = 0; x < dst.cols; x++ )
{
float* d = dst.ptr<float>(y) + x*cn;
float sx = (float)(a[0]*x + a[1]*y + a[2]);
float sy = (float)(a[3]*x + a[4]*y + a[5]);
int ix = cvFloor(sx), iy = cvFloor(sy);
int dx = cn, dy = sstep;
const float* s;
sx -= ix; sy -= iy;
if( (unsigned)ix >= (unsigned)(scols-1) )
ix = ix < 0 ? 0 : scols - 1, sx = 0, dx = 0;
if( (unsigned)iy >= (unsigned)(srows-1) )
iy = iy < 0 ? 0 : srows - 1, sy = 0, dy = 0;
s = src.ptr<float>(iy) + ix*cn;
for( int k = 0; k < cn; k++, s++ )
{
float t0 = s[0] + sx*(s[dx] - s[0]);
float t1 = s[dy] + sx*(s[dy + dx] - s[dy]);
d[k] = t0 + sy*(t1 - t0);
}
}
}
class CV_GetRectSubPixTest : public CV_ImgWarpBaseTest
{
public:
CV_GetRectSubPixTest();
protected:
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
void run_func();
int prepare_test_case( int test_case_idx );
void prepare_to_validation( int /*test_case_idx*/ );
double get_success_error_level( int test_case_idx, int i, int j );
void fill_array( int test_case_idx, int i, int j, Mat& arr );
CvPoint2D32f center;
bool test_cpp;
};
CV_GetRectSubPixTest::CV_GetRectSubPixTest() : CV_ImgWarpBaseTest( false )
{
//spatial_scale_zoom = spatial_scale_decimate;
spatial_scale_decimate = spatial_scale_zoom;
test_cpp = false;
}
void CV_GetRectSubPixTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
RNG& rng = ts->get_rng();
CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
int src_depth = cvtest::randInt(rng) % 2, dst_depth;
int cn = cvtest::randInt(rng) % 2 ? 3 : 1;
CvSize src_size, dst_size;
dst_depth = src_depth = src_depth == 0 ? CV_8U : CV_32F;
if( src_depth < CV_32F && cvtest::randInt(rng) % 2 )
dst_depth = CV_32F;
types[INPUT][0] = CV_MAKETYPE(src_depth,cn);
types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = CV_MAKETYPE(dst_depth,cn);
src_size = sizes[INPUT][0];
dst_size.width = cvRound(sqrt(cvtest::randReal(rng)*src_size.width) + 1);
dst_size.height = cvRound(sqrt(cvtest::randReal(rng)*src_size.height) + 1);
dst_size.width = MIN(dst_size.width,src_size.width);
dst_size.height = MIN(dst_size.width,src_size.height);
sizes[INPUT_OUTPUT][0] = sizes[REF_INPUT_OUTPUT][0] = dst_size;
center.x = (float)(cvtest::randReal(rng)*src_size.width);
center.y = (float)(cvtest::randReal(rng)*src_size.height);
interpolation = CV_INTER_LINEAR;
test_cpp = (cvtest::randInt(rng) & 256) == 0;
}
void CV_GetRectSubPixTest::fill_array( int test_case_idx, int i, int j, Mat& arr )
{
if( i != INPUT )
CV_ImgWarpBaseTest::fill_array( test_case_idx, i, j, arr );
}
void CV_GetRectSubPixTest::run_func()
{
if(!test_cpp)
cvGetRectSubPix( test_array[INPUT][0], test_array[INPUT_OUTPUT][0], center );
else
{
cv::Mat _out = cv::cvarrToMat(test_array[INPUT_OUTPUT][0]);
cv::getRectSubPix( cv::cvarrToMat(test_array[INPUT][0]), _out.size(), center, _out, _out.type());
}
}
double CV_GetRectSubPixTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
{
int in_depth = test_mat[INPUT][0].depth();
int out_depth = test_mat[INPUT_OUTPUT][0].depth();
return in_depth >= CV_32F ? 1e-3 : out_depth >= CV_32F ? 1e-2 : 1;
}
int CV_GetRectSubPixTest::prepare_test_case( int test_case_idx )
{
return CV_ImgWarpBaseTest::prepare_test_case( test_case_idx );
}
void CV_GetRectSubPixTest::prepare_to_validation( int /*test_case_idx*/ )
{
Mat& src0 = test_mat[INPUT][0];
Mat& dst0 = test_mat[REF_INPUT_OUTPUT][0];
Mat src = src0, dst = dst0;
int ftype = CV_MAKETYPE(CV_32F,src0.channels());
double a[] = { 1, 0, center.x - dst.cols*0.5 + 0.5,
0, 1, center.y - dst.rows*0.5 + 0.5 };
if( src.depth() != CV_32F )
src0.convertTo(src, CV_32F);
if( dst.depth() != CV_32F )
dst.create(dst0.size(), ftype);
test_getQuadrangeSubPix( src, dst, a );
if( dst.data != dst0.data )
dst.convertTo(dst0, dst0.depth());
}
class CV_GetQuadSubPixTest : public CV_ImgWarpBaseTest
{
public:
CV_GetQuadSubPixTest();
protected:
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
void run_func();
int prepare_test_case( int test_case_idx );
