Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1720 lines
56 KiB
1720 lines
56 KiB
/** |
|
* @file AKAZEFeatures.cpp |
|
* @brief Main class for detecting and describing binary features in an |
|
* accelerated nonlinear scale space |
|
* @date Sep 15, 2013 |
|
* @author Pablo F. Alcantarilla, Jesus Nuevo |
|
*/ |
|
|
|
#include "../precomp.hpp" |
|
#include "AKAZEFeatures.h" |
|
#include "fed.h" |
|
#include "nldiffusion_functions.h" |
|
#include "utils.h" |
|
|
|
#include <iostream> |
|
|
|
// Namespaces |
|
namespace cv |
|
{ |
|
using namespace std; |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief AKAZEFeatures constructor with input options |
|
* @param options AKAZEFeatures configuration options |
|
* @note This constructor allocates memory for the nonlinear scale space |
|
*/ |
|
AKAZEFeatures::AKAZEFeatures(const AKAZEOptions& options) : options_(options) { |
|
|
|
ncycles_ = 0; |
|
reordering_ = true; |
|
|
|
if (options_.descriptor_size > 0 && options_.descriptor >= AKAZE::DESCRIPTOR_MLDB_UPRIGHT) { |
|
generateDescriptorSubsample(descriptorSamples_, descriptorBits_, options_.descriptor_size, |
|
options_.descriptor_pattern_size, options_.descriptor_channels); |
|
} |
|
|
|
Allocate_Memory_Evolution(); |
|
} |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This method allocates the memory for the nonlinear diffusion evolution |
|
*/ |
|
void AKAZEFeatures::Allocate_Memory_Evolution(void) { |
|
|
|
float rfactor = 0.0f; |
|
int level_height = 0, level_width = 0; |
|
|
|
// Allocate the dimension of the matrices for the evolution |
|
for (int i = 0, power = 1; i <= options_.omax - 1; i++, power *= 2) { |
|
rfactor = 1.0f / power; |
|
level_height = (int)(options_.img_height*rfactor); |
|
level_width = (int)(options_.img_width*rfactor); |
|
|
|
// Smallest possible octave and allow one scale if the image is small |
|
if ((level_width < 80 || level_height < 40) && i != 0) { |
|
options_.omax = i; |
|
break; |
|
} |
|
|
|
for (int j = 0; j < options_.nsublevels; j++) { |
|
TEvolution step; |
|
step.Lx = Mat::zeros(level_height, level_width, CV_32F); |
|
step.Ly = Mat::zeros(level_height, level_width, CV_32F); |
|
step.Lxx = Mat::zeros(level_height, level_width, CV_32F); |
|
step.Lxy = Mat::zeros(level_height, level_width, CV_32F); |
|
step.Lyy = Mat::zeros(level_height, level_width, CV_32F); |
|
step.Lt = Mat::zeros(level_height, level_width, CV_32F); |
|
step.Ldet = Mat::zeros(level_height, level_width, CV_32F); |
|
step.Lsmooth = Mat::zeros(level_height, level_width, CV_32F); |
|
step.esigma = options_.soffset*pow(2.f, (float)(j) / (float)(options_.nsublevels) + i); |
|
step.sigma_size = fRound(step.esigma); |
|
step.etime = 0.5f*(step.esigma*step.esigma); |
|
step.octave = i; |
|
step.sublevel = j; |
|
evolution_.push_back(step); |
|
} |
|
} |
|
|
|
// Allocate memory for the number of cycles and time steps |
|
for (size_t i = 1; i < evolution_.size(); i++) { |
|
int naux = 0; |
|
vector<float> tau; |
|
float ttime = 0.0f; |
|
ttime = evolution_[i].etime - evolution_[i - 1].etime; |
|
naux = fed_tau_by_process_time(ttime, 1, 0.25f, reordering_, tau); |
|
nsteps_.push_back(naux); |
|
tsteps_.push_back(tau); |
|
ncycles_++; |
|
} |
|
} |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This method creates the nonlinear scale space for a given image |
|
* @param img Input image for which the nonlinear scale space needs to be created |
|
* @return 0 if the nonlinear scale space was created successfully, -1 otherwise |
|
*/ |
|
int AKAZEFeatures::Create_Nonlinear_Scale_Space(const Mat& img) |
|
{ |
|
CV_Assert(evolution_.size() > 0); |
|
|
|
// Copy the original image to the first level of the evolution |
|
img.copyTo(evolution_[0].Lt); |
|
gaussian_2D_convolution(evolution_[0].Lt, evolution_[0].Lt, 0, 0, options_.soffset); |
|
evolution_[0].Lt.copyTo(evolution_[0].Lsmooth); |
|
|
|
// Allocate memory for the flow and step images |
|
Mat Lflow = Mat::zeros(evolution_[0].Lt.rows, evolution_[0].Lt.cols, CV_32F); |
|
Mat Lstep = Mat::zeros(evolution_[0].Lt.rows, evolution_[0].Lt.cols, CV_32F); |
|
|
|
// First compute the kcontrast factor |
|
options_.kcontrast = compute_k_percentile(img, options_.kcontrast_percentile, 1.0f, options_.kcontrast_nbins, 0, 0); |
|
|
|
// Now generate the rest of evolution levels |
|
for (size_t i = 1; i < evolution_.size(); i++) { |
|
|
|
if (evolution_[i].octave > evolution_[i - 1].octave) { |
|
halfsample_image(evolution_[i - 1].Lt, evolution_[i].Lt); |
|
options_.kcontrast = options_.kcontrast*0.75f; |
|
|
|
// Allocate memory for the resized flow and step images |
|
Lflow = Mat::zeros(evolution_[i].Lt.rows, evolution_[i].Lt.cols, CV_32F); |
|
Lstep = Mat::zeros(evolution_[i].Lt.rows, evolution_[i].Lt.cols, CV_32F); |
|
} |
|
else { |
|
evolution_[i - 1].Lt.copyTo(evolution_[i].Lt); |
|
} |
|
|
|
gaussian_2D_convolution(evolution_[i].Lt, evolution_[i].Lsmooth, 0, 0, 1.0f); |
|
|
|
// Compute the Gaussian derivatives Lx and Ly |
|
