mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
475 lines
15 KiB
475 lines
15 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#ifdef HAVE_CUDA |
|
|
|
namespace opencv_test { namespace { |
|
|
|
////////////////////////////////////////////////////// |
|
// BroxOpticalFlow |
|
|
|
//#define BROX_DUMP |
|
|
|
struct BroxOpticalFlow : testing::TestWithParam<cv::cuda::DeviceInfo> |
|
{ |
|
cv::cuda::DeviceInfo devInfo; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GetParam(); |
|
|
|
cv::cuda::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
CUDA_TEST_P(BroxOpticalFlow, Regression) |
|
{ |
|
cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1); |
|
ASSERT_FALSE(frame0.empty()); |
|
|
|
cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1); |
|
ASSERT_FALSE(frame1.empty()); |
|
|
|
cv::Ptr<cv::cuda::BroxOpticalFlow> brox = |
|
cv::cuda::BroxOpticalFlow::create(0.197 /*alpha*/, 50.0 /*gamma*/, 0.8 /*scale_factor*/, |
|
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/); |
|
|
|
cv::cuda::GpuMat flow; |
|
brox->calc(loadMat(frame0), loadMat(frame1), flow); |
|
|
|
cv::cuda::GpuMat flows[2]; |
|
cv::cuda::split(flow, flows); |
|
|
|
cv::cuda::GpuMat u = flows[0]; |
|
cv::cuda::GpuMat v = flows[1]; |
|
|
|
std::string fname(cvtest::TS::ptr()->get_data_path()); |
|
if (devInfo.majorVersion() >= 2) |
|
fname += "opticalflow/brox_optical_flow_cc20.bin"; |
|
else |
|
fname += "opticalflow/brox_optical_flow.bin"; |
|
|
|
#ifndef BROX_DUMP |
|
std::ifstream f(fname.c_str(), std::ios_base::binary); |
|
|
|
int rows, cols; |
|
|
|
f.read((char*) &rows, sizeof(rows)); |
|
f.read((char*) &cols, sizeof(cols)); |
|
|
|
cv::Mat u_gold(rows, cols, CV_32FC1); |
|
|
|
for (int i = 0; i < u_gold.rows; ++i) |
|
f.read(u_gold.ptr<char>(i), u_gold.cols * sizeof(float)); |
|
|
|
cv::Mat v_gold(rows, cols, CV_32FC1); |
|
|
|
for (int i = 0; i < v_gold.rows; ++i) |
|
f.read(v_gold.ptr<char>(i), v_gold.cols * sizeof(float)); |
|
|
|
EXPECT_MAT_SIMILAR(u_gold, u, 1e-3); |
|
EXPECT_MAT_SIMILAR(v_gold, v, 1e-3); |
|
#else |
|
std::ofstream f(fname.c_str(), std::ios_base::binary); |
|
|
|
f.write((char*) &u.rows, sizeof(u.rows)); |
|
f.write((char*) &u.cols, sizeof(u.cols)); |
|
|
|
cv::Mat h_u(u); |
|
cv::Mat h_v(v); |
|
|
|
for (int i = 0; i < u.rows; ++i) |
|
f.write(h_u.ptr<char>(i), u.cols * sizeof(float)); |
|
|
|
for (int i = 0; i < v.rows; ++i) |
|
f.write(h_v.ptr<char>(i), v.cols * sizeof(float)); |
|
#endif |
|
} |
|
|
|
CUDA_TEST_P(BroxOpticalFlow, OpticalFlowNan) |
|
{ |
|
cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1); |
|
ASSERT_FALSE(frame0.empty()); |
|
|
|
cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1); |
|
ASSERT_FALSE(frame1.empty()); |
|
|
|
cv::Mat r_frame0, r_frame1; |
|
cv::resize(frame0, r_frame0, cv::Size(1380,1000)); |
|
cv::resize(frame1, r_frame1, cv::Size(1380,1000)); |
|
|
|
cv::Ptr<cv::cuda::BroxOpticalFlow> brox = |
|
cv::cuda::BroxOpticalFlow::create(0.197 /*alpha*/, 50.0 /*gamma*/, 0.8 /*scale_factor*/, |
|
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/); |
|
|
|
cv::cuda::GpuMat flow; |
|
brox->calc(loadMat(frame0), loadMat(frame1), flow); |
