mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
430 lines
17 KiB
430 lines
17 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_OBJDETECT_HPP__ |
|
#define __OPENCV_OBJDETECT_HPP__ |
|
|
|
#include "opencv2/core.hpp" |
|
|
|
typedef struct CvLatentSvmDetector CvLatentSvmDetector; |
|
typedef struct CvHaarClassifierCascade CvHaarClassifierCascade; |
|
|
|
namespace cv |
|
{ |
|
|
|
///////////////////////////// Object Detection //////////////////////////// |
|
|
|
/* |
|
* This is a class wrapping up the structure CvLatentSvmDetector and functions working with it. |
|
* The class goals are: |
|
* 1) provide c++ interface; |
|
* 2) make it possible to load and detect more than one class (model) unlike CvLatentSvmDetector. |
|
*/ |
|
class CV_EXPORTS LatentSvmDetector |
|
{ |
|
public: |
|
struct CV_EXPORTS ObjectDetection |
|
{ |
|
ObjectDetection(); |
|
ObjectDetection( const Rect& rect, float score, int classID = -1 ); |
|
Rect rect; |
|
float score; |
|
int classID; |
|
}; |
|
|
|
LatentSvmDetector(); |
|
LatentSvmDetector( const std::vector<String>& filenames, const std::vector<String>& classNames = std::vector<String>() ); |
|
virtual ~LatentSvmDetector(); |
|
|
|
virtual void clear(); |
|
virtual bool empty() const; |
|
bool load( const std::vector<String>& filenames, const std::vector<String>& classNames = std::vector<String>() ); |
|
|
|
virtual void detect( const Mat& image, |
|
std::vector<ObjectDetection>& objectDetections, |
|
float overlapThreshold = 0.5f, |
|
int numThreads = -1 ); |
|
|
|
const std::vector<String>& getClassNames() const; |
|
size_t getClassCount() const; |
|
|
|
private: |
|
std::vector<CvLatentSvmDetector*> detectors; |
|
std::vector<String> classNames; |
|
}; |
|
|
|
// class for grouping object candidates, detected by Cascade Classifier, HOG etc. |
|
// instance of the class is to be passed to cv::partition (see cxoperations.hpp) |
|
class CV_EXPORTS SimilarRects |
|
{ |
|
public: |
|
SimilarRects(double _eps) : eps(_eps) {} |
|
inline bool operator()(const Rect& r1, const Rect& r2) const |
|
{ |
|
double delta = eps*(std::min(r1.width, r2.width) + std::min(r1.height, r2.height))*0.5; |
|
return std::abs(r1.x - r2.x) <= delta && |
|
std::abs(r1.y - r2.y) <= delta && |
|
std::abs(r1.x + r1.width - r2.x - r2.width) <= delta && |
|
std::abs(r1.y + r1.height - r2.y - r2.height) <= delta; |
|
} |
|
double eps; |
|
}; |
|
|
|
CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps = 0.2); |
|
CV_EXPORTS_W void groupRectangles(CV_IN_OUT std::vector<Rect>& rectList, CV_OUT std::vector<int>& weights, int groupThreshold, double eps = 0.2); |
|
CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps, std::vector<int>* weights, std::vector<double>* levelWeights ); |
|
CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& rejectLevels, |
|
std::vector<double>& levelWeights, int groupThreshold, double eps = 0.2); |
|
CV_EXPORTS void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights, std::vector<double>& foundScales, |
|
double detectThreshold = 0.0, Size winDetSize = Size(64, 128)); |
|
|
|
class CV_EXPORTS FeatureEvaluator |
|
{ |
|
public: |
|
enum { HAAR = 0, |
|
LBP = 1, |
|
HOG = 2 |
|
}; |
|
|
|
virtual ~FeatureEvaluator(); |
|
|
|
virtual bool read(const FileNode& node); |
|
virtual Ptr<FeatureEvaluator> clone() const; |
|