image_derivatives_scharr(evolution_[i].Lsmooth, evolution_[i].Lx, 1, 0); |
|
image_derivatives_scharr(evolution_[i].Lsmooth, evolution_[i].Ly, 0, 1); |
|
|
|
// Compute the conductivity equation |
|
switch (options_.diffusivity) { |
|
case KAZE::DIFF_PM_G1: |
|
pm_g1(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast); |
|
break; |
|
case KAZE::DIFF_PM_G2: |
|
pm_g2(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast); |
|
break; |
|
case KAZE::DIFF_WEICKERT: |
|
weickert_diffusivity(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast); |
|
break; |
|
case KAZE::DIFF_CHARBONNIER: |
|
charbonnier_diffusivity(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast); |
|
break; |
|
default: |
|
CV_Error(options_.diffusivity, "Diffusivity is not supported"); |
|
break; |
|
} |
|
|
|
// Perform FED n inner steps |
|
for (int j = 0; j < nsteps_[i - 1]; j++) { |
|
nld_step_scalar(evolution_[i].Lt, Lflow, Lstep, tsteps_[i - 1][j]); |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This method selects interesting keypoints through the nonlinear scale space |
|
* @param kpts Vector of detected keypoints |
|
*/ |
|
void AKAZEFeatures::Feature_Detection(std::vector<KeyPoint>& kpts) |
|
{ |
|
kpts.clear(); |
|
Compute_Determinant_Hessian_Response(); |
|
Find_Scale_Space_Extrema(kpts); |
|
Do_Subpixel_Refinement(kpts); |
|
} |
|
|
|
/* ************************************************************************* */ |
|
class MultiscaleDerivativesAKAZEInvoker : public ParallelLoopBody |
|
{ |
|
public: |
|
explicit MultiscaleDerivativesAKAZEInvoker(std::vector<TEvolution>& ev, const AKAZEOptions& opt) |
|
: evolution_(&ev) |
|
, options_(opt) |
|
{ |
|
} |
|
|
|
void operator()(const Range& range) const |
|
{ |
|
std::vector<TEvolution>& evolution = *evolution_; |
|
|
|
for (int i = range.start; i < range.end; i++) |
|
{ |
|
float ratio = (float)fastpow(2, evolution[i].octave); |
|
int sigma_size_ = fRound(evolution[i].esigma * options_.derivative_factor / ratio); |
|
|
|
compute_scharr_derivatives(evolution[i].Lsmooth, evolution[i].Lx, 1, 0, sigma_size_); |
|
compute_scharr_derivatives(evolution[i].Lsmooth, evolution[i].Ly, 0, 1, sigma_size_); |
|
compute_scharr_derivatives(evolution[i].Lx, evolution[i].Lxx, 1, 0, sigma_size_); |
|
compute_scharr_derivatives(evolution[i].Ly, evolution[i].Lyy, 0, 1, sigma_size_); |
|
compute_scharr_derivatives(evolution[i].Lx, evolution[i].Lxy, 0, 1, sigma_size_); |
|
|
|
evolution[i].Lx = evolution[i].Lx*((sigma_size_)); |
|
evolution[i].Ly = evolution[i].Ly*((sigma_size_)); |
|
evolution[i].Lxx = evolution[i].Lxx*((sigma_size_)*(sigma_size_)); |
|
evolution[i].Lxy = evolution[i].Lxy*((sigma_size_)*(sigma_size_)); |
|
evolution[i].Lyy = evolution[i].Lyy*((sigma_size_)*(sigma_size_)); |
|
} |
|
} |
|
|
|
private: |
|
std::vector<TEvolution>* evolution_; |
|
AKAZEOptions options_; |
|
}; |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This method computes the multiscale derivatives for the nonlinear scale space |
|
*/ |
|
void AKAZEFeatures::Compute_Multiscale_Derivatives(void) |
|
{ |
|
parallel_for_(Range(0, (int)evolution_.size()), |
|
MultiscaleDerivativesAKAZEInvoker(evolution_, options_)); |
|
} |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This method computes the feature detector response for the nonlinear scale space |
|
* @note We use the Hessian determinant as the feature detector response |
|
*/ |
|
void AKAZEFeatures::Compute_Determinant_Hessian_Response(void) { |
|
|
|
// Firstly compute the multiscale derivatives |
|
Compute_Multiscale_Derivatives(); |
|
|
|
for (size_t i = 0; i < evolution_.size(); i++) |
|
{ |
|
for (int ix = 0; ix < evolution_[i].Ldet.rows; ix++) |
|
{ |
|
for (int jx = 0; jx < evolution_[i].Ldet.cols; jx++) |
|
{ |
|
float lxx = *(evolution_[i].Lxx.ptr<float>(ix)+jx); |
|
float lxy = *(evolution_[i].Lxy.ptr<float>(ix)+jx); |
|
float lyy = *(evolution_[i].Lyy.ptr<float>(ix)+jx); |
|
*(evolution_[i].Ldet.ptr<float>(ix)+jx) = (lxx*lyy - lxy*lxy); |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This method finds extrema in the nonlinear scale space |
|
* @param kpts Vector of detected keypoints |
|
*/ |
|
void AKAZEFeatures::Find_Scale_Space_Extrema(std::vector<KeyPoint>& kpts) |
|
{ |
|
|
|
float value = 0.0; |
|
float dist = 0.0, ratio = 0.0, smax = 0.0; |
|
int npoints = 0, id_repeated = 0; |
|
int sigma_size_ = 0, left_x = 0, right_x = 0, up_y = 0, down_y = 0; |
|
bool is_extremum = false, is_repeated = false, is_out = false; |
|
KeyPoint point; |
|
vector<KeyPoint> kpts_aux; |
|
|
|
// Set maximum size |
|
if (options_.descriptor == AKAZE::DESCRIPTOR_MLDB_UPRIGHT || options_.descriptor == AKAZE::DESCRIPTOR_MLDB) { |
|
smax = 10.0f*sqrtf(2.0f); |
|
} |
|
else if (options_.descriptor == AKAZE::DESCRIPTOR_KAZE_UPRIGHT || options_.descriptor == AKAZE::DESCRIPTOR_KAZE) { |
|
smax = 12.0f*sqrtf(2.0f); |
|
} |
|
|
|
for (size_t i = 0; i < evolution_.size(); i++) { |
|
float* prev = evolution_[i].Ldet.ptr<float>(0); |
|
