Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
485 lines
20 KiB
485 lines
20 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "opencv2/core/hal/intrin.hpp" |
|
|
|
namespace cv { |
|
namespace dnn { |
|
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN |
|
|
|
void fastConv( const float* weights, size_t wstep, const float* bias, |
|
const float* rowbuf, float* output, const int* outShape, |
|
int blockSize, int vecsize, int vecsize_aligned, |
|
const float* relu, bool initOutput ); |
|
void fastGEMM1T( const float* vec, const float* weights, |
|
size_t wstep, const float* bias, |
|
float* dst, int nvecs, int vecsize ); |
|
void fastGEMM( const float* aptr, size_t astep, const float* bptr, |
|
size_t bstep, float* cptr, size_t cstep, |
|
int ma, int na, int nb ); |
|
|
|
#if !defined(CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY) && CV_AVX |
|
|
|
#if !CV_FMA3 // AVX workaround |
|
#undef _mm256_fmadd_ps |
|
#define _mm256_fmadd_ps(a, b, c) _mm256_add_ps(c, _mm256_mul_ps(a, b)) |
|
#endif |
|
|
|
void fastConv( const float* weights, size_t wstep, const float* bias, |
|
const float* rowbuf, float* output, const int* outShape, |
|
int blockSize, int vecsize, int vecsize_aligned, |
|
const float* relu, bool initOutput ) |
|
{ |
|
int outCn = outShape[1]; |
|
size_t outPlaneSize = outShape[2]*outShape[3]; |
|
float r0 = 1.f, r1 = 1.f, r2 = 1.f; |
|
__m128 vr0 = _mm_set1_ps(1.f), vr1 = vr0, vr2 = vr0, z = _mm_setzero_ps(); |
|
|
|
// now compute dot product of the weights |
|
// and im2row-transformed part of the tensor |
|
for( int i = 0; i < outCn; i += 3 ) |
|
{ |
|
const float* wptr0 = weights + i*wstep; |
|
const float* wptr1 = wptr0 + wstep; |
|
const float* wptr2 = wptr1 + wstep; |
|
float* outptr0 = output + i*outPlaneSize; |
|
float* outptr1 = outptr0 + outPlaneSize; |
|
float* outptr2 = outptr1 + outPlaneSize; |
|
float bias0 = bias[i], bias1 = bias[i+1], bias2 = bias[i+2]; |
|
|
|
if( i+2 >= outCn ) |
|
{ |
|
wptr2 = wptr1; |
|
outptr2 = outptr1; |
|
bias2 = bias1; |
|
if( i+1 >= outCn ) |
|
{ |
|
wptr2 = wptr1 = wptr0; |
|
outptr2 = outptr1 = outptr0; |
|
bias2 = bias1 = bias0; |
|
} |
|
} |
|
|
|
if( relu ) |
|
{ |
|
r0 = relu[i]; r1 = relu[i+1]; r2 = relu[i+2]; |
|
if( i+2 >= outCn ) |
|
{ |
|
r2 = r1; |
|
if( i+1 >= outCn ) |
|
r2 = r1 = r0; |
|
} |
|
vr0 = _mm_set1_ps(r0); |
|
vr1 = _mm_set1_ps(r1); |
|
vr2 = _mm_set1_ps(r2); |
|
} |
|
|
|
int j = 0; |
|
for( ; j <= blockSize - 4; j += 4 ) |
|
{ |
|
int k = 0; |
|
const float* rptr = rowbuf + j*vecsize_aligned; |
|
|
|
