mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
572 lines
16 KiB
572 lines
16 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { |
|
namespace { |
|
|
|
using namespace cv; |
|
|
|
/** Reprojects screen point to camera space given z coord. */ |
|
struct Reprojector |
|
{ |
|
Reprojector() {} |
|
inline Reprojector(Matx33f intr) |
|
{ |
|
fxinv = 1.f / intr(0, 0), fyinv = 1.f / intr(1, 1); |
|
cx = intr(0, 2), cy = intr(1, 2); |
|
} |
|
template<typename T> |
|
inline cv::Point3_<T> operator()(cv::Point3_<T> p) const |
|
{ |
|
T x = p.z * (p.x - cx) * fxinv; |
|
T y = p.z * (p.y - cy) * fyinv; |
|
return cv::Point3_<T>(x, y, p.z); |
|
} |
|
|
|
float fxinv, fyinv, cx, cy; |
|
}; |
|
|
|
template<class Scene> |
|
struct RenderInvoker : ParallelLoopBody |
|
{ |
|
RenderInvoker(Mat_<float>& _frame, Affine3f _pose, |
|
Reprojector _reproj, float _depthFactor, bool _onlySemisphere) |
|
: ParallelLoopBody(), |
|
frame(_frame), |
|
pose(_pose), |
|
reproj(_reproj), |
|
depthFactor(_depthFactor), |
|
onlySemisphere(_onlySemisphere) |
|
{ } |
|
|
|
virtual void operator ()(const cv::Range& r) const |
|
{ |
|
for (int y = r.start; y < r.end; y++) |
|
{ |
|
float* frameRow = frame[y]; |
|
for (int x = 0; x < frame.cols; x++) |
|
{ |
|
float pix = 0; |
|
|
|
Point3f orig = pose.translation(); |
|
// direction through pixel |
|
Point3f screenVec = reproj(Point3f((float)x, (float)y, 1.f)); |
|
float xyt = 1.f / (screenVec.x * screenVec.x + |
|
screenVec.y * screenVec.y + 1.f); |
|
Point3f dir = normalize(Vec3f(pose.rotation() * screenVec)); |
|
// screen space axis |
|
dir.y = -dir.y; |
|
|
|
const float maxDepth = 20.f; |
|
const float maxSteps = 256; |
|
float t = 0.f; |
|
for (int step = 0; step < maxSteps && t < maxDepth; step++) |
|
{ |
|
Point3f p = orig + dir * t; |
|
float d = Scene::map(p, onlySemisphere); |
|
if (d < 0.000001f) |
|
{ |
|
float depth = std::sqrt(t * t * xyt); |
|
pix = depth * depthFactor; |
|
break; |
|
} |
|
t += d; |
|
} |
|
|
|
frameRow[x] = pix; |
|
} |
|
} |
|
} |
|
|
|
Mat_<float>& frame; |
|
Affine3f pose; |
|
Reprojector reproj; |
|
float depthFactor; |
|
bool onlySemisphere; |
|
}; |
|
|
|
struct Scene |
|
{ |
|
virtual ~Scene() {} |
|
static Ptr<Scene> create(Size sz, Matx33f _intr, float _depthFactor, bool onlySemisphere); |
|
virtual Mat depth(Affine3f pose) = 0; |
|
virtual std::vector<Affine3f> getPoses() = 0; |
|
}; |
|
|
|
struct SemisphereScene : Scene |
|
{ |
|
const int framesPerCycle = 72; |
|
const float nCycles = 0.25f; |
|
const Affine3f startPose = Affine3f(Vec3f(0.f, 0.f, 0.f), Vec3f(1.5f, 0.3f, -2.1f)); |
|
|
|
Size frameSize; |
|
Matx33f intr; |
|
float depthFactor; |
|
bool onlySemisphere; |
|
|
|
SemisphereScene(Size sz, Matx33f _intr, float _depthFactor, bool _onlySemisphere) : |
|
frameSize(sz), intr(_intr), depthFactor(_depthFactor), onlySemisphere(_onlySemisphere) |
|
{ } |
|
|
|
static float map(Point3f p, bool onlySemisphere) |
|
{ |
|
float plane = p.y + 0.5f; |
|
Point3f spherePose = p - Point3f(-0.0f, 0.3f, 1.1f); |
|
float sphereRadius = 0.5f; |
|
float sphere = (float)cv::norm(spherePose) - sphereRadius; |
|
float sphereMinusBox = sphere; |