|
|
|
cv::cuda::GpuMat flows[2]; |
|
cv::cuda::split(flow, flows); |
|
|
|
cv::cuda::GpuMat u = flows[0]; |
|
cv::cuda::GpuMat v = flows[1]; |
|
|
|
cv::Mat h_u, h_v; |
|
u.download(h_u); |
|
v.download(h_v); |
|
|
|
EXPECT_TRUE(cv::checkRange(h_u)); |
|
EXPECT_TRUE(cv::checkRange(h_v)); |
|
}; |
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, BroxOpticalFlow, ALL_DEVICES); |
|
|
|
////////////////////////////////////////////////////// |
|
// PyrLKOpticalFlow |
|
|
|
namespace |
|
{ |
|
IMPLEMENT_PARAM_CLASS(Chan, int) |
|
IMPLEMENT_PARAM_CLASS(DataType, int) |
|
} |
|
|
|
PARAM_TEST_CASE(PyrLKOpticalFlow, cv::cuda::DeviceInfo, Chan, DataType) |
|
{ |
|
cv::cuda::DeviceInfo devInfo; |
|
int channels; |
|
int dataType; |
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
channels = GET_PARAM(1); |
|
dataType = GET_PARAM(2); |
|
cv::cuda::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
CUDA_TEST_P(PyrLKOpticalFlow, Sparse) |
|
{ |
|
cv::Mat frame0 = readImage("opticalflow/frame0.png", channels == 1 ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); |
|
ASSERT_FALSE(frame0.empty()); |
|
|
|
cv::Mat frame1 = readImage("opticalflow/frame1.png", channels == 1 ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); |
|
ASSERT_FALSE(frame1.empty()); |
|
|
|
cv::Mat gray_frame; |
|
if (channels == 1) |
|
gray_frame = frame0; |
|
else |
|
cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY); |
|
|
|
std::vector<cv::Point2f> pts; |
|
cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0); |
|
|
|
cv::cuda::GpuMat d_pts; |
|
cv::Mat pts_mat(1, (int) pts.size(), CV_32FC2, (void*) &pts[0]); |
|
d_pts.upload(pts_mat); |
|
|
|
cv::Ptr<cv::cuda::SparsePyrLKOpticalFlow> pyrLK = |
|
cv::cuda::SparsePyrLKOpticalFlow::create(); |
|
|
|
std::vector<cv::Point2f> nextPts_gold; |
|
std::vector<unsigned char> status_gold; |
|
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, cv::noArray()); |
|
|
|
|
|
cv::cuda::GpuMat d_nextPts; |
|
cv::cuda::GpuMat d_status; |
|
cv::Mat converted0, converted1; |
|
if(channels == 4) |
|
{ |
|
cv::cvtColor(frame0, frame0, cv::COLOR_BGR2BGRA); |
|
cv::cvtColor(frame1, frame1, cv::COLOR_BGR2BGRA); |
|
} |
|
frame0.convertTo(converted0, dataType); |
|
frame1.convertTo(converted1, dataType); |
|
|
|
pyrLK->calc(loadMat(converted0), loadMat(converted1), d_pts, d_nextPts, d_status); |
|
|
|
std::vector<cv::Point2f> nextPts(d_nextPts.cols); |
|
cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void*)&nextPts[0]); |
|
d_nextPts.download(nextPts_mat); |
|
|
|
std::vector<unsigned char> status(d_status.cols); |
|
cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void*)&status[0]); |
|
d_status.download(status_mat); |
|
|
|
ASSERT_EQ(nextPts_gold.size(), nextPts.size()); |
|
ASSERT_EQ(status_gold.size(), status.size()); |
|
|
|
size_t mistmatch = 0; |
|
for (size_t i = 0; i < nextPts.size(); ++i) |
|
{ |
|
cv::Point2i a = nextPts[i]; |
|
cv::Point2i b = nextPts_gold[i]; |
|
|
|
if (status[i] != status_gold[i]) |
|
{ |
|
++mistmatch; |
|
continue; |
|
} |
|
|
|
if (status[i]) |
|
{ |
|
bool eq = std::abs(a.x - b.x) <= 1 && std::abs(a.y - b.y) <= 1; |