__m256 vs00 = _mm256_setzero_ps(), vs01 = _mm256_setzero_ps(), |
|
vs02 = _mm256_setzero_ps(), vs03 = _mm256_setzero_ps(), |
|
vs10 = _mm256_setzero_ps(), vs11 = _mm256_setzero_ps(), |
|
vs12 = _mm256_setzero_ps(), vs13 = _mm256_setzero_ps(), |
|
vs20 = _mm256_setzero_ps(), vs21 = _mm256_setzero_ps(), |
|
vs22 = _mm256_setzero_ps(), vs23 = _mm256_setzero_ps(); |
|
|
|
#if CV_AVX512_SKX // AVX512VL is necessary to avoid register spilling |
|
if (vecsize >= 32) |
|
{ |
|
__m512 vs00_5 = _mm512_setzero_ps(), vs01_5 = _mm512_setzero_ps(), |
|
vs02_5 = _mm512_setzero_ps(), vs03_5 = _mm512_setzero_ps(), |
|
vs10_5 = _mm512_setzero_ps(), vs11_5 = _mm512_setzero_ps(), |
|
vs12_5 = _mm512_setzero_ps(), vs13_5 = _mm512_setzero_ps(), |
|
vs20_5 = _mm512_setzero_ps(), vs21_5 = _mm512_setzero_ps(), |
|
vs22_5 = _mm512_setzero_ps(), vs23_5 = _mm512_setzero_ps(); |
|
|
|
for (; k <= vecsize - 16; k += 16, rptr += 16) |
|
{ |
|
__m512 w0 = _mm512_loadu_ps(wptr0 + k); |
|
__m512 w1 = _mm512_loadu_ps(wptr1 + k); |
|
__m512 w2 = _mm512_loadu_ps(wptr2 + k); |
|
__m512 r0 = _mm512_loadu_ps(rptr); |
|
|
|
vs00_5 = _mm512_fmadd_ps(w0, r0, vs00_5); |
|
vs10_5 = _mm512_fmadd_ps(w1, r0, vs10_5); |
|
vs20_5 = _mm512_fmadd_ps(w2, r0, vs20_5); |
|
|
|
r0 = _mm512_loadu_ps(rptr + vecsize_aligned); |
|
vs01_5 = _mm512_fmadd_ps(w0, r0, vs01_5); |
|
vs11_5 = _mm512_fmadd_ps(w1, r0, vs11_5); |
|
vs21_5 = _mm512_fmadd_ps(w2, r0, vs21_5); |
|
|
|
r0 = _mm512_loadu_ps(rptr + vecsize_aligned*2); |
|
vs02_5 = _mm512_fmadd_ps(w0, r0, vs02_5); |
|
vs12_5 = _mm512_fmadd_ps(w1, r0, vs12_5); |
|
vs22_5 = _mm512_fmadd_ps(w2, r0, vs22_5); |
|
|
|
r0 = _mm512_loadu_ps(rptr + vecsize_aligned*3); |
|
vs03_5 = _mm512_fmadd_ps(w0, r0, vs03_5); |
|
vs13_5 = _mm512_fmadd_ps(w1, r0, vs13_5); |
|
vs23_5 = _mm512_fmadd_ps(w2, r0, vs23_5); |
|
} |
|
/* |
|
* now fold the 512 bit accumulator vectors into 256 bit vectors so that the AVX2 code can finish |
|
* the tail of the vector |
|
*/ |
|
vs00 = _mm256_add_ps( _mm512_extractf32x8_ps(vs00_5, 0), _mm512_extractf32x8_ps(vs00_5, 1)); |
|
vs10 = _mm256_add_ps( _mm512_extractf32x8_ps(vs10_5, 0), _mm512_extractf32x8_ps(vs10_5, 1)); |
|
vs20 = _mm256_add_ps( _mm512_extractf32x8_ps(vs20_5, 0), _mm512_extractf32x8_ps(vs20_5, 1)); |
|
|
|
vs01 = _mm256_add_ps( _mm512_extractf32x8_ps(vs01_5, 0), _mm512_extractf32x8_ps(vs01_5, 1)); |
|
vs11 = _mm256_add_ps( _mm512_extractf32x8_ps(vs11_5, 0), _mm512_extractf32x8_ps(vs11_5, 1)); |
|
vs21 = _mm256_add_ps( _mm512_extractf32x8_ps(vs21_5, 0), _mm512_extractf32x8_ps(vs21_5, 1)); |
|
|
|