float* curr = evolution_[i].Ldet.ptr<float>(1); |
|
for (int ix = 1; ix < evolution_[i].Ldet.rows - 1; ix++) { |
|
float* next = evolution_[i].Ldet.ptr<float>(ix + 1); |
|
|
|
for (int jx = 1; jx < evolution_[i].Ldet.cols - 1; jx++) { |
|
is_extremum = false; |
|
is_repeated = false; |
|
is_out = false; |
|
value = *(evolution_[i].Ldet.ptr<float>(ix)+jx); |
|
|
|
// Filter the points with the detector threshold |
|
if (value > options_.dthreshold && value >= options_.min_dthreshold && |
|
value > curr[jx-1] && |
|
value > curr[jx+1] && |
|
value > prev[jx-1] && |
|
value > prev[jx] && |
|
value > prev[jx+1] && |
|
value > next[jx-1] && |
|
value > next[jx] && |
|
value > next[jx+1]) { |
|
|
|
is_extremum = true; |
|
point.response = fabs(value); |
|
point.size = evolution_[i].esigma*options_.derivative_factor; |
|
point.octave = (int)evolution_[i].octave; |
|
point.class_id = (int)i; |
|
ratio = (float)fastpow(2, point.octave); |
|
sigma_size_ = fRound(point.size / ratio); |
|
point.pt.x = static_cast<float>(jx); |
|
point.pt.y = static_cast<float>(ix); |
|
|
|
// Compare response with the same and lower scale |
|
for (size_t ik = 0; ik < kpts_aux.size(); ik++) { |
|
|
|
if ((point.class_id - 1) == kpts_aux[ik].class_id || |
|
point.class_id == kpts_aux[ik].class_id) { |
|
float distx = point.pt.x*ratio - kpts_aux[ik].pt.x; |
|
float disty = point.pt.y*ratio - kpts_aux[ik].pt.y; |
|
dist = distx * distx + disty * disty; |
|
if (dist <= point.size * point.size) { |
|
if (point.response > kpts_aux[ik].response) { |
|
id_repeated = (int)ik; |
|
is_repeated = true; |
|
} |
|
else { |
|
is_extremum = false; |
|
} |
|
break; |
|
} |
|
} |
|
} |
|
|
|
// Check out of bounds |
|
if (is_extremum == true) { |
|
|
|
// Check that the point is under the image limits for the descriptor computation |
|
left_x = fRound(point.pt.x - smax*sigma_size_) - 1; |
|
right_x = fRound(point.pt.x + smax*sigma_size_) + 1; |
|
up_y = fRound(point.pt.y - smax*sigma_size_) - 1; |
|
down_y = fRound(point.pt.y + smax*sigma_size_) + 1; |
|
|
|
if (left_x < 0 || right_x >= evolution_[i].Ldet.cols || |
|
up_y < 0 || down_y >= evolution_[i].Ldet.rows) { |
|
is_out = true; |
|
} |
|
|
|
if (is_out == false) { |
|
if (is_repeated == false) { |
|
point.pt.x *= ratio; |
|
point.pt.y *= ratio; |
|
kpts_aux.push_back(point); |
|
npoints++; |
|
} |
|
else { |
|
point.pt.x *= ratio; |
|
point.pt.y *= ratio; |
|
kpts_aux[id_repeated] = point; |
|
} |
|
} // if is_out |
|
} //if is_extremum |
|
} |
|
} // for jx |
|
prev = curr; |
|
curr = next; |
|
} // for ix |
|
} // for i |
|
|
|
// Now filter points with the upper scale level |
|
for (size_t i = 0; i < kpts_aux.size(); i++) { |
|
|
|
is_repeated = false; |
|
const KeyPoint& pt = kpts_aux[i]; |
|
for (size_t j = i + 1; j < kpts_aux.size(); j++) { |
|
|
|
// Compare response with the upper scale |
|
if ((pt.class_id + 1) == kpts_aux[j].class_id) { |
|
float distx = pt.pt.x - kpts_aux[j].pt.x; |
|
float disty = pt.pt.y - kpts_aux[j].pt.y; |
|
dist = distx * distx + disty * disty; |
|
if (dist <= pt.size * pt.size) { |
|
if (pt.response < kpts_aux[j].response) { |
|
is_repeated = true; |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (is_repeated == false) |
|
kpts.push_back(pt); |
|
} |
|
} |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This method performs subpixel refinement of the detected keypoints |
|
* @param kpts Vector of detected keypoints |
|
*/ |
|
void AKAZEFeatures::Do_Subpixel_Refinement(std::vector<KeyPoint>& kpts) |
|
{ |
|
float Dx = 0.0, Dy = 0.0, ratio = 0.0; |
|
float Dxx = 0.0, Dyy = 0.0, Dxy = 0.0; |
|
int x = 0, y = 0; |
|
Matx22f A(0, 0, 0, 0); |
|
Vec2f b(0, 0); |
|
Vec2f dst(0, 0); |
|
|
|
for (size_t i = 0; i < kpts.size(); i++) { |
|
ratio = (float)fastpow(2, kpts[i].octave); |
|
x = fRound(kpts[i].pt.x / ratio); |
|
y = fRound(kpts[i].pt.y / ratio); |
|
|
|
// Compute the gradient |
|
Dx = (0.5f)*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x + 1) |
|
- *(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x - 1)); |
|
Dy = (0.5f)*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y + 1) + x) |
|
- *(evolution_[kpts[i].class_id].Ldet.ptr<float>(y - 1) + x)); |
|
|
|
// Compute the Hessian |
|
Dxx = (*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x + 1) |
|
+ *(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x - 1) |
|
- 2.0f*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x))); |
|
|
|
Dyy = (*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y + 1) + x) |
|
+ *(evolution_[kpts[i].class_id].Ldet.ptr<float>(y - 1) + x) |
|
- 2.0f*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x))); |
|
|
|
Dxy = (0.25f)*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y + 1) + x + 1) |
|
+ (*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y - 1) + x - 1))) |
|
- (0.25f)*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y - 1) + x + 1) |
|
+ (*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y + 1) + x - 1))); |