|
|
|
if (!eq) |
|
++mistmatch; |
|
} |
|
} |
|
|
|
double bad_ratio = static_cast<double>(mistmatch) / nextPts.size(); |
|
|
|
ASSERT_LE(bad_ratio, 0.01); |
|
|
|
|
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, PyrLKOpticalFlow, testing::Combine( |
|
ALL_DEVICES, |
|
testing::Values(Chan(1), Chan(3), Chan(4)), |
|
testing::Values(DataType(CV_8U), DataType(CV_16U), DataType(CV_32S), DataType(CV_32F)))); |
|
|
|
|
|
|
|
////////////////////////////////////////////////////// |
|
// FarnebackOpticalFlow |
|
|
|
namespace |
|
{ |
|
IMPLEMENT_PARAM_CLASS(PyrScale, double) |
|
IMPLEMENT_PARAM_CLASS(PolyN, int) |
|
CV_FLAGS(FarnebackOptFlowFlags, 0, OPTFLOW_FARNEBACK_GAUSSIAN) |
|
IMPLEMENT_PARAM_CLASS(UseInitFlow, bool) |
|
} |
|
|
|
PARAM_TEST_CASE(FarnebackOpticalFlow, cv::cuda::DeviceInfo, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow) |
|
{ |
|
cv::cuda::DeviceInfo devInfo; |
|
double pyrScale; |
|
int polyN; |
|
int flags; |
|
bool useInitFlow; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
pyrScale = GET_PARAM(1); |
|
polyN = GET_PARAM(2); |
|
flags = GET_PARAM(3); |
|
useInitFlow = GET_PARAM(4); |
|
|
|
cv::cuda::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
CUDA_TEST_P(FarnebackOpticalFlow, Accuracy) |
|
{ |
|
cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame0.empty()); |
|
|
|
cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame1.empty()); |
|
|
|
double polySigma = polyN <= 5 ? 1.1 : 1.5; |
|
|
|
cv::Ptr<cv::cuda::FarnebackOpticalFlow> farn = |
|
cv::cuda::FarnebackOpticalFlow::create(); |
|
farn->setPyrScale(pyrScale); |
|
farn->setPolyN(polyN); |
|
farn->setPolySigma(polySigma); |
|
farn->setFlags(flags); |
|
|
|
cv::cuda::GpuMat d_flow; |
|
farn->calc(loadMat(frame0), loadMat(frame1), d_flow); |
|
|
|
cv::Mat flow; |
|
if (useInitFlow) |
|
{ |
|
d_flow.download(flow); |
|
|
|
farn->setFlags(farn->getFlags() | cv::OPTFLOW_USE_INITIAL_FLOW); |
|
farn->calc(loadMat(frame0), loadMat(frame1), d_flow); |
|
} |
|
|
|
cv::calcOpticalFlowFarneback( |
|
frame0, frame1, flow, farn->getPyrScale(), farn->getNumLevels(), farn->getWinSize(), |
|
farn->getNumIters(), farn->getPolyN(), farn->getPolySigma(), farn->getFlags()); |
|
|
|
// Relax test limit when the flag is set |
|
if (farn->getFlags() & cv::OPTFLOW_FARNEBACK_GAUSSIAN) |
|
{ |
|
EXPECT_MAT_SIMILAR(flow, d_flow, 2e-2); |
|
} |
|
else |
|
{ |
|
EXPECT_MAT_SIMILAR(flow, d_flow, 1e-4); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, FarnebackOpticalFlow, testing::Combine( |
|
ALL_DEVICES, |
|
testing::Values(PyrScale(0.3), PyrScale(0.5), PyrScale(0.8)), |
|
testing::Values(PolyN(5), PolyN(7)), |
|
testing::Values(FarnebackOptFlowFlags(0), FarnebackOptFlowFlags(cv::OPTFLOW_FARNEBACK_GAUSSIAN)), |
|
testing::Values(UseInitFlow(false), UseInitFlow(true)))); |
|
|
|
////////////////////////////////////////////////////// |
|
// OpticalFlowDual_TVL1 |
|
|
|
namespace |
|
{ |
|
IMPLEMENT_PARAM_CLASS(Gamma, double) |
|
} |
|
|
|
PARAM_TEST_CASE(OpticalFlowDual_TVL1, cv::cuda::DeviceInfo, Gamma) |
|
{ |
|
cv::cuda::DeviceInfo devInfo; |
|
double gamma; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