vs02 = _mm256_add_ps( _mm512_extractf32x8_ps(vs02_5, 0), _mm512_extractf32x8_ps(vs02_5, 1)); |
|
vs12 = _mm256_add_ps( _mm512_extractf32x8_ps(vs12_5, 0), _mm512_extractf32x8_ps(vs12_5, 1)); |
|
vs22 = _mm256_add_ps( _mm512_extractf32x8_ps(vs22_5, 0), _mm512_extractf32x8_ps(vs22_5, 1)); |
|
|
|
vs03 = _mm256_add_ps( _mm512_extractf32x8_ps(vs03_5, 0), _mm512_extractf32x8_ps(vs03_5, 1)); |
|
vs13 = _mm256_add_ps( _mm512_extractf32x8_ps(vs13_5, 0), _mm512_extractf32x8_ps(vs13_5, 1)); |
|
vs23 = _mm256_add_ps( _mm512_extractf32x8_ps(vs23_5, 0), _mm512_extractf32x8_ps(vs23_5, 1)); |
|
} |
|
#endif |
|
|
|
for (; k < vecsize; k += 8, rptr += 8 ) |
|
{ |
|
__m256 w0 = _mm256_load_ps(wptr0 + k); |
|
__m256 w1 = _mm256_load_ps(wptr1 + k); |
|
__m256 w2 = _mm256_load_ps(wptr2 + k); |
|
__m256 r0 = _mm256_load_ps(rptr); |
|
|
|
vs00 = _mm256_fmadd_ps(w0, r0, vs00); |
|
vs10 = _mm256_fmadd_ps(w1, r0, vs10); |
|
vs20 = _mm256_fmadd_ps(w2, r0, vs20); |
|
|
|
r0 = _mm256_load_ps(rptr + vecsize_aligned); |
|
vs01 = _mm256_fmadd_ps(w0, r0, vs01); |
|
vs11 = _mm256_fmadd_ps(w1, r0, vs11); |
|
vs21 = _mm256_fmadd_ps(w2, r0, vs21); |
|
|
|
r0 = _mm256_load_ps(rptr + vecsize_aligned*2); |
|
vs02 = _mm256_fmadd_ps(w0, r0, vs02); |
|
vs12 = _mm256_fmadd_ps(w1, r0, vs12); |
|
vs22 = _mm256_fmadd_ps(w2, r0, vs22); |
|
|
|
r0 = _mm256_load_ps(rptr + vecsize_aligned*3); |
|
vs03 = _mm256_fmadd_ps(w0, r0, vs03); |
|
vs13 = _mm256_fmadd_ps(w1, r0, vs13); |
|
vs23 = _mm256_fmadd_ps(w2, r0, vs23); |
|
} |
|
|
|
__m256 t0 = _mm256_hadd_ps(_mm256_hadd_ps(vs00, vs01), _mm256_hadd_ps(vs02, vs03)); |
|
__m256 t1 = _mm256_hadd_ps(_mm256_hadd_ps(vs10, vs11), _mm256_hadd_ps(vs12, vs13)); |
|
__m256 t2 = _mm256_hadd_ps(_mm256_hadd_ps(vs20, vs21), _mm256_hadd_ps(vs22, vs23)); |
|
|
|
t0 = _mm256_add_ps(t0, _mm256_permute2f128_ps(t0, t0, 1)); |
|
t1 = _mm256_add_ps(t1, _mm256_permute2f128_ps(t1, t1, 1)); |
|
t2 = _mm256_add_ps(t2, _mm256_permute2f128_ps(t2, t2, 1)); |
|
|
|
__m128 s0, s1, s2; |
|
|
|
if( initOutput ) |
|
{ |
|
s0 = _mm_set1_ps(bias0); |
|
s1 = _mm_set1_ps(bias1); |
|
s2 = _mm_set1_ps(bias2); |
|
} |
|
else |
|
{ |
|
s0 = _mm_loadu_ps(outptr0 + j); |
|
s1 = _mm_loadu_ps(outptr1 + j); |
|
s2 = _mm_loadu_ps(outptr2 + j); |
|
} |
|
|
|
s0 = _mm_add_ps(s0, _mm256_castps256_ps128(t0)); |
|
s1 = _mm_add_ps(s1, _mm256_castps256_ps128(t1)); |
|
s2 = _mm_add_ps(s2, _mm256_castps256_ps128(t2)); |
|
|
|
if( relu ) |
|
{ |
|
__m128 m0 = _mm_cmp_ps(s0, z, _CMP_GT_OS); |
|
__m128 m1 = _mm_cmp_ps(s1, z, _CMP_GT_OS); |
|
__m128 m2 = _mm_cmp_ps(s2, z, _CMP_GT_OS); |
|