|
|
|
// Solve the linear system |
|
A(0, 0) = Dxx; |
|
A(1, 1) = Dyy; |
|
A(0, 1) = A(1, 0) = Dxy; |
|
b(0) = -Dx; |
|
b(1) = -Dy; |
|
|
|
solve(A, b, dst, DECOMP_LU); |
|
|
|
if (fabs(dst(0)) <= 1.0f && fabs(dst(1)) <= 1.0f) { |
|
kpts[i].pt.x = x + dst(0); |
|
kpts[i].pt.y = y + dst(1); |
|
int power = fastpow(2, evolution_[kpts[i].class_id].octave); |
|
kpts[i].pt.x *= power; |
|
kpts[i].pt.y *= power; |
|
kpts[i].angle = 0.0; |
|
|
|
// In OpenCV the size of a keypoint its the diameter |
|
kpts[i].size *= 2.0f; |
|
} |
|
// Delete the point since its not stable |
|
else { |
|
kpts.erase(kpts.begin() + i); |
|
i--; |
|
} |
|
} |
|
} |
|
|
|
/* ************************************************************************* */ |
|
|
|
class SURF_Descriptor_Upright_64_Invoker : public ParallelLoopBody |
|
{ |
|
public: |
|
SURF_Descriptor_Upright_64_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution) |
|
: keypoints_(&kpts) |
|
, descriptors_(&desc) |
|
, evolution_(&evolution) |
|
{ |
|
} |
|
|
|
void operator() (const Range& range) const |
|
{ |
|
for (int i = range.start; i < range.end; i++) |
|
{ |
|
Get_SURF_Descriptor_Upright_64((*keypoints_)[i], descriptors_->ptr<float>(i)); |
|
} |
|
} |
|
|
|
void Get_SURF_Descriptor_Upright_64(const KeyPoint& kpt, float* desc) const; |
|
|
|
private: |
|
std::vector<KeyPoint>* keypoints_; |
|
Mat* descriptors_; |
|
std::vector<TEvolution>* evolution_; |
|
}; |
|
|
|
class SURF_Descriptor_64_Invoker : public ParallelLoopBody |
|
{ |
|
public: |
|
SURF_Descriptor_64_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution) |
|
: keypoints_(&kpts) |
|
, descriptors_(&desc) |
|
, evolution_(&evolution) |
|
{ |
|
} |
|
|
|
void operator()(const Range& range) const |
|
{ |
|
for (int i = range.start; i < range.end; i++) |
|
{ |
|
AKAZEFeatures::Compute_Main_Orientation((*keypoints_)[i], *evolution_); |
|
Get_SURF_Descriptor_64((*keypoints_)[i], descriptors_->ptr<float>(i)); |
|
} |
|
} |
|
|
|
void Get_SURF_Descriptor_64(const KeyPoint& kpt, float* desc) const; |
|
|
|
private: |
|
std::vector<KeyPoint>* keypoints_; |
|
Mat* descriptors_; |
|
std::vector<TEvolution>* evolution_; |
|
}; |
|
|
|
class MSURF_Upright_Descriptor_64_Invoker : public ParallelLoopBody |
|
{ |
|
public: |
|
MSURF_Upright_Descriptor_64_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution) |
|
: keypoints_(&kpts) |
|
, descriptors_(&desc) |
|
, evolution_(&evolution) |
|
{ |
|
} |
|
|
|
void operator()(const Range& range) const |
|
{ |
|
for (int i = range.start; i < range.end; i++) |
|
{ |
|
Get_MSURF_Upright_Descriptor_64((*keypoints_)[i], descriptors_->ptr<float>(i)); |
|
} |
|
} |
|
|
|
void Get_MSURF_Upright_Descriptor_64(const KeyPoint& kpt, float* desc) const; |
|
|
|
private: |
|
std::vector<KeyPoint>* keypoints_; |
|
Mat* descriptors_; |
|
std::vector<TEvolution>* evolution_; |
|
}; |
|
|
|
class MSURF_Descriptor_64_Invoker : public ParallelLoopBody |
|
{ |
|
public: |
|
MSURF_Descriptor_64_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution) |
|
: keypoints_(&kpts) |
|
, descriptors_(&desc) |
|
, evolution_(&evolution) |
|
{ |
|
} |
|
|
|
void operator() (const Range& range) const |
|
{ |
|
for (int i = range.start; i < range.end; i++) |
|
{ |
|
AKAZEFeatures::Compute_Main_Orientation((*keypoints_)[i], *evolution_); |
|
Get_MSURF_Descriptor_64((*keypoints_)[i], descriptors_->ptr<float>(i)); |
|
} |
|
} |
|
|
|
void Get_MSURF_Descriptor_64(const KeyPoint& kpt, float* desc) const; |
|
|
|
private: |
|
std::vector<KeyPoint>* keypoints_; |
|
Mat* descriptors_; |
|
std::vector<TEvolution>* evolution_; |
|
}; |
|
|
|
class Upright_MLDB_Full_Descriptor_Invoker : public ParallelLoopBody |
|
{ |
|
public: |
|
Upright_MLDB_Full_Descriptor_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution, AKAZEOptions& options) |
|
: keypoints_(&kpts) |
|
, descriptors_(&desc) |
|
, evolution_(&evolution) |
|
, options_(&options) |
|
{ |
|
} |
|
|
|
void operator() (const Range& range) const |
|
{ |
|
for (int i = range.start; i < range.end; i++) |
|
{ |
|
Get_Upright_MLDB_Full_Descriptor((*keypoints_)[i], descriptors_->ptr<unsigned char>(i)); |
|
} |
|
} |
|
|
|
void Get_Upright_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char* desc) const; |
|
|
|
private: |
|
std::vector<KeyPoint>* keypoints_; |
|
Mat* descriptors_; |
|
std::vector<TEvolution>* evolution_; |
|
AKAZEOptions* options_; |
|
}; |
|
|
|
class Upright_MLDB_Descriptor_Subset_Invoker : public ParallelLoopBody |
|
{ |
|
public: |
|
Upright_MLDB_Descriptor_Subset_Invoker(std::vector<KeyPoint>& kpts, |
|
Mat& desc, |
|
std::vector<TEvolution>& evolution, |
|
AKAZEOptions& options, |
|
Mat descriptorSamples, |
|
Mat descriptorBits) |
|
: keypoints_(&kpts) |
|
, descriptors_(&desc) |
|
, evolution_(&evolution) |
|
, options_(&options) |
|
, descriptorSamples_(descriptorSamples) |
|
, descriptorBits_(descriptorBits) |
|
{ |
|
} |
|
|
|
void operator() (const Range& range) const |
|
{ |
|