virtual int getFeatureType() const; |
|
|
|
virtual bool setImage(const Mat& img, Size origWinSize); |
|
virtual bool setWindow(Point p); |
|
|
|
virtual double calcOrd(int featureIdx) const; |
|
virtual int calcCat(int featureIdx) const; |
|
|
|
static Ptr<FeatureEvaluator> create(int type); |
|
}; |
|
|
|
template<> CV_EXPORTS void DefaultDeleter<CvHaarClassifierCascade>::operator ()(CvHaarClassifierCascade* obj) const; |
|
|
|
enum { CASCADE_DO_CANNY_PRUNING = 1, |
|
CASCADE_SCALE_IMAGE = 2, |
|
CASCADE_FIND_BIGGEST_OBJECT = 4, |
|
CASCADE_DO_ROUGH_SEARCH = 8 |
|
}; |
|
|
|
class CV_EXPORTS_W CascadeClassifier |
|
{ |
|
public: |
|
CV_WRAP CascadeClassifier(); |
|
CV_WRAP CascadeClassifier( const String& filename ); |
|
virtual ~CascadeClassifier(); |
|
|
|
CV_WRAP virtual bool empty() const; |
|
CV_WRAP bool load( const String& filename ); |
|
virtual bool read( const FileNode& node ); |
|
CV_WRAP virtual void detectMultiScale( const Mat& image, |
|
CV_OUT std::vector<Rect>& objects, |
|
double scaleFactor = 1.1, |
|
int minNeighbors = 3, int flags = 0, |
|
Size minSize = Size(), |
|
Size maxSize = Size() ); |
|
|
|
CV_WRAP virtual void detectMultiScale( const Mat& image, |
|
CV_OUT std::vector<Rect>& objects, |
|
CV_OUT std::vector<int>& numDetections, |
|
double scaleFactor=1.1, |
|
int minNeighbors=3, int flags=0, |
|
Size minSize=Size(), |
|
Size maxSize=Size() ); |
|
|
|
CV_WRAP virtual void detectMultiScale( const Mat& image, |
|
CV_OUT std::vector<Rect>& objects, |
|
CV_OUT std::vector<int>& rejectLevels, |
|
CV_OUT std::vector<double>& levelWeights, |
|
double scaleFactor = 1.1, |
|
int minNeighbors = 3, int flags = 0, |
|
Size minSize = Size(), |
|
Size maxSize = Size(), |
|
bool outputRejectLevels = false ); |
|
|
|
|
|
bool isOldFormatCascade() const; |
|
virtual Size getOriginalWindowSize() const; |
|
int getFeatureType() const; |
|
bool setImage( const Mat& ); |
|
|
|
protected: |
|
virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize, |
|
int stripSize, int yStep, double factor, std::vector<Rect>& candidates, |
|
std::vector<int>& rejectLevels, std::vector<double>& levelWeights, bool outputRejectLevels = false ); |
|
|
|
virtual void detectMultiScaleNoGrouping( const Mat& image, std::vector<Rect>& candidates, |
|
std::vector<int>& rejectLevels, std::vector<double>& levelWeights, |
|
double scaleFactor, Size minObjectSize, Size maxObjectSize, |
|
bool outputRejectLevels = false ); |
|
|
|
protected: |
|
enum { BOOST = 0 |
|
}; |
|
enum { DO_CANNY_PRUNING = CASCADE_DO_CANNY_PRUNING, |
|
SCALE_IMAGE = CASCADE_SCALE_IMAGE, |
|
FIND_BIGGEST_OBJECT = CASCADE_FIND_BIGGEST_OBJECT, |
|
DO_ROUGH_SEARCH = CASCADE_DO_ROUGH_SEARCH |
|
}; |
|
|
|
friend class CascadeClassifierInvoker; |
|
|
|
template<class FEval> |
|
friend int predictOrdered( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight); |
|
|
|
template<class FEval> |
|
friend int predictCategorical( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight); |
|
|
|
template<class FEval> |
|
friend int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight); |
|
|
|
template<class FEval> |
|
friend int predictCategoricalStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight); |
|
|
|
bool setImage( Ptr<FeatureEvaluator>& feval, const Mat& image); |
|
virtual int runAt( Ptr<FeatureEvaluator>& feval, Point pt, double& weight ); |
