mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
807 lines
25 KiB
807 lines
25 KiB
// ////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
// |
|
|
|
// ////////////////////////////////////////////////////////////////////////////////////// |
|
// Author: Sajjad Taheri, University of California, Irvine. sajjadt[at]uci[dot]edu |
|
// |
|
// LICENSE AGREEMENT |
|
// Copyright (c) 2015 The Regents of the University of California (Regents) |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are met: |
|
// 1. Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// 2. Redistributions in binary form must reproduce the above copyright |
|
// notice, this list of conditions and the following disclaimer in the |
|
// documentation and/or other materials provided with the distribution. |
|
// 3. Neither the name of the University nor the |
|
// names of its contributors may be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY |
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
|
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
|
// DISCLAIMED. IN NO EVENT SHALL CONTRIBUTORS BE LIABLE FOR ANY |
|
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
|
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
|
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
// |
|
|
|
if (typeof module !== 'undefined' && module.exports) { |
|
// The envrionment is Node.js |
|
var cv = require('./opencv.js'); // eslint-disable-line no-var |
|
} |
|
|
|
QUnit.module('Image Processing', {}); |
|
|
|
QUnit.test('test_imgProc', function(assert) { |
|
// calcHist |
|
{ |
|
let vec1 = new cv.Mat.ones(new cv.Size(20, 20), cv.CV_8UC1); // eslint-disable-line new-cap |
|
let source = new cv.MatVector(); |
|
source.push_back(vec1); |
|
let channels = [0]; |
|
let histSize = [256]; |
|
let ranges =[0, 256]; |
|
|
|
let hist = new cv.Mat(); |
|
let mask = new cv.Mat(); |
|
let binSize = cv._malloc(4); |
|
let binView = new Int32Array(cv.HEAP8.buffer, binSize); |
|
binView[0] = 10; |
|
cv.calcHist(source, channels, mask, hist, histSize, ranges, false); |
|
|
|
// hist should contains a N X 1 arrary. |
|
let size = hist.size(); |
|
assert.equal(size.height, 256); |
|
assert.equal(size.width, 1); |
|
|
|
// default parameters |
|
cv.calcHist(source, channels, mask, hist, histSize, ranges); |
|
size = hist.size(); |
|
assert.equal(size.height, 256); |
|
assert.equal(size.width, 1); |
|
|
|
// Do we need to verify data in histogram? |
|
// let dataView = hist.data; |
|
|
|
// Free resource |
|
cv._free(binSize); |
|
mask.delete(); |
|
hist.delete(); |
|
} |
|
|
|
// cvtColor |
|
{ |
|
let source = new cv.Mat(10, 10, cv.CV_8UC3); |
|
let dest = new cv.Mat(); |
|
|
|
cv.cvtColor(source, dest, cv.COLOR_BGR2GRAY, 0); |
|
assert.equal(dest.channels(), 1); |
|
|
|
cv.cvtColor(source, dest, cv.COLOR_BGR2GRAY); |
|
assert.equal(dest.channels(), 1); |
|
|
|
cv.cvtColor(source, dest, cv.COLOR_BGR2BGRA, 0); |
|
assert.equal(dest.channels(), 4); |
|
|
|
cv.cvtColor(source, dest, cv.COLOR_BGR2BGRA); |
|
assert.equal(dest.channels(), 4); |
|
|
|