for (int i = range.start; i < range.end; i++) |
|
{ |
|
Get_Upright_MLDB_Descriptor_Subset((*keypoints_)[i], descriptors_->ptr<unsigned char>(i)); |
|
} |
|
} |
|
|
|
void Get_Upright_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char* desc) const; |
|
|
|
private: |
|
std::vector<KeyPoint>* keypoints_; |
|
Mat* descriptors_; |
|
std::vector<TEvolution>* evolution_; |
|
AKAZEOptions* options_; |
|
|
|
Mat descriptorSamples_; // List of positions in the grids to sample LDB bits from. |
|
Mat descriptorBits_; |
|
}; |
|
|
|
class MLDB_Full_Descriptor_Invoker : public ParallelLoopBody |
|
{ |
|
public: |
|
MLDB_Full_Descriptor_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution, AKAZEOptions& options) |
|
: keypoints_(&kpts) |
|
, descriptors_(&desc) |
|
, evolution_(&evolution) |
|
, options_(&options) |
|
{ |
|
} |
|
|
|
void operator() (const Range& range) const |
|
{ |
|
for (int i = range.start; i < range.end; i++) |
|
{ |
|
AKAZEFeatures::Compute_Main_Orientation((*keypoints_)[i], *evolution_); |
|
Get_MLDB_Full_Descriptor((*keypoints_)[i], descriptors_->ptr<unsigned char>(i)); |
|
} |
|
} |
|
|
|
void Get_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char* desc) const; |
|
void MLDB_Fill_Values(float* values, int sample_step, int level, |
|
float xf, float yf, float co, float si, float scale) const; |
|
void MLDB_Binary_Comparisons(float* values, unsigned char* desc, |
|
int count, int& dpos) const; |
|
|
|
private: |
|
std::vector<KeyPoint>* keypoints_; |
|
Mat* descriptors_; |
|
std::vector<TEvolution>* evolution_; |
|
AKAZEOptions* options_; |
|
}; |
|
|
|
class MLDB_Descriptor_Subset_Invoker : public ParallelLoopBody |
|
{ |
|
public: |
|
MLDB_Descriptor_Subset_Invoker(std::vector<KeyPoint>& kpts, |
|
Mat& desc, |
|
std::vector<TEvolution>& evolution, |
|
AKAZEOptions& options, |
|
Mat descriptorSamples, |
|
Mat descriptorBits) |
|
: keypoints_(&kpts) |
|
, descriptors_(&desc) |
|
, evolution_(&evolution) |
|
, options_(&options) |
|
, descriptorSamples_(descriptorSamples) |
|
, descriptorBits_(descriptorBits) |
|
{ |
|
} |
|
|
|
void operator() (const Range& range) const |
|
{ |
|
for (int i = range.start; i < range.end; i++) |
|
{ |
|
AKAZEFeatures::Compute_Main_Orientation((*keypoints_)[i], *evolution_); |
|
Get_MLDB_Descriptor_Subset((*keypoints_)[i], descriptors_->ptr<unsigned char>(i)); |
|
} |
|
} |
|
|
|
void Get_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char* desc) const; |
|
|
|
private: |
|
std::vector<KeyPoint>* keypoints_; |
|
Mat* descriptors_; |
|
std::vector<TEvolution>* evolution_; |
|
AKAZEOptions* options_; |
|
|
|
Mat descriptorSamples_; // List of positions in the grids to sample LDB bits from. |
|
Mat descriptorBits_; |
|
}; |
|
|
|
/** |
|
* @brief This method computes the set of descriptors through the nonlinear scale space |
|
* @param kpts Vector of detected keypoints |
|
* @param desc Matrix to store the descriptors |
|
*/ |
|
void AKAZEFeatures::Compute_Descriptors(std::vector<KeyPoint>& kpts, Mat& desc) |
|
{ |
|
for(size_t i = 0; i < kpts.size(); i++) |
|
{ |
|
CV_Assert(0 <= kpts[i].class_id && kpts[i].class_id < static_cast<int>(evolution_.size())); |
|
} |
|
|
|
// Allocate memory for the matrix with the descriptors |
|
if (options_.descriptor < AKAZE::DESCRIPTOR_MLDB_UPRIGHT) { |
|
desc = Mat::zeros((int)kpts.size(), 64, CV_32FC1); |
|
} |
|
else { |
|
// We use the full length binary descriptor -> 486 bits |
|
if (options_.descriptor_size == 0) { |
|
int t = (6 + 36 + 120)*options_.descriptor_channels; |
|
desc = Mat::zeros((int)kpts.size(), (int)ceil(t / 8.), CV_8UC1); |
|
} |
|
else { |
|
// We use the random bit selection length binary descriptor |
|
desc = Mat::zeros((int)kpts.size(), (int)ceil(options_.descriptor_size / 8.), CV_8UC1); |
|
} |
|
} |
|
|
|
switch (options_.descriptor) |
|
{ |
|
case AKAZE::DESCRIPTOR_KAZE_UPRIGHT: // Upright descriptors, not invariant to rotation |
|
{ |
|
parallel_for_(Range(0, (int)kpts.size()), MSURF_Upright_Descriptor_64_Invoker(kpts, desc, evolution_)); |
|
} |
|
break; |
|
case AKAZE::DESCRIPTOR_KAZE: |
|
{ |
|
parallel_for_(Range(0, (int)kpts.size()), MSURF_Descriptor_64_Invoker(kpts, desc, evolution_)); |
|
} |
|
break; |
|
case AKAZE::DESCRIPTOR_MLDB_UPRIGHT: // Upright descriptors, not invariant to rotation |
|
{ |
|
if (options_.descriptor_size == 0) |
|
parallel_for_(Range(0, (int)kpts.size()), Upright_MLDB_Full_Descriptor_Invoker(kpts, desc, evolution_, options_)); |
|
else |
|
parallel_for_(Range(0, (int)kpts.size()), Upright_MLDB_Descriptor_Subset_Invoker(kpts, desc, evolution_, options_, descriptorSamples_, descriptorBits_)); |
|
} |
|
break; |
|
case AKAZE::DESCRIPTOR_MLDB: |
|
{ |
|
if (options_.descriptor_size == 0) |
|
parallel_for_(Range(0, (int)kpts.size()), MLDB_Full_Descriptor_Invoker(kpts, desc, evolution_, options_)); |
|
else |
|
parallel_for_(Range(0, (int)kpts.size()), MLDB_Descriptor_Subset_Invoker(kpts, desc, evolution_, options_, descriptorSamples_, descriptorBits_)); |
|
} |
