Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
158 lines
5.6 KiB
158 lines
5.6 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
#include "../precomp.hpp" |
|
#include "../op_inf_engine.hpp" |
|
|
|
namespace cv |
|
{ |
|
namespace dnn |
|
{ |
|
class BlankLayerImpl CV_FINAL : public BlankLayer |
|
{ |
|
public: |
|
BlankLayerImpl(const LayerParams& params) |
|
{ |
|
setParamsFrom(params); |
|
} |
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE |
|
{ |
|
return backendId == DNN_BACKEND_OPENCV || |
|
(backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine()); |
|
} |
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const CV_OVERRIDE |
|
{ |
|
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals); |
|
return true; |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_) |
|
{ |
|
std::vector<UMat> inputs; |
|
std::vector<UMat> outputs; |
|
|
|
inputs_.getUMatVector(inputs); |
|
outputs_.getUMatVector(outputs); |
|
|
|
for (int i = 0, n = outputs.size(); i < n; ++i) |
|
{ |
|
void *src_handle = inputs[i].handle(ACCESS_READ); |
|
void *dst_handle = outputs[i].handle(ACCESS_WRITE); |
|
if (src_handle != dst_handle) |
|
inputs[i].copyTo(outputs[i]); |
|
} |
|
|
|
return true; |
|
} |
|
#endif |
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget), |
|
forward_ocl(inputs_arr, outputs_arr, internals_arr)) |
|
|
|
std::vector<Mat> inputs, outputs; |
|
inputs_arr.getMatVector(inputs); |
|
outputs_arr.getMatVector(outputs); |
|
|
|
for (int i = 0, n = outputs.size(); i < n; ++i) |
|
if (outputs[i].data != inputs[i].data) |
|
inputs[i].copyTo(outputs[i]); |
|
} |
|
|
|
#ifdef HAVE_INF_ENGINE |
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >& inputs) CV_OVERRIDE |
|
{ |
|
InferenceEngine::DataPtr input = infEngineDataNode(inputs[0]); |
|
std::vector<size_t> dims = input->getDims(); |
|
CV_Assert(!dims.empty()); |
|
|
|
InferenceEngine::Builder::Layer ieLayer(name); |
|
ieLayer.setName(name); |
|
if (preferableTarget == DNN_TARGET_MYRIAD) |
|
{ |
|
ieLayer.setType("Copy"); |
|
} |
|
else |
|
{ |
|
ieLayer.setType("Split"); |
|
ieLayer.getParameters()["axis"] = dims.size() - 1; |
|
ieLayer.getParameters()["out_sizes"] = dims[0]; |
|
} |
|
ieLayer.setInputPorts({InferenceEngine::Port(dims)}); |
|
ieLayer.setOutputPorts(std::vector<InferenceEngine::Port>(1)); |
|
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer)); |
|
} |
|
#endif // HAVE_INF_ENGINE |
|
}; |
|
|
|
Ptr<Layer> BlankLayer::create(const LayerParams& params) |
|
{ |
|
// In case of Caffe's Dropout layer from Faster-RCNN framework, |
|
// https://github.com/rbgirshick/caffe-fast-rcnn/tree/faster-rcnn |
|
// return Power layer. |
|
if (!params.get<bool>("scale_train", true)) |
|
{ |
|
float scale = 1 - params.get<float>("dropout_ratio", 0.5f); |
|
CV_Assert(scale > 0); |
|
|
|
LayerParams powerParams; |
|
powerParams.name = params.name; |
|
powerParams.type = "Power"; |
|
powerParams.set("scale", scale); |
|
|
|
return PowerLayer::create(powerParams); |
|
} |
|
else |
|
return Ptr<BlankLayer>(new BlankLayerImpl(params)); |
|
} |
|
|
|
} |
|
}
|
|
|