gamma = GET_PARAM(1); |
|
|
|
cv::cuda::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
CUDA_TEST_P(OpticalFlowDual_TVL1, Accuracy) |
|
{ |
|
cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame0.empty()); |
|
|
|
cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame1.empty()); |
|
|
|
cv::Ptr<cv::cuda::OpticalFlowDual_TVL1> d_alg = |
|
cv::cuda::OpticalFlowDual_TVL1::create(); |
|
d_alg->setNumIterations(10); |
|
d_alg->setGamma(gamma); |
|
|
|
cv::cuda::GpuMat d_flow; |
|
d_alg->calc(loadMat(frame0), loadMat(frame1), d_flow); |
|
|
|
cv::Ptr<cv::DualTVL1OpticalFlow> alg = cv::createOptFlow_DualTVL1(); |
|
alg->setMedianFiltering(1); |
|
alg->setInnerIterations(1); |
|
alg->setOuterIterations(d_alg->getNumIterations()); |
|
alg->setGamma(gamma); |
|
|
|
cv::Mat flow; |
|
alg->calc(frame0, frame1, flow); |
|
|
|
EXPECT_MAT_SIMILAR(flow, d_flow, 4e-3); |
|
} |
|
|
|
class TVL1AsyncParallelLoopBody : public cv::ParallelLoopBody |
|
{ |
|
public: |
|
TVL1AsyncParallelLoopBody(const cv::cuda::GpuMat& d_img1_, const cv::cuda::GpuMat& d_img2_, cv::cuda::GpuMat* d_flow_, int iterations_, double gamma_) |
|
: d_img1(d_img1_), d_img2(d_img2_), d_flow(d_flow_), iterations(iterations_), gamma(gamma_) {} |
|
~TVL1AsyncParallelLoopBody() {} |
|
void operator()(const cv::Range& r) const |
|
{ |
|
for (int i = r.start; i < r.end; i++) { |
|
cv::cuda::Stream stream; |
|
cv::Ptr<cv::cuda::OpticalFlowDual_TVL1> d_alg = cv::cuda::OpticalFlowDual_TVL1::create(); |
|
d_alg->setNumIterations(iterations); |
|
d_alg->setGamma(gamma); |
|
d_alg->calc(d_img1, d_img2, d_flow[i], stream); |
|
stream.waitForCompletion(); |
|
} |
|
} |
|
protected: |
|
const cv::cuda::GpuMat& d_img1; |
|
const cv::cuda::GpuMat& d_img2; |
|
cv::cuda::GpuMat* d_flow; |
|
int iterations; |
|
double gamma; |
|
}; |
|
|
|
#define NUM_STREAMS 16 |
|
|
|
CUDA_TEST_P(OpticalFlowDual_TVL1, Async) |
|
{ |
|
if (!supportFeature(devInfo, cv::cuda::FEATURE_SET_COMPUTE_30)) |
|
{ |
|
throw SkipTestException("CUDA device doesn't support texture objects"); |
|
} |
|
else |
|
{ |
|
cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame0.empty()); |
|
|
|
cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame1.empty()); |
|
|
|
const int iterations = 10; |
|
|
|
// Synchronous call |
|
cv::Ptr<cv::cuda::OpticalFlowDual_TVL1> d_alg = |
|
cv::cuda::OpticalFlowDual_TVL1::create(); |
|
d_alg->setNumIterations(iterations); |
|
d_alg->setGamma(gamma); |
|
|
|
cv::cuda::GpuMat d_flow_gold; |
|
d_alg->calc(loadMat(frame0), loadMat(frame1), d_flow_gold); |
|
|
|
// Asynchronous call |
|
cv::cuda::GpuMat d_flow[NUM_STREAMS]; |
|
cv::parallel_for_(cv::Range(0, NUM_STREAMS), TVL1AsyncParallelLoopBody(loadMat(frame0), loadMat(frame1), d_flow, iterations, gamma)); |
|
|
|
// Compare the results of synchronous call and asynchronous call |
|
for (int i = 0; i < NUM_STREAMS; i++) |
|
EXPECT_MAT_NEAR(d_flow_gold, d_flow[i], 0.0); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, OpticalFlowDual_TVL1, testing::Combine( |
|
ALL_DEVICES, |
|
testing::Values(Gamma(0.0), Gamma(1.0)))); |
|
|
|
}} // namespace |
|
#endif // HAVE_CUDA
|
|
|