dest.delete(); |
|
source.delete(); |
|
} |
|
// equalizeHist |
|
{ |
|
let source = new cv.Mat(10, 10, cv.CV_8UC1); |
|
let dest = new cv.Mat(); |
|
|
|
cv.equalizeHist(source, dest); |
|
|
|
// eualizeHist changes the content of a image, but does not alter meta data |
|
// of it. |
|
assert.equal(source.channels(), dest.channels()); |
|
assert.equal(source.type(), dest.type()); |
|
|
|
dest.delete(); |
|
source.delete(); |
|
} |
|
}); |
|
|
|
QUnit.test('test_segmentation', function(assert) { |
|
const THRESHOLD = 127.0; |
|
const THRESHOLD_MAX = 210.0; |
|
|
|
// threshold |
|
{ |
|
let source = new cv.Mat(1, 5, cv.CV_8UC1); |
|
let sourceView = source.data; |
|
sourceView[0] = 0; // < threshold |
|
sourceView[1] = 100; // < threshold |
|
sourceView[2] = 200; // > threshold |
|
|
|
let dest = new cv.Mat(); |
|
|
|
cv.threshold(source, dest, THRESHOLD, THRESHOLD_MAX, cv.THRESH_BINARY); |
|
|
|
let destView = dest.data; |
|
assert.equal(destView[0], 0); |
|
assert.equal(destView[1], 0); |
|
assert.equal(destView[2], THRESHOLD_MAX); |
|
} |
|
|
|
// adaptiveThreshold |
|
{ |
|
let source = cv.Mat.zeros(1, 5, cv.CV_8UC1); |
|
let sourceView = source.data; |
|
sourceView[0] = 50; |
|
sourceView[1] = 150; |
|
sourceView[2] = 200; |
|
|
|
let dest = new cv.Mat(); |
|
const C = 0; |
|
const blockSize = 3; |
|
cv.adaptiveThreshold(source, dest, THRESHOLD_MAX, |
|
cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, blockSize, C); |
|
|
|
let destView = dest.data; |
|
assert.equal(destView[0], 0); |
|
assert.equal(destView[1], THRESHOLD_MAX); |
|
assert.equal(destView[2], THRESHOLD_MAX); |
|
} |
|
}); |
|
|
|
QUnit.test('test_shape', function(assert) { |
|
// moments |
|
{ |
|
let points = new cv.Mat(1, 4, cv.CV_32SC2); |
|
let data32S = points.data32S; |
|
data32S[0]=50; |
|
data32S[1]=56; |
|
data32S[2]=53; |
|
data32S[3]=53; |
|
data32S[4]=46; |
|
data32S[5]=54; |
|
data32S[6]=49; |
|
data32S[7]=51; |
|
|
|
let m = cv.moments(points, false); |
|
let area = cv.contourArea(points, false); |
|
|
|
assert.equal(m.m00, 0); |
|
assert.equal(m.m01, 0); |
|
assert.equal(m.m10, 0); |
|
assert.equal(area, 0); |
|
|
|
// default parameters |
|
m = cv.moments(points); |
|
area = cv.contourArea(points); |
|
assert.equal(m.m00, 0); |
|
assert.equal(m.m01, 0); |
|
assert.equal(m.m10, 0); |
|
assert.equal(area, 0); |
|
|
|
points.delete(); |
|
} |
|
}); |
|
|
|
QUnit.test('test_min_enclosing', function(assert) { |
|
{ |
|
let points = new cv.Mat(4, 1, cv.CV_32FC2); |
|
|
|
points.data32F[0] = 0; |
|
points.data32F[1] = 0; |
|
points.data32F[2] = 1; |
|
points.data32F[3] = 0; |
|
points.data32F[4] = 1; |
|
points.data32F[5] = 1; |
|
points.data32F[6] = 0; |
|
points.data32F[7] = 1; |
|
|
|
let circle = cv.minEnclosingCircle(points); |
|
|
|
assert.deepEqual(circle.center, {x: 0.5, y: 0.5}); |
|
assert.ok(Math.abs(circle.radius - Math.sqrt(2) / 2) < 0.001); |
|
|
|
points.delete(); |
|
} |
|
}); |
|
|
|
QUnit.test('test_filter', function(assert) { |
|
// blur |
|
{ |
|
let mat1 = cv.Mat.ones(5, 5, cv.CV_8UC3); |
|
let mat2 = new cv.Mat(); |