|
|
|
float subSphereRadius = 0.05f; |
|
Point3f subSpherePose = p - Point3f(0.3f, -0.1f, -0.3f); |
|
float subSphere = (float)cv::norm(subSpherePose) - subSphereRadius; |
|
|
|
float res; |
|
if (!onlySemisphere) |
|
res = min({ sphereMinusBox, subSphere, plane }); |
|
else |
|
res = sphereMinusBox; |
|
|
|
return res; |
|
} |
|
|
|
Mat depth(Affine3f pose) override |
|
{ |
|
Mat_<float> frame(frameSize); |
|
Reprojector reproj(intr); |
|
|
|
Range range(0, frame.rows); |
|
parallel_for_(range, RenderInvoker<SemisphereScene>(frame, pose, reproj, depthFactor, onlySemisphere)); |
|
|
|
return std::move(frame); |
|
} |
|
|
|
std::vector<Affine3f> getPoses() override |
|
{ |
|
std::vector<Affine3f> poses; |
|
for (int i = 0; i < framesPerCycle * nCycles; i++) |
|
{ |
|
float angle = (float)(CV_2PI * i / framesPerCycle); |
|
Affine3f pose; |
|
pose = pose.rotate(startPose.rotation()); |
|
pose = pose.rotate(Vec3f(0.f, -0.5f, 0.f) * angle); |
|
pose = pose.translate(Vec3f(startPose.translation()[0] * sin(angle), |
|
startPose.translation()[1], |
|
startPose.translation()[2] * cos(angle))); |
|
poses.push_back(pose); |
|
} |
|
|
|
return poses; |
|
} |
|
|
|
}; |
|
|
|
Ptr<Scene> Scene::create(Size sz, Matx33f _intr, float _depthFactor, bool _onlySemisphere) |
|
{ |
|
return makePtr<SemisphereScene>(sz, _intr, _depthFactor, _onlySemisphere); |
|
} |
|
|
|
// this is a temporary solution |
|
// ---------------------------- |
|
|
|
typedef cv::Vec4f ptype; |
|
typedef cv::Mat_< ptype > Points; |
|
typedef Points Normals; |
|
typedef Size2i Size; |
|
|
|
template<int p> |
|
inline float specPow(float x) |
|
{ |
|
if (p % 2 == 0) |
|
{ |
|
float v = specPow<p / 2>(x); |
|
return v * v; |
|
} |
|
else |
|
{ |
|
float v = specPow<(p - 1) / 2>(x); |
|
return v * v * x; |
|
} |
|
} |
|
|
|
template<> |
|
inline float specPow<0>(float /*x*/) |
|
{ |
|
return 1.f; |
|
} |
|
|
|
template<> |
|
inline float specPow<1>(float x) |
|
{ |
|
return x; |
|
} |
|
|
|
inline cv::Vec3f fromPtype(const ptype& x) |
|
{ |
|
return cv::Vec3f(x[0], x[1], x[2]); |
|
} |
|
|
|
inline Point3f normalize(const Vec3f& v) |
|
{ |
|
double nv = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); |
|
return v * (nv ? 1. / nv : 0.); |
|
} |
|
|
|
void renderPointsNormals(InputArray _points, InputArray _normals, OutputArray image, Affine3f lightPose) |
|
{ |
|
Size sz = _points.size(); |
|
image.create(sz, CV_8UC4); |
|
|
|
Points points = _points.getMat(); |
|
Normals normals = _normals.getMat(); |
|
|
|
Mat_<Vec4b> img = image.getMat(); |
|
|
|
Range range(0, sz.height); |
|
const int nstripes = -1; |
|
parallel_for_(range, [&](const Range&) |
|
{ |
|
for (int y = range.start; y < range.end; y++) |
|
{ |
|
Vec4b* imgRow = img[y]; |
|
const ptype* ptsRow = points[y]; |
|
const ptype* nrmRow = normals[y]; |
|
|
|
for (int x = 0; x < sz.width; x++) |
|
{ |
|
Point3f p = fromPtype(ptsRow[x]); |
|
Point3f n = fromPtype(nrmRow[x]); |
|
|
|
Vec4b color; |
|
|
|
if (cvIsNaN(p.x) || cvIsNaN(p.y) || cvIsNaN(p.z)) |
|
{ |
|
color = Vec4b(0, 32, 0, 0); |
|
} |
|
else |
|
{ |
|
const float Ka = 0.3f; //ambient coeff |
|
