mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
124 lines
3.9 KiB
124 lines
3.9 KiB
/** |
|
* @file SURF_Homography |
|
* @brief SURF detector + descriptor + FLANN Matcher + FindHomography |
|
* @author A. Huaman |
|
*/ |
|
|
|
#include <stdio.h> |
|
#include <iostream> |
|
#include "opencv2/core/core.hpp" |
|
#include "opencv2/features2d/features2d.hpp" |
|
#include "opencv2/highgui/highgui.hpp" |
|
#include "opencv2/calib3d/calib3d.hpp" |
|
#include "opencv2/nonfree/features2d.hpp" |
|
|
|
using namespace cv; |
|
|
|
void readme(); |
|
|
|
/** |
|
* @function main |
|
* @brief Main function |
|
*/ |
|
int main( int argc, char** argv ) |
|
{ |
|
if( argc != 3 ) |
|
{ readme(); return -1; } |
|
|
|
Mat img_object = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE ); |
|
Mat img_scene = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE ); |
|
|
|
if( !img_object.data || !img_scene.data ) |
|
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; } |
|
|
|
//-- Step 1: Detect the keypoints using SURF Detector |
|
int minHessian = 400; |
|
|
|
SurfFeatureDetector detector( minHessian ); |
|
|
|
std::vector<KeyPoint> keypoints_object, keypoints_scene; |
|
|
|
detector.detect( img_object, keypoints_object ); |
|
detector.detect( img_scene, keypoints_scene ); |
|
|
|
//-- Step 2: Calculate descriptors (feature vectors) |
|
SurfDescriptorExtractor extractor; |
|
|
|
Mat descriptors_object, descriptors_scene; |
|
|
|
extractor.compute( img_object, keypoints_object, descriptors_object ); |
|
extractor.compute( img_scene, keypoints_scene, descriptors_scene ); |
|
|
|
//-- Step 3: Matching descriptor vectors using FLANN matcher |
|
FlannBasedMatcher matcher; |
|
std::vector< DMatch > matches; |
|
matcher.match( descriptors_object, descriptors_scene, matches ); |
|
|
|
double max_dist = 0; double min_dist = 100; |
|
|
|
//-- Quick calculation of max and min distances between keypoints |
|
for( int i = 0; i < descriptors_object.rows; i++ ) |
|
{ double dist = matches[i].distance; |
|
if( dist < min_dist ) min_dist = dist; |
|
if( dist > max_dist ) max_dist = dist; |
|
} |
|
|
|
printf("-- Max dist : %f \n", max_dist ); |
|
printf("-- Min dist : %f \n", min_dist ); |
|
|
|
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist ) |
|
std::vector< DMatch > good_matches; |
|
|
|
for( int i = 0; i < descriptors_object.rows; i++ ) |
|
{ if( matches[i].distance < 3*min_dist ) |
|
{ good_matches.push_back( matches[i]); } |
|
} |
|
|
|
Mat img_matches; |
|
drawMatches( img_object, keypoints_object, img_scene, keypoints_scene, |
|
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), |
|
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); |
|
|
|
|
|
//-- Localize the object from img_1 in img_2 |
|
std::vector<Point2f> obj; |
|
std::vector<Point2f> scene; |
|
|
|
for( size_t i = 0; i < good_matches.size(); i++ ) |
|
{ |
|
//-- Get the keypoints from the good matches |
|
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt ); |
|
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt ); |
|
} |
|
|
|
Mat H = findHomography( obj, scene, CV_RANSAC ); |
|
|
|
//-- Get the corners from the image_1 ( the object to be "detected" ) |
|
std::vector<Point2f> obj_corners(4); |
|
obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols, 0 ); |
|
obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows ); |
|
std::vector<Point2f> scene_corners(4); |
|
|
|
perspectiveTransform( obj_corners, scene_corners, H); |
|
|
|
|
|
//-- Draw lines between the corners (the mapped object in the scene - image_2 ) |
|
Point2f offset( (float)img_object.cols, 0); |
|
line( img_matches, scene_corners[0] + offset, scene_corners[1] + offset, Scalar(0, 255, 0), 4 ); |
|
line( img_matches, scene_corners[1] + offset, scene_corners[2] + offset, Scalar( 0, 255, 0), 4 ); |
|
line( img_matches, scene_corners[2] + offset, scene_corners[3] + offset, Scalar( 0, 255, 0), 4 ); |
|
line( img_matches, scene_corners[3] + offset, scene_corners[0] + offset, Scalar( 0, 255, 0), 4 ); |
|
|
|
//-- Show detected matches |
|
imshow( "Good Matches & Object detection", img_matches ); |
|
|
|
waitKey(0); |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* @function readme |
|
*/ |
|
void readme() |
|
{ std::cout << " Usage: ./SURF_Homography <img1> <img2>" << std::endl; }
|
|
|