|
|
|
cv.blur(mat1, mat2, {height: 3, width: 3}, {x: -1, y: -1}, cv.BORDER_DEFAULT); |
|
|
|
// Verify result. |
|
let size = mat2.size(); |
|
assert.equal(mat2.channels(), 3); |
|
assert.equal(size.height, 5); |
|
assert.equal(size.width, 5); |
|
|
|
cv.blur(mat1, mat2, {height: 3, width: 3}, {x: -1, y: -1}); |
|
|
|
// Verify result. |
|
size = mat2.size(); |
|
assert.equal(mat2.channels(), 3); |
|
assert.equal(size.height, 5); |
|
assert.equal(size.width, 5); |
|
|
|
cv.blur(mat1, mat2, {height: 3, width: 3}); |
|
|
|
// Verify result. |
|
size = mat2.size(); |
|
assert.equal(mat2.channels(), 3); |
|
assert.equal(size.height, 5); |
|
assert.equal(size.width, 5); |
|
|
|
mat1.delete(); |
|
mat2.delete(); |
|
} |
|
|
|
// GaussianBlur |
|
{ |
|
let mat1 = cv.Mat.ones(7, 7, cv.CV_8UC1); |
|
let mat2 = new cv.Mat(); |
|
|
|
cv.GaussianBlur(mat1, mat2, new cv.Size(3, 3), 0, 0, // eslint-disable-line new-cap |
|
cv.BORDER_DEFAULT); |
|
|
|
// Verify result. |
|
let size = mat2.size(); |
|
assert.equal(mat2.channels(), 1); |
|
assert.equal(size.height, 7); |
|
assert.equal(size.width, 7); |
|
} |
|
|
|
// medianBlur |
|
{ |
|
let mat1 = cv.Mat.ones(9, 9, cv.CV_8UC3); |
|
let mat2 = new cv.Mat(); |
|
|
|
cv.medianBlur(mat1, mat2, 3); |
|
|
|
// Verify result. |
|
let size = mat2.size(); |
|
assert.equal(mat2.channels(), 3); |
|
assert.equal(size.height, 9); |
|
assert.equal(size.width, 9); |
|
} |
|
|
|
// Transpose |
|
{ |
|
let mat1 = cv.Mat.eye(9, 9, cv.CV_8UC3); |
|
let mat2 = new cv.Mat(); |
|
|
|
cv.transpose(mat1, mat2); |
|
|
|
// Verify result. |
|
let size = mat2.size(); |
|
assert.equal(mat2.channels(), 3); |
|
assert.equal(size.height, 9); |
|
assert.equal(size.width, 9); |
|
} |
|
|
|
// bilateralFilter |
|
{ |
|
let mat1 = cv.Mat.ones(11, 11, cv.CV_8UC3); |
|
let mat2 = new cv.Mat(); |
|
|
|
cv.bilateralFilter(mat1, mat2, 3, 6, 1.5, cv.BORDER_DEFAULT); |
|
|
|
// Verify result. |
|
let size = mat2.size(); |
|
assert.equal(mat2.channels(), 3); |
|
assert.equal(size.height, 11); |
|
assert.equal(size.width, 11); |
|
|
|
// default parameters |
|
cv.bilateralFilter(mat1, mat2, 3, 6, 1.5); |
|
// Verify result. |
|
size = mat2.size(); |
|
assert.equal(mat2.channels(), 3); |
|
assert.equal(size.height, 11); |
|
assert.equal(size.width, 11); |
|
|
|
mat1.delete(); |
|
mat2.delete(); |
|
} |
|
|
|
// Watershed |
|
{ |
|
let mat = cv.Mat.ones(11, 11, cv.CV_8UC3); |
|
let out = new cv.Mat(11, 11, cv.CV_32SC1); |
|
|
|
cv.watershed(mat, out); |
|
|
|
// Verify result. |
|
let size = out.size(); |
|
assert.equal(out.channels(), 1); |
|
assert.equal(size.height, 11); |
|
assert.equal(size.width, 11); |
|
assert.equal(out.elemSize1(), 4); |
|
|
|
mat.delete(); |
|
out.delete(); |
|
} |
|
|
|
// Concat |
|
{ |
|
let mat = cv.Mat.ones({height: 10, width: 5}, cv.CV_8UC3); |
|
let mat2 = cv.Mat.eye({height: 10, width: 5}, cv.CV_8UC3); |
|
let mat3 = cv.Mat.eye({height: 10, width: 5}, cv.CV_8UC3); |
|
|
|
|
|
let out = new cv.Mat(); |
|
let input = new cv.MatVector(); |
|
input.push_back(mat); |
|