const float Kd = 0.5f; //diffuse coeff |
|
const float Ks = 0.2f; //specular coeff |
|
const int sp = 20; //specular power |
|
|
|
const float Ax = 1.f; //ambient color, can be RGB |
|
const float Dx = 1.f; //diffuse color, can be RGB |
|
const float Sx = 1.f; //specular color, can be RGB |
|
const float Lx = 1.f; //light color |
|
|
|
Point3f l = normalize(lightPose.translation() - Vec3f(p)); |
|
Point3f v = normalize(-Vec3f(p)); |
|
Point3f r = normalize(Vec3f(2.f * n * n.dot(l) - l)); |
|
|
|
uchar ix = (uchar)((Ax * Ka * Dx + Lx * Kd * Dx * max(0.f, n.dot(l)) + |
|
Lx * Ks * Sx * specPow<sp>(max(0.f, r.dot(v)))) * 255.f); |
|
color = Vec4b(ix, ix, ix, 0); |
|
} |
|
|
|
imgRow[x] = color; |
|
} |
|
} |
|
}, nstripes); |
|
} |
|
// ---------------------------- |
|
|
|
static const bool display = false; |
|
static const bool parallelCheck = false; |
|
|
|
class Settings |
|
{ |
|
public: |
|
float depthFactor; |
|
Matx33f intr; |
|
Size frameSize; |
|
Vec3f lightPose; |
|
|
|
Ptr<Volume> volume; |
|
Ptr<Scene> scene; |
|
std::vector<Affine3f> poses; |
|
|
|
Settings(bool useHashTSDF, bool onlySemisphere) |
|
{ |
|
frameSize = Size(640, 480); |
|
|
|
float fx, fy, cx, cy; |
|
fx = fy = 525.f; |
|
cx = frameSize.width / 2 - 0.5f; |
|
cy = frameSize.height / 2 - 0.5f; |
|
intr = Matx33f(fx, 0, cx, |
|
0, fy, cy, |
|
0, 0, 1); |
|
|
|
// 5000 for the 16-bit PNG files |
|
// 1 for the 32-bit float images in the ROS bag files |
|
depthFactor = 5000; |
|
|
|
Vec3i volumeDims = Vec3i::all(512); //number of voxels |
|
|
|
float volSize = 3.f; |
|
float voxelSize = volSize / 512.f; //meters |
|
|
|
// default pose of volume cube |
|
Affine3f volumePose = Affine3f().translate(Vec3f(-volSize / 2.f, -volSize / 2.f, 0.5f)); |
|
float tsdf_trunc_dist = 7 * voxelSize; // about 0.04f in meters |
|
int tsdf_max_weight = 64; //frames |
|
|
|
float raycast_step_factor = 0.25f; //in voxel sizes |
|
// gradient delta factor is fixed at 1.0f and is not used |
|
//p.gradient_delta_factor = 0.5f; //in voxel sizes |
|
|
|
//p.lightPose = p.volume_pose.translation()/4; //meters |
|
lightPose = Vec3f::all(0.f); //meters |
|
|
|
// depth truncation is not used by default but can be useful in some scenes |
|
float truncateThreshold = 0.f; //meters |
|
|
|
VolumeParams::VolumeKind volumeKind = VolumeParams::VolumeKind::TSDF; |
|
|
|
if (useHashTSDF) |
|
{ |
|
volumeKind = VolumeParams::VolumeKind::HASHTSDF; |
|
truncateThreshold = 4.f; |
|
} |
|
else |
|
{ |
|
volSize = 3.f; |
|
volumeDims = Vec3i::all(128); //number of voxels |
|
voxelSize = volSize / 128.f; |
|
tsdf_trunc_dist = 2 * voxelSize; // 0.04f in meters |
|
|
|
raycast_step_factor = 0.75f; //in voxel sizes |
|
} |
|
|
|
volume = makeVolume(volumeKind, voxelSize, volumePose.matrix, |
|
raycast_step_factor, tsdf_trunc_dist, tsdf_max_weight, |
|
truncateThreshold, volumeDims[0], volumeDims[1], volumeDims[2]); |
|
|
|
scene = Scene::create(frameSize, intr, depthFactor, onlySemisphere); |
|
poses = scene->getPoses(); |
|
} |
|
}; |
|
|
|
void displayImage(Mat depth, Mat points, Mat normals, float depthFactor, Vec3f lightPose) |
|
{ |
|
Mat image; |
|
patchNaNs(points); |