|
|
|
class Data |
|
{ |
|
public: |
|
struct CV_EXPORTS DTreeNode |
|
{ |
|
int featureIdx; |
|
float threshold; // for ordered features only |
|
int left; |
|
int right; |
|
}; |
|
|
|
struct CV_EXPORTS DTree |
|
{ |
|
int nodeCount; |
|
}; |
|
|
|
struct CV_EXPORTS Stage |
|
{ |
|
int first; |
|
int ntrees; |
|
float threshold; |
|
}; |
|
|
|
bool read(const FileNode &node); |
|
|
|
bool isStumpBased; |
|
|
|
int stageType; |
|
int featureType; |
|
int ncategories; |
|
Size origWinSize; |
|
|
|
std::vector<Stage> stages; |
|
std::vector<DTree> classifiers; |
|
std::vector<DTreeNode> nodes; |
|
std::vector<float> leaves; |
|
std::vector<int> subsets; |
|
}; |
|
|
|
Data data; |
|
Ptr<FeatureEvaluator> featureEvaluator; |
|
Ptr<CvHaarClassifierCascade> oldCascade; |
|
|
|
public: |
|
class CV_EXPORTS MaskGenerator |
|
{ |
|
public: |
|
virtual ~MaskGenerator() {} |
|
virtual cv::Mat generateMask(const cv::Mat& src)=0; |
|
virtual void initializeMask(const cv::Mat& /*src*/) {}; |
|
}; |
|
void setMaskGenerator(Ptr<MaskGenerator> maskGenerator); |
|
Ptr<MaskGenerator> getMaskGenerator(); |
|
|
|
void setFaceDetectionMaskGenerator(); |
|
|
|
protected: |
|
Ptr<MaskGenerator> maskGenerator; |
|
}; |
|
|
|
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector ////////////// |
|
|
|
// struct for detection region of interest (ROI) |
|
struct DetectionROI |
|
{ |
|
// scale(size) of the bounding box |
|
double scale; |
|
// set of requrested locations to be evaluated |
|
std::vector<cv::Point> locations; |
|
// vector that will contain confidence values for each location |
|
std::vector<double> confidences; |
|
}; |
|
|
|
struct CV_EXPORTS_W HOGDescriptor |
|
{ |
|
public: |
|
enum { L2Hys = 0 |
|
}; |
|
enum { DEFAULT_NLEVELS = 64 |
|
}; |
|
|
|
CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8), |
|
cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1), |
|
histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true), |
|
nlevels(HOGDescriptor::DEFAULT_NLEVELS) |
|
{} |
|
|
|
CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, |
|
Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1, |
|
int _histogramNormType=HOGDescriptor::L2Hys, |
|
double _L2HysThreshold=0.2, bool _gammaCorrection=false, |
|
int _nlevels=HOGDescriptor::DEFAULT_NLEVELS) |
|
: winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize), |
|
nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma), |
|
histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold), |
|
gammaCorrection(_gammaCorrection), nlevels(_nlevels) |
|
{} |
|
|
|
CV_WRAP HOGDescriptor(const String& filename) |
|
{ |
|
load(filename); |
|
} |
|
|
|
HOGDescriptor(const HOGDescriptor& d) |
|
{ |
|
d.copyTo(*this); |
|
} |
|
|
|
virtual ~HOGDescriptor() {} |
|
|
|
CV_WRAP size_t getDescriptorSize() const; |
|
CV_WRAP bool checkDetectorSize() const; |
|
CV_WRAP double getWinSigma() const; |
|
|
|
CV_WRAP virtual void setSVMDetector(InputArray _svmdetector); |
|
|
|
virtual bool read(FileNode& fn); |
|
virtual void write(FileStorage& fs, const String& objname) const; |
|
|
|
CV_WRAP virtual bool load(const String& filename, const String& objname = String()); |
|
CV_WRAP virtual void save(const String& filename, const String& objname = String()) const; |
|
virtual void copyTo(HOGDescriptor& c) const; |
|
|
|