input.push_back(mat2); |
|
input.push_back(mat3); |
|
|
|
cv.vconcat(input, out); |
|
|
|
// Verify result. |
|
let size = out.size(); |
|
assert.equal(out.channels(), 3); |
|
assert.equal(size.height, 30); |
|
assert.equal(size.width, 5); |
|
assert.equal(out.elemSize1(), 1); |
|
|
|
cv.hconcat(input, out); |
|
|
|
// Verify result. |
|
size = out.size(); |
|
assert.equal(out.channels(), 3); |
|
assert.equal(size.height, 10); |
|
assert.equal(size.width, 15); |
|
assert.equal(out.elemSize1(), 1); |
|
|
|
input.delete(); |
|
out.delete(); |
|
} |
|
|
|
|
|
// distanceTransform letiants |
|
{ |
|
let mat = cv.Mat.ones(11, 11, cv.CV_8UC1); |
|
let out = new cv.Mat(11, 11, cv.CV_32FC1); |
|
let labels = new cv.Mat(11, 11, cv.CV_32FC1); |
|
const maskSize = 3; |
|
cv.distanceTransform(mat, out, cv.DIST_L2, maskSize, cv.CV_32F); |
|
|
|
// Verify result. |
|
let size = out.size(); |
|
assert.equal(out.channels(), 1); |
|
assert.equal(size.height, 11); |
|
assert.equal(size.width, 11); |
|
assert.equal(out.elemSize1(), 4); |
|
|
|
|
|
cv.distanceTransformWithLabels(mat, out, labels, cv.DIST_L2, maskSize, |
|
cv.DIST_LABEL_CCOMP); |
|
|
|
// Verify result. |
|
size = out.size(); |
|
assert.equal(out.channels(), 1); |
|
assert.equal(size.height, 11); |
|
assert.equal(size.width, 11); |
|
assert.equal(out.elemSize1(), 4); |
|
|
|
size = labels.size(); |
|
assert.equal(labels.channels(), 1); |
|
assert.equal(size.height, 11); |
|
assert.equal(size.width, 11); |
|
assert.equal(labels.elemSize1(), 4); |
|
|
|
mat.delete(); |
|
out.delete(); |
|
labels.delete(); |
|
} |
|
|
|
// Min, Max |
|
{ |
|
let data1 = new Uint8Array([1, 2, 3, 4, 5, 6, 7, 8, 9]); |
|
let data2 = new Uint8Array([0, 4, 0, 8, 0, 12, 0, 16, 0]); |
|
|
|
let expectedMin = new Uint8Array([0, 2, 0, 4, 0, 6, 0, 8, 0]); |
|
let expectedMax = new Uint8Array([1, 4, 3, 8, 5, 12, 7, 16, 9]); |
|
|
|
let dataPtr = cv._malloc(3*3*1); |
|
let dataPtr2 = cv._malloc(3*3*1); |
|
|
|
let dataHeap = new Uint8Array(cv.HEAPU8.buffer, dataPtr, 3*3*1); |
|
dataHeap.set(new Uint8Array(data1.buffer)); |
|
|
|
let dataHeap2 = new Uint8Array(cv.HEAPU8.buffer, dataPtr2, 3*3*1); |
|
dataHeap2.set(new Uint8Array(data2.buffer)); |
|
|
|
|
|
let mat1 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr, 0); |
|
let mat2 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr2, 0); |
|
|
|
let mat3 = new cv.Mat(); |
|
|
|
cv.min(mat1, mat2, mat3); |
|
// Verify result. |
|
let size = mat2.size(); |
|
assert.equal(mat2.channels(), 1); |
|
assert.equal(size.height, 3); |
|
assert.equal(size.width, 3); |
|
|
|
assert.deepEqual(mat3.data, expectedMin); |
|
|
|
|
|
cv.max(mat1, mat2, mat3); |
|
// Verify result. |
|
size = mat2.size(); |
|
assert.equal(mat2.channels(), 1); |
|
assert.equal(size.height, 3); |
|
assert.equal(size.width, 3); |
|
|
|
assert.deepEqual(mat3.data, expectedMax); |
|
|
|
cv._free(dataPtr); |
|
cv._free(dataPtr2); |
|
} |
|
|
|
// Bitwise operations |
|
{ |
|
let data1 = new Uint8Array([0, 1, 2, 4, 8, 16, 32, 64, 128]); |
|
let data2 = new Uint8Array([255, 255, 255, 255, 255, 255, 255, 255, 255]); |