|
break; |
|
} |
|
} |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This method computes the main orientation for a given keypoint |
|
* @param kpt Input keypoint |
|
* @note The orientation is computed using a similar approach as described in the |
|
* original SURF method. See Bay et al., Speeded Up Robust Features, ECCV 2006 |
|
*/ |
|
void AKAZEFeatures::Compute_Main_Orientation(KeyPoint& kpt, const std::vector<TEvolution>& evolution_) |
|
{ |
|
/* ************************************************************************* */ |
|
/// Lookup table for 2d gaussian (sigma = 2.5) where (0,0) is top left and (6,6) is bottom right |
|
static const float gauss25[7][7] = |
|
{ |
|
{ 0.02546481f, 0.02350698f, 0.01849125f, 0.01239505f, 0.00708017f, 0.00344629f, 0.00142946f }, |
|
{ 0.02350698f, 0.02169968f, 0.01706957f, 0.01144208f, 0.00653582f, 0.00318132f, 0.00131956f }, |
|
{ 0.01849125f, 0.01706957f, 0.01342740f, 0.00900066f, 0.00514126f, 0.00250252f, 0.00103800f }, |
|
{ 0.01239505f, 0.01144208f, 0.00900066f, 0.00603332f, 0.00344629f, 0.00167749f, 0.00069579f }, |
|
{ 0.00708017f, 0.00653582f, 0.00514126f, 0.00344629f, 0.00196855f, 0.00095820f, 0.00039744f }, |
|
{ 0.00344629f, 0.00318132f, 0.00250252f, 0.00167749f, 0.00095820f, 0.00046640f, 0.00019346f }, |
|
{ 0.00142946f, 0.00131956f, 0.00103800f, 0.00069579f, 0.00039744f, 0.00019346f, 0.00008024f } |
|
}; |
|
|
|
int ix = 0, iy = 0, idx = 0, s = 0, level = 0; |
|
float xf = 0.0, yf = 0.0, gweight = 0.0, ratio = 0.0; |
|
const int ang_size = 109; |
|
float resX[ang_size], resY[ang_size], Ang[ang_size]; |
|
const int id[] = { 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6 }; |
|
|
|
// Variables for computing the dominant direction |
|
float sumX = 0.0, sumY = 0.0, max = 0.0, ang1 = 0.0, ang2 = 0.0; |
|
|
|
// Get the information from the keypoint |
|
level = kpt.class_id; |
|
ratio = (float)(1 << evolution_[level].octave); |
|
s = fRound(0.5f*kpt.size / ratio); |
|
xf = kpt.pt.x / ratio; |
|
yf = kpt.pt.y / ratio; |
|
|
|
// Calculate derivatives responses for points within radius of 6*scale |
|
for (int i = -6; i <= 6; ++i) { |
|
for (int j = -6; j <= 6; ++j) { |
|
if (i*i + j*j < 36) { |
|
iy = fRound(yf + j*s); |
|
ix = fRound(xf + i*s); |
|
|
|
gweight = gauss25[id[i + 6]][id[j + 6]]; |
|
resX[idx] = gweight*(*(evolution_[level].Lx.ptr<float>(iy)+ix)); |
|
resY[idx] = gweight*(*(evolution_[level].Ly.ptr<float>(iy)+ix)); |
|
|
|
++idx; |
|
} |
|
} |
|
} |
|
hal::fastAtan2(resY, resX, Ang, ang_size, false); |
|
// Loop slides pi/3 window around feature point |
|
for (ang1 = 0; ang1 < (float)(2.0 * CV_PI); ang1 += 0.15f) { |
|
ang2 = (ang1 + (float)(CV_PI / 3.0) >(float)(2.0*CV_PI) ? ang1 - (float)(5.0*CV_PI / 3.0) : ang1 + (float)(CV_PI / 3.0)); |
|
sumX = sumY = 0.f; |
|
|
|
for (int k = 0; k < ang_size; ++k) { |
|
// Get angle from the x-axis of the sample point |
|
const float & ang = Ang[k]; |
|
|
|
// Determine whether the point is within the window |
|
if (ang1 < ang2 && ang1 < ang && ang < ang2) { |
|
sumX += resX[k]; |
|
sumY += resY[k]; |
|
} |
|
else if (ang2 < ang1 && |
|
((ang > 0 && ang < ang2) || (ang > ang1 && ang < 2.0f*CV_PI))) { |
|
sumX += resX[k]; |
|
sumY += resY[k]; |
|
} |
|
} |
|
|
|
// if the vector produced from this window is longer than all |
|
// previous vectors then this forms the new dominant direction |
|
if (sumX*sumX + sumY*sumY > max) { |
|
// store largest orientation |
|
max = sumX*sumX + sumY*sumY; |
|
kpt.angle = getAngle(sumX, sumY) * 180.f / static_cast<float>(CV_PI); |
|
} |
|
} |
|
} |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This method computes the upright descriptor (not rotation invariant) of |
|
* the provided keypoint |
|
* @param kpt Input keypoint |
|
* @param desc Descriptor vector |
|
* @note Rectangular grid of 24 s x 24 s. Descriptor Length 64. The descriptor is inspired |
|
* from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching, |
|
* ECCV 2008 |
|
*/ |
|
void MSURF_Upright_Descriptor_64_Invoker::Get_MSURF_Upright_Descriptor_64(const KeyPoint& kpt, float *desc) const { |
|
|
|
float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0, gauss_s1 = 0.0, gauss_s2 = 0.0; |
|
float rx = 0.0, ry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0; |
|
float sample_x = 0.0, sample_y = 0.0; |
|
int x1 = 0, y1 = 0, sample_step = 0, pattern_size = 0; |
|
int x2 = 0, y2 = 0, kx = 0, ky = 0, i = 0, j = 0, dcount = 0; |
|
float fx = 0.0, fy = 0.0, ratio = 0.0, res1 = 0.0, res2 = 0.0, res3 = 0.0, res4 = 0.0; |
|
int scale = 0, dsize = 0, level = 0; |
|
|
|
// Subregion centers for the 4x4 gaussian weighting |
|
float cx = -0.5f, cy = 0.5f; |
|
|
|
const std::vector<TEvolution>& evolution = *evolution_; |
|
|
|
// Set the descriptor size and the sample and pattern sizes |
|
dsize = 64; |
|
sample_step = 5; |
|
pattern_size = 12; |
|
|
|
// Get the information from the keypoint |
|
ratio = (float)(1 << kpt.octave); |
|
scale = fRound(0.5f*kpt.size / ratio); |
|