void prepare_to_validation( int /*test_case_idx*/ );
double get_success_error_level( int test_case_idx, int i, int j );
};
CV_GetQuadSubPixTest::CV_GetQuadSubPixTest() : CV_ImgWarpBaseTest( true )
{
//spatial_scale_zoom = spatial_scale_decimate;
spatial_scale_decimate = spatial_scale_zoom;
}
void CV_GetQuadSubPixTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
int min_size = 4;
CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
CvSize sz = sizes[INPUT][0], dsz;
RNG& rng = ts->get_rng();
int msz, src_depth = cvtest::randInt(rng) % 2, dst_depth;
int cn = cvtest::randInt(rng) % 2 ? 3 : 1;
dst_depth = src_depth = src_depth == 0 ? CV_8U : CV_32F;
if( src_depth < CV_32F && cvtest::randInt(rng) % 2 )
dst_depth = CV_32F;
types[INPUT][0] = CV_MAKETYPE(src_depth,cn);
types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = CV_MAKETYPE(dst_depth,cn);
sz.width = MAX(sz.width,min_size);
sz.height = MAX(sz.height,min_size);
sizes[INPUT][0] = sz;
msz = MIN( sz.width, sz.height );
dsz.width = cvRound(sqrt(cvtest::randReal(rng)*msz) + 1);
dsz.height = cvRound(sqrt(cvtest::randReal(rng)*msz) + 1);
dsz.width = MIN(dsz.width,msz);
dsz.height = MIN(dsz.width,msz);
dsz.width = MAX(dsz.width,min_size);
dsz.height = MAX(dsz.height,min_size);
sizes[INPUT_OUTPUT][0] = sizes[REF_INPUT_OUTPUT][0] = dsz;
sizes[INPUT][1] = cvSize( 3, 2 );
}
void CV_GetQuadSubPixTest::run_func()
{
CvMat mtx = test_mat[INPUT][1];
cvGetQuadrangleSubPix( test_array[INPUT][0], test_array[INPUT_OUTPUT][0], &mtx );
}
double CV_GetQuadSubPixTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
{
int in_depth = test_mat[INPUT][0].depth();
//int out_depth = test_mat[INPUT_OUTPUT][0].depth();
return in_depth >= CV_32F ? 1e-2 : 4;
}
int CV_GetQuadSubPixTest::prepare_test_case( int test_case_idx )
{
RNG& rng = ts->get_rng();
int code = CV_ImgWarpBaseTest::prepare_test_case( test_case_idx );
const Mat& src = test_mat[INPUT][0];
Mat& mat = test_mat[INPUT][1];
CvPoint2D32f center;
double scale, angle;
if( code <= 0 )
return code;
double a[6];
Mat A( 2, 3, CV_64FC1, a );
center.x = (float)((cvtest::randReal(rng)*1.2 - 0.1)*src.cols);
center.y = (float)((cvtest::randReal(rng)*1.2 - 0.1)*src.rows);
angle = cvtest::randReal(rng)*360;
scale = cvtest::randReal(rng)*0.2 + 0.9;
// y = Ax + b -> x = A^-1(y - b) = A^-1*y - A^-1*b
scale = 1./scale;
angle = angle*(CV_PI/180.);
a[0] = a[4] = cos(angle)*scale;
a[1] = sin(angle)*scale;
a[3] = -a[1];
a[2] = center.x - a[0]*center.x - a[1]*center.y;
a[5] = center.y - a[3]*center.x - a[4]*center.y;
A.convertTo( mat, mat.depth() );
return code;
}
void CV_GetQuadSubPixTest::prepare_to_validation( int /*test_case_idx*/ )
{
Mat& src0 = test_mat[INPUT][0];
Mat& dst0 = test_mat[REF_INPUT_OUTPUT][0];
Mat src = src0, dst = dst0;
int ftype = CV_MAKETYPE(CV_32F,src0.channels());
double a[6], dx = (dst0.cols - 1)*0.5, dy = (dst0.rows - 1)*0.5;
Mat A( 2, 3, CV_64F, a );
if( src.depth() != CV_32F )
src0.convertTo(src, CV_32F);
if( dst.depth() != CV_32F )
dst.create(dst0.size(), ftype);
test_mat[INPUT][1].convertTo( A, CV_64F );
a[2] -= a[0]*dx + a[1]*dy;
a[5] -= a[3]*dx + a[4]*dy;
test_getQuadrangeSubPix( src, dst, a );
if( dst.data != dst0.data )
dst.convertTo(dst0, dst0.depth());
}
//////////////////////////////////////////////////////////////////////////
TEST(Imgproc_Resize, accuracy) { CV_ResizeTest test; test.safe_run(); }
TEST(Imgproc_WarpAffine, accuracy) { CV_WarpAffineTest test; test.safe_run(); }
TEST(Imgproc_WarpPerspective, accuracy) { CV_WarpPerspectiveTest test; test.safe_run(); }
TEST(Imgproc_Remap, accuracy) { CV_RemapTest test; test.safe_run(); }
TEST(Imgproc_Undistort, accuracy) { CV_UndistortTest test; test.safe_run(); }
TEST(Imgproc_InitUndistortMap, accuracy) { CV_UndistortMapTest test; test.safe_run(); }
TEST(Imgproc_GetRectSubPix, accuracy) { CV_GetRectSubPixTest test; test.safe_run(); }
TEST(Imgproc_GetQuadSubPix, accuracy) { CV_GetQuadSubPixTest test; test.safe_run(); }
/* End of file. */