CV_WRAP virtual void compute(const Mat& img, |
|
CV_OUT std::vector<float>& descriptors, |
|
Size winStride = Size(), Size padding = Size(), |
|
const std::vector<Point>& locations = std::vector<Point>()) const; |
|
//with found weights output |
|
CV_WRAP virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations, |
|
CV_OUT std::vector<double>& weights, |
|
double hitThreshold = 0, Size winStride = Size(), |
|
Size padding = Size(), |
|
const std::vector<Point>& searchLocations = std::vector<Point>()) const; |
|
//without found weights output |
|
virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations, |
|
double hitThreshold = 0, Size winStride = Size(), |
|
Size padding = Size(), |
|
const std::vector<Point>& searchLocations=std::vector<Point>()) const; |
|
//with result weights output |
|
CV_WRAP virtual void detectMultiScale(const Mat& img, CV_OUT std::vector<Rect>& foundLocations, |
|
CV_OUT std::vector<double>& foundWeights, double hitThreshold = 0, |
|
Size winStride = Size(), Size padding = Size(), double scale = 1.05, |
|
double finalThreshold = 2.0,bool useMeanshiftGrouping = false) const; |
|
//without found weights output |
|
virtual void detectMultiScale(const Mat& img, CV_OUT std::vector<Rect>& foundLocations, |
|
double hitThreshold = 0, Size winStride = Size(), |
|
Size padding = Size(), double scale = 1.05, |
|
double finalThreshold = 2.0, bool useMeanshiftGrouping = false) const; |
|
|
|
CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs, |
|
Size paddingTL = Size(), Size paddingBR = Size()) const; |
|
|
|
CV_WRAP static std::vector<float> getDefaultPeopleDetector(); |
|
CV_WRAP static std::vector<float> getDaimlerPeopleDetector(); |
|
|
|
CV_PROP Size winSize; |
|
CV_PROP Size blockSize; |
|
CV_PROP Size blockStride; |
|
CV_PROP Size cellSize; |
|
CV_PROP int nbins; |
|
CV_PROP int derivAperture; |
|
CV_PROP double winSigma; |
|
CV_PROP int histogramNormType; |
|
CV_PROP double L2HysThreshold; |
|
CV_PROP bool gammaCorrection; |
|
CV_PROP std::vector<float> svmDetector; |
|
CV_PROP int nlevels; |
|
|
|
|
|
// evaluate specified ROI and return confidence value for each location |
|
virtual void detectROI(const cv::Mat& img, const std::vector<cv::Point> &locations, |
|
CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences, |
|
double hitThreshold = 0, cv::Size winStride = Size(), |
|
cv::Size padding = Size()) const; |
|
|
|
// evaluate specified ROI and return confidence value for each location in multiple scales |
|
virtual void detectMultiScaleROI(const cv::Mat& img, |
|
CV_OUT std::vector<cv::Rect>& foundLocations, |
|
std::vector<DetectionROI>& locations, |
|
double hitThreshold = 0, |
|
int groupThreshold = 0) const; |
|
|
|
// read/parse Dalal's alt model file |
|
void readALTModel(String modelfile); |
|
void groupRectangles(std::vector<cv::Rect>& rectList, std::vector<double>& weights, int groupThreshold, double eps) const; |
|
}; |
|
|
|
|
|
CV_EXPORTS_W void findDataMatrix(InputArray image, |
|
CV_OUT std::vector<String>& codes, |
|
OutputArray corners = noArray(), |
|
OutputArrayOfArrays dmtx = noArray()); |
|
|
|
CV_EXPORTS_W void drawDataMatrixCodes(InputOutputArray image, |
|
const std::vector<String>& codes, |
|
InputArray corners); |
|
} |
|
|
|
#include "opencv2/objdetect/linemod.hpp" |
|
#include "opencv2/objdetect/erfilter.hpp" |
|
|
|
#endif
|
|
|