|
imshow("depth", depth * (1.f / depthFactor / 4.f)); |
|
renderPointsNormals(points, normals, image, lightPose); |
|
imshow("render", image); |
|
waitKey(2000); |
|
} |
|
|
|
void normalsCheck(Mat normals) |
|
{ |
|
Vec4f vector; |
|
for (auto pvector = normals.begin<Vec4f>(); pvector < normals.end<Vec4f>(); pvector++) |
|
{ |
|
vector = *pvector; |
|
if (!cvIsNaN(vector[0])) |
|
{ |
|
float length = vector[0] * vector[0] + |
|
vector[1] * vector[1] + |
|
vector[2] * vector[2]; |
|
ASSERT_LT(abs(1 - length), 0.0001f) << "There is normal with length != 1"; |
|
} |
|
} |
|
} |
|
|
|
int counterOfValid(Mat points) |
|
{ |
|
Vec4f* v; |
|
int i, j; |
|
int count = 0; |
|
for (i = 0; i < points.rows; ++i) |
|
{ |
|
v = (points.ptr<Vec4f>(i)); |
|
for (j = 0; j < points.cols; ++j) |
|
{ |
|
if ((v[j])[0] != 0 || |
|
(v[j])[1] != 0 || |
|
(v[j])[2] != 0) |
|
{ |
|
count++; |
|
} |
|
} |
|
} |
|
return count; |
|
} |
|
|
|
void normal_test(bool isHashTSDF, bool isRaycast, bool isFetchPointsNormals, bool isFetchNormals) |
|
{ |
|
auto normalCheck = [](Vec4f& vector, const int*) |
|
{ |
|
if (!cvIsNaN(vector[0])) |
|
{ |
|
float length = vector[0] * vector[0] + |
|
vector[1] * vector[1] + |
|
vector[2] * vector[2]; |
|
ASSERT_LT(abs(1 - length), 0.0001f) << "There is normal with length != 1"; |
|
} |
|
}; |
|
|
|
Settings settings(isHashTSDF, false); |
|
|
|
Mat depth = settings.scene->depth(settings.poses[0]); |
|
UMat _points, _normals, _tmpnormals; |
|
UMat _newPoints, _newNormals; |
|
Mat points, normals; |
|
AccessFlag af = ACCESS_READ; |
|
|
|
settings.volume->integrate(depth, settings.depthFactor, settings.poses[0].matrix, settings.intr); |
|
|
|
if (isRaycast) |
|
{ |
|
settings.volume->raycast(settings.poses[0].matrix, settings.intr, settings.frameSize, _points, _normals); |
|
} |
|
if (isFetchPointsNormals) |
|
{ |
|
settings.volume->fetchPointsNormals(_points, _normals); |
|
} |
|
if (isFetchNormals) |
|
{ |
|
settings.volume->fetchPointsNormals(_points, _tmpnormals); |
|
settings.volume->fetchNormals(_points, _normals); |
|
} |
|
|
|
normals = _normals.getMat(af); |
|
points = _points.getMat(af); |
|
|
|
if (parallelCheck) |
|
normals.forEach<Vec4f>(normalCheck); |
|
else |
|
normalsCheck(normals); |
|
|
|
if (isRaycast && display) |
|
displayImage(depth, points, normals, settings.depthFactor, settings.lightPose); |
|
|
|
if (isRaycast) |
|
{ |
|
settings.volume->raycast(settings.poses[17].matrix, settings.intr, settings.frameSize, _newPoints, _newNormals); |
|
normals = _newNormals.getMat(af); |
|
points = _newPoints.getMat(af); |
|
normalsCheck(normals); |
|
|
|
if (parallelCheck) |
|
normals.forEach<Vec4f>(normalCheck); |
|
else |
|
normalsCheck(normals); |
|
|
|
if (display) |
|
displayImage(depth, points, normals, settings.depthFactor, settings.lightPose); |
|
} |
|
|
|
points.release(); normals.release(); |
|
} |
|
|
|
void valid_points_test(bool isHashTSDF) |
|
{ |
|
Settings settings(isHashTSDF, true); |
|
|
|
Mat depth = settings.scene->depth(settings.poses[0]); |
|
UMat _points, _normals, _newPoints, _newNormals; |
|
AccessFlag af = ACCESS_READ; |
|
Mat points, normals; |
|