|
|
|
let expectedAnd = new Uint8Array([0, 1, 2, 4, 8, 16, 32, 64, 128]); |
|
let expectedOr = new Uint8Array([255, 255, 255, 255, 255, 255, 255, 255, 255]); |
|
let expectedXor = new Uint8Array([255, 254, 253, 251, 247, 239, 223, 191, 127]); |
|
|
|
let expectedNot = new Uint8Array([255, 254, 253, 251, 247, 239, 223, 191, 127]); |
|
|
|
let dataPtr = cv._malloc(3*3*1); |
|
let dataPtr2 = cv._malloc(3*3*1); |
|
|
|
let dataHeap = new Uint8Array(cv.HEAPU8.buffer, dataPtr, 3*3*1); |
|
dataHeap.set(new Uint8Array(data1.buffer)); |
|
|
|
let dataHeap2 = new Uint8Array(cv.HEAPU8.buffer, dataPtr2, 3*3*1); |
|
dataHeap2.set(new Uint8Array(data2.buffer)); |
|
|
|
|
|
let mat1 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr, 0); |
|
let mat2 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr2, 0); |
|
|
|
let mat3 = new cv.Mat(); |
|
let none = new cv.Mat(); |
|
|
|
cv.bitwise_not(mat1, mat3, none); |
|
// Verify result. |
|
let size = mat3.size(); |
|
assert.equal(mat3.channels(), 1); |
|
assert.equal(size.height, 3); |
|
assert.equal(size.width, 3); |
|
|
|
assert.deepEqual(mat3.data, expectedNot); |
|
|
|
cv.bitwise_and(mat1, mat2, mat3, none); |
|
// Verify result. |
|
size = mat3.size(); |
|
assert.equal(mat3.channels(), 1); |
|
assert.equal(size.height, 3); |
|
assert.equal(size.width, 3); |
|
|
|
assert.deepEqual(mat3.data, expectedAnd); |
|
|
|
|
|
cv.bitwise_or(mat1, mat2, mat3, none); |
|
// Verify result. |
|
size = mat3.size(); |
|
assert.equal(mat3.channels(), 1); |
|
assert.equal(size.height, 3); |
|
assert.equal(size.width, 3); |
|
|
|
assert.deepEqual(mat3.data, expectedOr); |
|
|
|
cv.bitwise_xor(mat1, mat2, mat3, none); |
|
// Verify result. |
|
size = mat3.size(); |
|
assert.equal(mat3.channels(), 1); |
|
assert.equal(size.height, 3); |
|
assert.equal(size.width, 3); |
|
|
|
assert.deepEqual(mat3.data, expectedXor); |
|
|
|
cv._free(dataPtr); |
|
cv._free(dataPtr2); |
|
} |
|
|
|
// Arithmatic operations |
|
{ |
|
let data1 = new Uint8Array([0, 1, 2, 3, 4, 5, 6, 7, 8]); |
|
let data2 = new Uint8Array([0, 2, 4, 6, 8, 10, 12, 14, 16]); |
|
let data3 = new Uint8Array([0, 1, 0, 1, 0, 1, 0, 1, 0]); |
|
|
|
// |data1 - data2| |
|
let expectedAbsDiff = new Uint8Array([0, 1, 2, 3, 4, 5, 6, 7, 8]); |
|
let expectedAdd = new Uint8Array([0, 3, 6, 9, 12, 15, 18, 21, 24]); |
|
|
|
const alpha = 4; |
|
const beta = -1; |
|
const gamma = 3; |
|
// 4*data1 - data2 + 3 |
|
let expectedWeightedAdd = new Uint8Array([3, 5, 7, 9, 11, 13, 15, 17, 19]); |
|
|
|
let dataPtr = cv._malloc(3*3*1); |
|
let dataPtr2 = cv._malloc(3*3*1); |
|
let dataPtr3 = cv._malloc(3*3*1); |
|
|
|
let dataHeap = new Uint8Array(cv.HEAPU8.buffer, dataPtr, 3*3*1); |
|
dataHeap.set(new Uint8Array(data1.buffer)); |
|
let dataHeap2 = new Uint8Array(cv.HEAPU8.buffer, dataPtr2, 3*3*1); |
|
dataHeap2.set(new Uint8Array(data2.buffer)); |
|
let dataHeap3 = new Uint8Array(cv.HEAPU8.buffer, dataPtr3, 3*3*1); |
|
dataHeap3.set(new Uint8Array(data3.buffer)); |
|
|
|
let mat1 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr, 0); |