level = kpt.class_id; |
|
yf = kpt.pt.y / ratio; |
|
xf = kpt.pt.x / ratio; |
|
|
|
i = -8; |
|
|
|
// Calculate descriptor for this interest point |
|
// Area of size 24 s x 24 s |
|
while (i < pattern_size) { |
|
j = -8; |
|
i = i - 4; |
|
|
|
cx += 1.0f; |
|
cy = -0.5f; |
|
|
|
while (j < pattern_size) { |
|
dx = dy = mdx = mdy = 0.0; |
|
cy += 1.0f; |
|
j = j - 4; |
|
|
|
ky = i + sample_step; |
|
kx = j + sample_step; |
|
|
|
ys = yf + (ky*scale); |
|
xs = xf + (kx*scale); |
|
|
|
for (int k = i; k < i + 9; k++) { |
|
for (int l = j; l < j + 9; l++) { |
|
sample_y = k*scale + yf; |
|
sample_x = l*scale + xf; |
|
|
|
//Get the gaussian weighted x and y responses |
|
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.50f*scale); |
|
|
|
y1 = (int)(sample_y - .5); |
|
x1 = (int)(sample_x - .5); |
|
|
|
y2 = (int)(sample_y + .5); |
|
x2 = (int)(sample_x + .5); |
|
|
|
fx = sample_x - x1; |
|
fy = sample_y - y1; |
|
|
|
res1 = *(evolution[level].Lx.ptr<float>(y1)+x1); |
|
res2 = *(evolution[level].Lx.ptr<float>(y1)+x2); |
|
res3 = *(evolution[level].Lx.ptr<float>(y2)+x1); |
|
res4 = *(evolution[level].Lx.ptr<float>(y2)+x2); |
|
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4; |
|
|
|
res1 = *(evolution[level].Ly.ptr<float>(y1)+x1); |
|
res2 = *(evolution[level].Ly.ptr<float>(y1)+x2); |
|
res3 = *(evolution[level].Ly.ptr<float>(y2)+x1); |
|
res4 = *(evolution[level].Ly.ptr<float>(y2)+x2); |
|
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4; |
|
|
|
rx = gauss_s1*rx; |
|
ry = gauss_s1*ry; |
|
|
|
// Sum the derivatives to the cumulative descriptor |
|
dx += rx; |
|
dy += ry; |
|
mdx += fabs(rx); |
|
mdy += fabs(ry); |
|
} |
|
} |
|
|
|
// Add the values to the descriptor vector |
|
gauss_s2 = gaussian(cx - 2.0f, cy - 2.0f, 1.5f); |
|
|
|
desc[dcount++] = dx*gauss_s2; |
|
desc[dcount++] = dy*gauss_s2; |
|
desc[dcount++] = mdx*gauss_s2; |
|
desc[dcount++] = mdy*gauss_s2; |
|
|
|
len += (dx*dx + dy*dy + mdx*mdx + mdy*mdy)*gauss_s2*gauss_s2; |
|
|
|
j += 9; |
|
} |
|
|
|
i += 9; |
|
} |
|
|
|
// convert to unit vector |
|
len = sqrt(len); |
|
|
|
for (i = 0; i < dsize; i++) { |
|
desc[i] /= len; |
|
} |
|
} |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This method computes the descriptor of the provided keypoint given the |
|
* main orientation of the keypoint |
|
* @param kpt Input keypoint |
|
* @param desc Descriptor vector |
|
* @note Rectangular grid of 24 s x 24 s. Descriptor Length 64. The descriptor is inspired |
|
* from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching, |
|
* ECCV 2008 |
|
*/ |
|
void MSURF_Descriptor_64_Invoker::Get_MSURF_Descriptor_64(const KeyPoint& kpt, float *desc) const { |
|
|
|
float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0, gauss_s1 = 0.0, gauss_s2 = 0.0; |
|
float rx = 0.0, ry = 0.0, rrx = 0.0, rry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0; |
|
float sample_x = 0.0, sample_y = 0.0, co = 0.0, si = 0.0, angle = 0.0; |
|
float fx = 0.0, fy = 0.0, ratio = 0.0, res1 = 0.0, res2 = 0.0, res3 = 0.0, res4 = 0.0; |
|
int x1 = 0, y1 = 0, x2 = 0, y2 = 0, sample_step = 0, pattern_size = 0; |
|
int kx = 0, ky = 0, i = 0, j = 0, dcount = 0; |
|
int scale = 0, dsize = 0, level = 0; |
|
|
|
// Subregion centers for the 4x4 gaussian weighting |
|
float cx = -0.5f, cy = 0.5f; |
|
|
|
const std::vector<TEvolution>& evolution = *evolution_; |
|
|
|
// Set the descriptor size and the sample and pattern sizes |
|
dsize = 64; |
|
sample_step = 5; |
|
pattern_size = 12; |
|
|
|
// Get the information from the keypoint |
|
ratio = (float)(1 << kpt.octave); |
|
scale = fRound(0.5f*kpt.size / ratio); |
|
angle = kpt.angle; |
|
level = kpt.class_id; |
|
yf = kpt.pt.y / ratio; |
|
xf = kpt.pt.x / ratio; |
|
co = cos(angle); |
|
si = sin(angle); |
|
|
|
i = -8; |
|
|
|
// Calculate descriptor for this interest point |
|
// Area of size 24 s x 24 s |
|
while (i < pattern_size) { |
|
j = -8; |
|
i = i - 4; |
|
|
|
cx += 1.0f; |
|
cy = -0.5f; |
|
|
|
while (j < pattern_size) { |
|
dx = dy = mdx = mdy = 0.0; |
|
cy += 1.0f; |
|
j = j - 4; |
|
|
|
ky = i + sample_step; |
|
kx = j + sample_step; |
|
|
|
xs = xf + (-kx*scale*si + ky*scale*co); |
|
ys = yf + (kx*scale*co + ky*scale*si); |
|
|
|
for (int k = i; k < i + 9; ++k) { |
|
for (int l = j; l < j + 9; ++l) { |
|
// Get coords of sample point on the rotated axis |
|
sample_y = yf + (l*scale*co + k*scale*si); |
|
sample_x = xf + (-l*scale*si + k*scale*co); |
|
|
|
// Get the gaussian weighted x and y responses |
|
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.5f*scale); |
|
|
|
y1 = fRound(sample_y - 0.5f); |
|
x1 = fRound(sample_x - 0.5f); |
|
|
|
y2 = fRound(sample_y + 0.5f); |
|
x2 = fRound(sample_x + 0.5f); |
|
|
|
fx = sample_x - x1; |
|
fy = sample_y - y1; |
|
|
|
res1 = *(evolution[level].Lx.ptr<float>(y1)+x1); |
|
res2 = *(evolution[level].Lx.ptr<float>(y1)+x2); |
|
res3 = *(evolution[level].Lx.ptr<float>(y2)+x1); |
|
res4 = *(evolution[level].Lx.ptr<float>(y2)+x2); |
|