int anfas, profile; |
|
|
|
settings.volume->integrate(depth, settings.depthFactor, settings.poses[0].matrix, settings.intr); |
|
settings.volume->raycast(settings.poses[0].matrix, settings.intr, settings.frameSize, _points, _normals); |
|
normals = _normals.getMat(af); |
|
points = _points.getMat(af); |
|
patchNaNs(points); |
|
anfas = counterOfValid(points); |
|
|
|
if (display) |
|
displayImage(depth, points, normals, settings.depthFactor, settings.lightPose); |
|
|
|
settings.volume->raycast(settings.poses[17].matrix, settings.intr, settings.frameSize, _newPoints, _newNormals); |
|
normals = _newNormals.getMat(af); |
|
points = _newPoints.getMat(af); |
|
patchNaNs(points); |
|
profile = counterOfValid(points); |
|
|
|
if (display) |
|
displayImage(depth, points, normals, settings.depthFactor, settings.lightPose); |
|
|
|
// TODO: why profile == 2*anfas ? |
|
float percentValidity = float(anfas) / float(profile); |
|
|
|
ASSERT_NE(profile, 0) << "There is no points in profile"; |
|
ASSERT_NE(anfas, 0) << "There is no points in anfas"; |
|
ASSERT_LT(abs(0.5 - percentValidity), 0.3) << "percentValidity out of [0.3; 0.7] (percentValidity=" << percentValidity << ")"; |
|
} |
|
|
|
#ifndef HAVE_OPENCL |
|
TEST(TSDF, raycast_normals) { normal_test(false, true, false, false); } |
|
TEST(TSDF, fetch_points_normals) { normal_test(false, false, true, false); } |
|
TEST(TSDF, fetch_normals) { normal_test(false, false, false, true); } |
|
TEST(TSDF, valid_points) { valid_points_test(false); } |
|
|
|
TEST(HashTSDF, raycast_normals) { normal_test(true, true, false, false); } |
|
TEST(HashTSDF, fetch_points_normals) { normal_test(true, false, true, false); } |
|
TEST(HashTSDF, fetch_normals) { normal_test(true, false, false, true); } |
|
TEST(HashTSDF, valid_points) { valid_points_test(true); } |
|
#else |
|
TEST(TSDF_CPU, raycast_normals) |
|
{ |
|
cv::ocl::setUseOpenCL(false); |
|
normal_test(false, true, false, false); |
|
cv::ocl::setUseOpenCL(true); |
|
} |
|
|
|
TEST(TSDF_CPU, fetch_points_normals) |
|
{ |
|
cv::ocl::setUseOpenCL(false); |
|
normal_test(false, false, true, false); |
|
cv::ocl::setUseOpenCL(true); |
|
} |
|
|
|
TEST(TSDF_CPU, fetch_normals) |
|
{ |
|
cv::ocl::setUseOpenCL(false); |
|
normal_test(false, false, false, true); |
|
cv::ocl::setUseOpenCL(true); |
|
} |
|
|
|
TEST(TSDF_CPU, valid_points) |
|
{ |
|
cv::ocl::setUseOpenCL(false); |
|
valid_points_test(false); |
|
cv::ocl::setUseOpenCL(true); |
|
} |
|
|
|
TEST(HashTSDF_CPU, raycast_normals) |
|
{ |
|
cv::ocl::setUseOpenCL(false); |
|
normal_test(true, true, false, false); |
|
cv::ocl::setUseOpenCL(true); |
|
} |
|
|
|
TEST(HashTSDF_CPU, fetch_points_normals) |
|
{ |
|
cv::ocl::setUseOpenCL(false); |
|
normal_test(true, false, true, false); |
|
cv::ocl::setUseOpenCL(true); |
|
} |
|
|
|
TEST(HashTSDF_CPU, fetch_normals) |
|
{ |
|
cv::ocl::setUseOpenCL(false); |
|
normal_test(true, false, false, true); |
|
cv::ocl::setUseOpenCL(true); |
|
} |
|
|
|
TEST(HashTSDF_CPU, valid_points) |
|
{ |
|
cv::ocl::setUseOpenCL(false); |
|
valid_points_test(true); |
|
cv::ocl::setUseOpenCL(true); |
|
} |
|
#endif |
|
} |
|
} // namespace
|
|
|