s0 = _mm_xor_ps(s0, _mm_andnot_ps(m0, _mm_xor_ps(_mm_mul_ps(s0, vr0), s0))); |
|
s1 = _mm_xor_ps(s1, _mm_andnot_ps(m1, _mm_xor_ps(_mm_mul_ps(s1, vr1), s1))); |
|
s2 = _mm_xor_ps(s2, _mm_andnot_ps(m2, _mm_xor_ps(_mm_mul_ps(s2, vr2), s2))); |
|
} |
|
|
|
_mm_storeu_ps(outptr0 + j, s0); |
|
_mm_storeu_ps(outptr1 + j, s1); |
|
_mm_storeu_ps(outptr2 + j, s2); |
|
} |
|
|
|
for( ; j < blockSize; j++ ) |
|
{ |
|
const float* rptr = rowbuf + j*vecsize_aligned; |
|
float s00, s10, s20; |
|
|
|
if( initOutput ) |
|
{ |
|
s00 = bias0; |
|
s10 = bias1; |
|
s20 = bias2; |
|
} |
|
else |
|
{ |
|
s00 = outptr0[j]; |
|
s10 = outptr1[j]; |
|
s20 = outptr2[j]; |
|
} |
|
|
|
for( int k = 0; k < vecsize; k++ ) |
|
{ |
|
float r0 = rptr[k]; |
|
s00 += wptr0[k]*r0; |
|
s10 += wptr1[k]*r0; |
|
s20 += wptr2[k]*r0; |
|
} |
|
|
|
if( relu ) |
|
{ |
|
s00 = s00 > 0.f ? s00 : s00*r0; |
|
s10 = s10 > 0.f ? s10 : s10*r1; |
|
s20 = s20 > 0.f ? s20 : s20*r2; |
|
} |
|
|
|
outptr0[j] = s00; |
|
outptr1[j] = s10; |
|
outptr2[j] = s20; |
|
} |
|
} |
|
_mm256_zeroupper(); |
|
} |
|
|
|
// dst = vec * weights^t + bias |
|
void fastGEMM1T( const float* vec, const float* weights, |
|
size_t wstep, const float* bias, |
|
float* dst, int nvecs, int vecsize ) |
|
{ |
|
int i = 0; |
|
|
|
for( ; i <= nvecs - 8; i += 8 ) |
|
{ |
|
const float* wptr = weights + i*wstep; |
|
__m256 vs0 = _mm256_setzero_ps(), vs1 = _mm256_setzero_ps(), |
|
vs2 = _mm256_setzero_ps(), vs3 = _mm256_setzero_ps(), |
|
vs4 = _mm256_setzero_ps(), vs5 = _mm256_setzero_ps(), |
|
vs6 = _mm256_setzero_ps(), vs7 = _mm256_setzero_ps(); |
|
|
|
for( int k = 0; k < vecsize; k += 8, wptr += 8 ) |
|
{ |
|
__m256 v = _mm256_load_ps(vec + k); |
|
|
|
vs0 = _mm256_fmadd_ps(_mm256_load_ps(wptr), v, vs0); |
|
vs1 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep), v, vs1); |
|
vs2 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*2), v, vs2); |
|
vs3 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*3), v, vs3); |
|
vs4 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*4), v, vs4); |
|
vs5 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*5), v, vs5); |
|
vs6 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*6), v, vs6); |
|
vs7 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*7), v, vs7); |
|
} |
|
|
|
__m256 s0 = _mm256_hadd_ps(_mm256_hadd_ps(vs0, vs1), _mm256_hadd_ps(vs2, vs3)); |
|
__m256 s1 = _mm256_hadd_ps(_mm256_hadd_ps(vs4, vs5), _mm256_hadd_ps(vs6, vs7)); |
|
|
|
s0 = _mm256_add_ps(s0, _mm256_permute2f128_ps(s0, s0, 1)); |
|