|
let mat2 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr2, 0); |
|
let mat3 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr3, 0); |
|
|
|
let dst = new cv.Mat(); |
|
let none = new cv.Mat(); |
|
|
|
cv.absdiff(mat1, mat2, dst); |
|
// Verify result. |
|
let size = dst.size(); |
|
assert.equal(dst.channels(), 1); |
|
assert.equal(size.height, 3); |
|
assert.equal(size.width, 3); |
|
|
|
assert.deepEqual(dst.data, expectedAbsDiff); |
|
|
|
cv.add(mat1, mat2, dst, none, -1); |
|
// Verify result. |
|
size = dst.size(); |
|
assert.equal(dst.channels(), 1); |
|
assert.equal(size.height, 3); |
|
assert.equal(size.width, 3); |
|
|
|
assert.deepEqual(dst.data, expectedAdd); |
|
|
|
cv.addWeighted(mat1, alpha, mat2, beta, gamma, dst, -1); |
|
// Verify result. |
|
size = dst.size(); |
|
assert.equal(dst.channels(), 1); |
|
assert.equal(size.height, 3); |
|
assert.equal(size.width, 3); |
|
|
|
assert.deepEqual(dst.data, expectedWeightedAdd); |
|
|
|
// default parameter |
|
cv.addWeighted(mat1, alpha, mat2, beta, gamma, dst); |
|
// Verify result. |
|
size = dst.size(); |
|
assert.equal(dst.channels(), 1); |
|
assert.equal(size.height, 3); |
|
assert.equal(size.width, 3); |
|
|
|
assert.deepEqual(dst.data, expectedWeightedAdd); |
|
|
|
mat1.delete(); |
|
mat2.delete(); |
|
mat3.delete(); |
|
dst.delete(); |
|
none.delete(); |
|
} |
|
|
|
// Integral letiants |
|
{ |
|
let mat = cv.Mat.eye({height: 100, width: 100}, cv.CV_8UC3); |
|
let sum = new cv.Mat(); |
|
let sqSum = new cv.Mat(); |
|
let title = new cv.Mat(); |
|
|
|
cv.integral(mat, sum, -1); |
|
|
|
// Verify result. |
|
let size = sum.size(); |
|
assert.equal(sum.channels(), 3); |
|
assert.equal(size.height, 100+1); |
|
assert.equal(size.width, 100+1); |
|
|
|
cv.integral2(mat, sum, sqSum, -1, -1); |
|
// Verify result. |
|
size = sum.size(); |
|
assert.equal(sum.channels(), 3); |
|
assert.equal(size.height, 100+1); |
|
assert.equal(size.width, 100+1); |
|
|
|
size = sqSum.size(); |
|
assert.equal(sqSum.channels(), 3); |
|
assert.equal(size.height, 100+1); |
|
assert.equal(size.width, 100+1); |
|
|
|
mat.delete(); |
|
sum.delete(); |
|
sqSum.delete(); |
|
title.delete(); |
|
} |
|
|
|
// Mean, meanSTDev |
|
{ |
|
let mat = cv.Mat.eye({height: 100, width: 100}, cv.CV_8UC3); |
|
let sum = new cv.Mat(); |
|
let sqSum = new cv.Mat(); |
|
let title = new cv.Mat(); |
|
|
|
cv.integral(mat, sum, -1); |
|
|
|
// Verify result. |
|
let size = sum.size(); |
|
assert.equal(sum.channels(), 3); |
|
assert.equal(size.height, 100+1); |
|
assert.equal(size.width, 100+1); |
|
|
|
cv.integral2(mat, sum, sqSum, -1, -1); |
|
// Verify result. |
|
size = sum.size(); |
|
assert.equal(sum.channels(), 3); |
|
assert.equal(size.height, 100+1); |
|
assert.equal(size.width, 100+1); |
|
|
|
size = sqSum.size(); |
|
assert.equal(sqSum.channels(), 3); |
|
assert.equal(size.height, 100+1); |
|
assert.equal(size.width, 100+1); |
|
|
|
mat.delete(); |
|
sum.delete(); |
|
sqSum.delete(); |
|
title.delete(); |
|
} |
|
|
|
// Invert |
|
{ |
|
let inv1 = new cv.Mat(); |
|
