mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
170 lines
4.5 KiB
170 lines
4.5 KiB
#include "clapack.h" |
|
|
|
/* Table of constant values */ |
|
|
|
static integer c__1 = 1; |
|
|
|
/* Subroutine */ int dtrti2_(char *uplo, char *diag, integer *n, doublereal * |
|
a, integer *lda, integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer a_dim1, a_offset, i__1, i__2; |
|
|
|
/* Local variables */ |
|
integer j; |
|
doublereal ajj; |
|
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, |
|
integer *); |
|
extern logical lsame_(char *, char *); |
|
logical upper; |
|
extern /* Subroutine */ int dtrmv_(char *, char *, char *, integer *, |
|
doublereal *, integer *, doublereal *, integer *), xerbla_(char *, integer *); |
|
logical nounit; |
|
|
|
|
|
/* -- LAPACK routine (version 3.1) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* DTRTI2 computes the inverse of a real upper or lower triangular */ |
|
/* matrix. */ |
|
|
|
/* This is the Level 2 BLAS version of the algorithm. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* UPLO (input) CHARACTER*1 */ |
|
/* Specifies whether the matrix A is upper or lower triangular. */ |
|
/* = 'U': Upper triangular */ |
|
/* = 'L': Lower triangular */ |
|
|
|
/* DIAG (input) CHARACTER*1 */ |
|
/* Specifies whether or not the matrix A is unit triangular. */ |
|
/* = 'N': Non-unit triangular */ |
|
/* = 'U': Unit triangular */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The order of the matrix A. N >= 0. */ |
|
|
|
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ |
|
/* On entry, the triangular matrix A. If UPLO = 'U', the */ |
|
/* leading n by n upper triangular part of the array A contains */ |
|
/* the upper triangular matrix, and the strictly lower */ |
|
/* triangular part of A is not referenced. If UPLO = 'L', the */ |
|
/* leading n by n lower triangular part of the array A contains */ |
|
/* the lower triangular matrix, and the strictly upper */ |
|
/* triangular part of A is not referenced. If DIAG = 'U', the */ |
|
/* diagonal elements of A are also not referenced and are */ |
|
/* assumed to be 1. */ |
|
|
|
/* On exit, the (triangular) inverse of the original matrix, in */ |
|
/* the same storage format. */ |
|
|
|
/* LDA (input) INTEGER */ |
|
/* The leading dimension of the array A. LDA >= max(1,N). */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit */ |
|
/* < 0: if INFO = -k, the k-th argument had an illegal value */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input parameters. */ |
|
|
|
/* Parameter adjustments */ |
|
a_dim1 = *lda; |
|
a_offset = 1 + a_dim1; |
|
a -= a_offset; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
upper = lsame_(uplo, "U"); |
|
nounit = lsame_(diag, "N"); |
|
if (! upper && ! lsame_(uplo, "L")) { |
|
*info = -1; |
|
} else if (! nounit && ! lsame_(diag, "U")) { |
|
*info = -2; |
|
} else if (*n < 0) { |
|
*info = -3; |
|
} else if (*lda < max(1,*n)) { |
|
*info = -5; |
|
} |
|
if (*info != 0) { |
|
i__1 = -(*info); |
|
xerbla_("DTRTI2", &i__1); |
|
return 0; |
|
} |
|
|
|
if (upper) { |
|
|
|
/* Compute inverse of upper triangular matrix. */ |
|
|
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
if (nounit) { |
|
a[j + j * a_dim1] = 1. / a[j + j * a_dim1]; |
|
ajj = -a[j + j * a_dim1]; |
|
} else { |
|
ajj = -1.; |
|
} |
|
|
|
/* Compute elements 1:j-1 of j-th column. */ |
|
|
|
i__2 = j - 1; |
|
dtrmv_("Upper", "No transpose", diag, &i__2, &a[a_offset], lda, & |
|
a[j * a_dim1 + 1], &c__1); |
|
i__2 = j - 1; |
|
dscal_(&i__2, &ajj, &a[j * a_dim1 + 1], &c__1); |
|
/* L10: */ |
|
} |
|
} else { |
|
|
|
/* Compute inverse of lower triangular matrix. */ |
|
|
|
for (j = *n; j >= 1; --j) { |
|
if (nounit) { |
|
a[j + j * a_dim1] = 1. / a[j + j * a_dim1]; |
|
ajj = -a[j + j * a_dim1]; |
|
} else { |
|
ajj = -1.; |
|
} |
|
if (j < *n) { |
|
|
|
/* Compute elements j+1:n of j-th column. */ |
|
|
|
i__1 = *n - j; |
|
dtrmv_("Lower", "No transpose", diag, &i__1, &a[j + 1 + (j + |
|
1) * a_dim1], lda, &a[j + 1 + j * a_dim1], &c__1); |
|
i__1 = *n - j; |
|
dscal_(&i__1, &ajj, &a[j + 1 + j * a_dim1], &c__1); |
|
} |
|
/* L20: */ |
|
} |
|
} |
|
|
|
return 0; |
|
|
|
/* End of DTRTI2 */ |
|
|
|
} /* dtrti2_ */
|
|
|