s1 = _mm256_add_ps(s1, _mm256_permute2f128_ps(s1, s1, 1)); |
|
|
|
s0 = _mm256_add_ps(s0, _mm256_castps128_ps256(_mm_loadu_ps(bias + i))); |
|
s1 = _mm256_add_ps(s1, _mm256_castps128_ps256(_mm_loadu_ps(bias + i + 4))); |
|
|
|
_mm_storeu_ps(dst + i, _mm256_castps256_ps128(s0)); |
|
_mm_storeu_ps(dst + i + 4, _mm256_castps256_ps128(s1)); |
|
} |
|
|
|
float temp = 0.f; |
|
for( ; i < nvecs; i++ ) |
|
{ |
|
const float* wptr = weights + i*wstep; |
|
__m256 vs0 = _mm256_setzero_ps(); |
|
|
|
for( int k = 0; k < vecsize; k += 8, wptr += 8 ) |
|
{ |
|
__m256 v = _mm256_load_ps(vec + k); |
|
vs0 = _mm256_fmadd_ps(_mm256_load_ps(wptr), v, vs0); |
|
} |
|
|
|
__m256 s0 = _mm256_hadd_ps(_mm256_hadd_ps(vs0, vs0), vs0); |
|
s0 = _mm256_add_ps(s0, _mm256_permute2f128_ps(s0, s0, 1)); |
|
_mm_store_ss(&temp, _mm256_castps256_ps128(s0)); |
|
dst[i] = temp + bias[i]; |
|
} |
|
|
|
_mm256_zeroupper(); |
|
} |
|
|
|
|
|
void fastGEMM( const float* aptr, size_t astep, const float* bptr, |
|
size_t bstep, float* cptr, size_t cstep, |
|
int ma, int na, int nb ) |
|
{ |
|
int n = 0; |
|
|
|
#if CV_AVX512_SKX // AVX512VL is necessary to avoid register spilling |
|
for( ; n <= nb - 32; n += 32 ) |
|
{ |
|
for( int m = 0; m < ma; m += 4 ) |
|
{ |
|
const float* aptr0 = aptr + astep*m; |
|
const float* aptr1 = aptr + astep*std::min(m+1, ma-1); |
|
const float* aptr2 = aptr + astep*std::min(m+2, ma-1); |
|
const float* aptr3 = aptr + astep*std::min(m+3, ma-1); |
|
|
|
float* cptr0 = cptr + cstep*m; |
|
float* cptr1 = cptr + cstep*std::min(m+1, ma-1); |
|
float* cptr2 = cptr + cstep*std::min(m+2, ma-1); |
|
float* cptr3 = cptr + cstep*std::min(m+3, ma-1); |
|
|
|
__m512 d00 = _mm512_setzero_ps(), d01 = _mm512_setzero_ps(); |
|
__m512 d10 = _mm512_setzero_ps(), d11 = _mm512_setzero_ps(); |
|
__m512 d20 = _mm512_setzero_ps(), d21 = _mm512_setzero_ps(); |
|
__m512 d30 = _mm512_setzero_ps(), d31 = _mm512_setzero_ps(); |
|
|
|
for( int k = 0; k < na; k++ ) |
|
{ |
|
__m512 a0 = _mm512_set1_ps(aptr0[k]); |
|
__m512 a1 = _mm512_set1_ps(aptr1[k]); |
|
__m512 a2 = _mm512_set1_ps(aptr2[k]); |
|
__m512 a3 = _mm512_set1_ps(aptr3[k]); |
|
__m512 b0 = _mm512_loadu_ps(bptr + k*bstep + n); |
|
__m512 b1 = _mm512_loadu_ps(bptr + k*bstep + n + 16); |
|
d00 = _mm512_fmadd_ps(a0, b0, d00); |
|
d01 = _mm512_fmadd_ps(a0, b1, d01); |
|
d10 = _mm512_fmadd_ps(a1, b0, d10); |
|
d11 = _mm512_fmadd_ps(a1, b1, d11); |
|
d20 = _mm512_fmadd_ps(a2, b0, d20); |
|
d21 = _mm512_fmadd_ps(a2, b1, d21); |
|
d30 = _mm512_fmadd_ps(a3, b0, d30); |
|
d31 = _mm512_fmadd_ps(a3, b1, d31); |
|
} |