let inv2 = new cv.Mat(); |
|
let inv3 = new cv.Mat(); |
|
let inv4 = new cv.Mat(); |
|
|
|
|
|
let data1 = new Float32Array([1, 0, 0, |
|
0, 1, 0, |
|
0, 0, 1]); |
|
let data2 = new Float32Array([0, 0, 0, |
|
0, 5, 0, |
|
0, 0, 0]); |
|
let data3 = new Float32Array([1, 1, 1, 0, |
|
0, 3, 1, 2, |
|
2, 3, 1, 0, |
|
1, 0, 2, 1]); |
|
let data4 = new Float32Array([1, 4, 5, |
|
4, 2, 2, |
|
5, 2, 2]); |
|
|
|
let expected1 = new Float32Array([1, 0, 0, |
|
0, 1, 0, |
|
0, 0, 1]); |
|
// Inverse does not exist! |
|
let expected3 = new Float32Array([-3, -1/2, 3/2, 1, |
|
1, 1/4, -1/4, -1/2, |
|
3, 1/4, -5/4, -1/2, |
|
-3, 0, 1, 1]); |
|
let expected4 = new Float32Array([0, -1, 1, |
|
-1, 23/2, -9, |
|
1, -9, 7]); |
|
|
|
let dataPtr1 = cv._malloc(3*3*4); |
|
let dataPtr2 = cv._malloc(3*3*4); |
|
let dataPtr3 = cv._malloc(4*4*4); |
|
let dataPtr4 = cv._malloc(3*3*4); |
|
|
|
let dataHeap = new Float32Array(cv.HEAP32.buffer, dataPtr1, 3*3); |
|
dataHeap.set(new Float32Array(data1.buffer)); |
|
let dataHeap2 = new Float32Array(cv.HEAP32.buffer, dataPtr2, 3*3); |
|
dataHeap2.set(new Float32Array(data2.buffer)); |
|
let dataHeap3 = new Float32Array(cv.HEAP32.buffer, dataPtr3, 4*4); |
|
dataHeap3.set(new Float32Array(data3.buffer)); |
|
let dataHeap4 = new Float32Array(cv.HEAP32.buffer, dataPtr4, 3*3); |
|
dataHeap4.set(new Float32Array(data4.buffer)); |
|
|
|
let mat1 = new cv.Mat(3, 3, cv.CV_32FC1, dataPtr1, 0); |
|
let mat2 = new cv.Mat(3, 3, cv.CV_32FC1, dataPtr2, 0); |
|
let mat3 = new cv.Mat(4, 4, cv.CV_32FC1, dataPtr3, 0); |
|
let mat4 = new cv.Mat(3, 3, cv.CV_32FC1, dataPtr4, 0); |
|
|
|
QUnit.assert.deepEqualWithTolerance = function( value, expected, tolerance ) { |
|
for (let i = 0; i < value.length; i= i+1) { |
|
this.pushResult( { |
|
result: Math.abs(value[i]-expected[i]) < tolerance, |
|
actual: value[i], |
|
expected: expected[i], |
|
} ); |
|
} |
|
}; |
|
|
|
cv.invert(mat1, inv1, 0); |
|
// Verify result. |
|
let size = inv1.size(); |
|
assert.equal(inv1.channels(), 1); |
|
assert.equal(size.height, 3); |
|
assert.equal(size.width, 3); |
|
assert.deepEqualWithTolerance(inv1.data32F, expected1, 0.0001); |
|
|
|
|
|
cv.invert(mat2, inv2, 0); |
|
// Verify result. |
|
assert.deepEqualWithTolerance(inv3.data32F, expected3, 0.0001); |
|
|
|
cv.invert(mat3, inv3, 0); |
|
// Verify result. |
|
size = inv3.size(); |
|
assert.equal(inv3.channels(), 1); |
|
assert.equal(size.height, 4); |
|
assert.equal(size.width, 4); |
|
assert.deepEqualWithTolerance(inv3.data32F, expected3, 0.0001); |
|
|
|
cv.invert(mat3, inv3, 1); |
|
// Verify result. |
|
assert.deepEqualWithTolerance(inv3.data32F, expected3, 0.0001); |
|
|
|
cv.invert(mat4, inv4, 2); |
|
// Verify result. |
|
assert.deepEqualWithTolerance(inv4.data32F, expected4, 0.0001); |
|
|
|
cv.invert(mat4, inv4, 3); |
|
// Verify result. |
|
assert.deepEqualWithTolerance(inv4.data32F, expected4, 0.0001); |
|
|
|
mat1.delete(); |
|
mat2.delete(); |
|
mat3.delete(); |
|
mat4.delete(); |
|
inv1.delete(); |
|
inv2.delete(); |
|
inv3.delete(); |
|
inv4.delete(); |
|
} |
|
});
|
|
|