|
|
|
_mm512_storeu_ps(cptr0 + n, d00); |
|
_mm512_storeu_ps(cptr0 + n + 16, d01); |
|
_mm512_storeu_ps(cptr1 + n, d10); |
|
_mm512_storeu_ps(cptr1 + n + 16, d11); |
|
_mm512_storeu_ps(cptr2 + n, d20); |
|
_mm512_storeu_ps(cptr2 + n + 16, d21); |
|
_mm512_storeu_ps(cptr3 + n, d30); |
|
_mm512_storeu_ps(cptr3 + n + 16, d31); |
|
} |
|
} |
|
#endif |
|
|
|
for( ; n <= nb - 16; n += 16 ) |
|
{ |
|
for( int m = 0; m < ma; m += 4 ) |
|
{ |
|
const float* aptr0 = aptr + astep*m; |
|
const float* aptr1 = aptr + astep*std::min(m+1, ma-1); |
|
const float* aptr2 = aptr + astep*std::min(m+2, ma-1); |
|
const float* aptr3 = aptr + astep*std::min(m+3, ma-1); |
|
|
|
float* cptr0 = cptr + cstep*m; |
|
float* cptr1 = cptr + cstep*std::min(m+1, ma-1); |
|
float* cptr2 = cptr + cstep*std::min(m+2, ma-1); |
|
float* cptr3 = cptr + cstep*std::min(m+3, ma-1); |
|
|
|
__m256 d00 = _mm256_setzero_ps(), d01 = _mm256_setzero_ps(); |
|
__m256 d10 = _mm256_setzero_ps(), d11 = _mm256_setzero_ps(); |
|
__m256 d20 = _mm256_setzero_ps(), d21 = _mm256_setzero_ps(); |
|
__m256 d30 = _mm256_setzero_ps(), d31 = _mm256_setzero_ps(); |
|
|
|
for( int k = 0; k < na; k++ ) |
|
{ |
|
__m256 a0 = _mm256_set1_ps(aptr0[k]); |
|
__m256 a1 = _mm256_set1_ps(aptr1[k]); |
|
__m256 a2 = _mm256_set1_ps(aptr2[k]); |
|
__m256 a3 = _mm256_set1_ps(aptr3[k]); |
|
__m256 b0 = _mm256_loadu_ps(bptr + k*bstep + n); |
|
__m256 b1 = _mm256_loadu_ps(bptr + k*bstep + n + 8); |
|
d00 = _mm256_fmadd_ps(a0, b0, d00); |
|
d01 = _mm256_fmadd_ps(a0, b1, d01); |
|
d10 = _mm256_fmadd_ps(a1, b0, d10); |
|
d11 = _mm256_fmadd_ps(a1, b1, d11); |
|
d20 = _mm256_fmadd_ps(a2, b0, d20); |
|
d21 = _mm256_fmadd_ps(a2, b1, d21); |
|
d30 = _mm256_fmadd_ps(a3, b0, d30); |
|
d31 = _mm256_fmadd_ps(a3, b1, d31); |
|
} |
|
|
|
_mm256_storeu_ps(cptr0 + n, d00); |
|
_mm256_storeu_ps(cptr0 + n + 8, d01); |
|
_mm256_storeu_ps(cptr1 + n, d10); |
|
_mm256_storeu_ps(cptr1 + n + 8, d11); |
|
_mm256_storeu_ps(cptr2 + n, d20); |
|
_mm256_storeu_ps(cptr2 + n + 8, d21); |
|
_mm256_storeu_ps(cptr3 + n, d30); |
|
_mm256_storeu_ps(cptr3 + n + 8, d31); |
|
} |
|
} |
|
|
|
for( ; n < nb; n++ ) |
|
{ |
|
for( int m = 0; m < ma; m++ ) |
|
{ |
|
const float* aptr0 = aptr + astep*m; |
|
float* cptr0 = cptr + cstep*m; |
|
float d0 = 0.f; |
|
|
|
for( int k = 0; k < na; k++ ) |
|
d0 += aptr0[k]*bptr[k*bstep + n]; |
|
|
|
cptr0[n] = d0; |
|
} |
|
} |
|
_mm256_zeroupper(); |
|
} |
|
|
|
#endif // CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY |
|
|
|
CV_CPU_OPTIMIZATION_NAMESPACE_END |
|
}} // namespace
|
|
|