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4; |
|
|
|
res1 = *(evolution[level].Ly.ptr<float>(y1)+x1); |
|
res2 = *(evolution[level].Ly.ptr<float>(y1)+x2); |
|
res3 = *(evolution[level].Ly.ptr<float>(y2)+x1); |
|
res4 = *(evolution[level].Ly.ptr<float>(y2)+x2); |
|
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4; |
|
|
|
// Get the x and y derivatives on the rotated axis |
|
rry = gauss_s1*(rx*co + ry*si); |
|
rrx = gauss_s1*(-rx*si + ry*co); |
|
|
|
// Sum the derivatives to the cumulative descriptor |
|
dx += rrx; |
|
dy += rry; |
|
mdx += fabs(rrx); |
|
mdy += fabs(rry); |
|
} |
|
} |
|
|
|
// Add the values to the descriptor vector |
|
gauss_s2 = gaussian(cx - 2.0f, cy - 2.0f, 1.5f); |
|
desc[dcount++] = dx*gauss_s2; |
|
desc[dcount++] = dy*gauss_s2; |
|
desc[dcount++] = mdx*gauss_s2; |
|
desc[dcount++] = mdy*gauss_s2; |
|
|
|
len += (dx*dx + dy*dy + mdx*mdx + mdy*mdy)*gauss_s2*gauss_s2; |
|
|
|
j += 9; |
|
} |
|
|
|
i += 9; |
|
} |
|
|
|
// convert to unit vector |
|
len = sqrt(len); |
|
|
|
for (i = 0; i < dsize; i++) { |
|
desc[i] /= len; |
|
} |
|
} |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This method computes the rupright descriptor (not rotation invariant) of |
|
* the provided keypoint |
|
* @param kpt Input keypoint |
|
* @param desc Descriptor vector |
|
*/ |
|
void Upright_MLDB_Full_Descriptor_Invoker::Get_Upright_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char *desc) const { |
|
|
|
float di = 0.0, dx = 0.0, dy = 0.0; |
|
float ri = 0.0, rx = 0.0, ry = 0.0, xf = 0.0, yf = 0.0; |
|
float sample_x = 0.0, sample_y = 0.0, ratio = 0.0; |
|
int x1 = 0, y1 = 0, sample_step = 0, pattern_size = 0; |
|
int level = 0, nsamples = 0, scale = 0; |
|
int dcount1 = 0, dcount2 = 0; |
|
|
|
const AKAZEOptions & options = *options_; |
|
const std::vector<TEvolution>& evolution = *evolution_; |
|
|
|
// Matrices for the M-LDB descriptor |
|
Mat values_1 = Mat::zeros(4, options.descriptor_channels, CV_32FC1); |
|
Mat values_2 = Mat::zeros(9, options.descriptor_channels, CV_32FC1); |
|
Mat values_3 = Mat::zeros(16, options.descriptor_channels, CV_32FC1); |
|
|
|
// Get the information from the keypoint |
|
ratio = (float)(1 << kpt.octave); |
|
scale = fRound(0.5f*kpt.size / ratio); |
|
level = kpt.class_id; |
|
yf = kpt.pt.y / ratio; |
|
xf = kpt.pt.x / ratio; |
|
|
|
// First 2x2 grid |
|
pattern_size = options_->descriptor_pattern_size; |
|
sample_step = pattern_size; |
|
|
|
for (int i = -pattern_size; i < pattern_size; i += sample_step) { |
|
for (int j = -pattern_size; j < pattern_size; j += sample_step) { |
|
di = dx = dy = 0.0; |
|
nsamples = 0; |
|
|
|
for (int k = i; k < i + sample_step; k++) { |
|
for (int l = j; l < j + sample_step; l++) { |
|
|
|
// Get the coordinates of the sample point |
|
sample_y = yf + l*scale; |
|
sample_x = xf + k*scale; |
|
|
|
y1 = fRound(sample_y); |
|
x1 = fRound(sample_x); |
|
|
|
ri = *(evolution[level].Lt.ptr<float>(y1)+x1); |
|
rx = *(evolution[level].Lx.ptr<float>(y1)+x1); |
|
ry = *(evolution[level].Ly.ptr<float>(y1)+x1); |
|
|
|
di += ri; |
|
dx += rx; |
|
dy += ry; |
|
nsamples++; |
|
} |
|
} |
|
|
|
di /= nsamples; |
|
dx /= nsamples; |
|
dy /= nsamples; |
|
|
|
*(values_1.ptr<float>(dcount2)) = di; |
|
*(values_1.ptr<float>(dcount2)+1) = dx; |
|
*(values_1.ptr<float>(dcount2)+2) = dy; |
|
dcount2++; |
|
} |
|
} |
|
|
|
// Do binary comparison first level |
|
for (int i = 0; i < 4; i++) { |
|
for (int j = i + 1; j < 4; j++) { |
|
if (*(values_1.ptr<float>(i)) > *(values_1.ptr<float>(j))) { |
|
desc[dcount1 / 8] |= (1 << (dcount1 % 8)); |
|
} |
|
dcount1++; |
|
|
|
if (*(values_1.ptr<float>(i)+1) > *(values_1.ptr<float>(j)+1)) { |
|
desc[dcount1 / 8] |= (1 << (dcount1 % 8)); |
|
} |
|
dcount1++; |
|
|
|
if (*(values_1.ptr<float>(i)+2) > *(values_1.ptr<float>(j)+2)) { |
|
desc[dcount1 / 8] |= (1 << (dcount1 % 8)); |
|
} |
|
dcount1++; |
|
} |
|
} |
|
|
|
// Second 3x3 grid |
|
sample_step = static_cast<int>(ceil(pattern_size*2. / 3.)); |
|
dcount2 = 0; |
|
|
|
for (int i = -pattern_size; i < pattern_size; i += sample_step) { |
|
for (int j = -pattern_size; j < pattern_size; j += sample_step) { |
|
di = dx = dy = 0.0; |
|
nsamples = 0; |
|
|
|
for (int k = i; k < i + sample_step; k++) { |
|
for (int l = j; l < j + sample_step; l++) { |
|
|
|
// Get the coordinates of the sample point |
|
sample_y = yf + l*scale; |
|
sample_x = xf + k*scale; |
|
|
|
y1 = fRound(sample_y); |
|
x1 = fRound(sample_x); |
|
|
|
ri = *(evolution[level].Lt.ptr<float>(y1)+x1); |
|
rx = *(evolution[level].Lx.ptr<float>(y1)+x1); |
|
ry = *(evolution[level].Ly.ptr<float>(y1)+x1); |
|
|
|
di += ri; |
|
dx += rx; |
|
dy += ry; |
|
nsamples++; |
|
} |
|
} |
|
|
|
di /= nsamples; |
|
dx /= nsamples; |
|
dy /= nsamples; |
|
|
|
*(values_2.ptr<float>(dcount2)) = di; |
|
*(values_2.ptr<float>(dcount2)+1) = dx; |
|
*(values_2.ptr<float>(dcount2)+2) = dy; |
|
dcount2++; |
|
} |
|
} |
|
|
|
//Do binary comparison second level |
|
dcount2 = 0; |
|
for (int i = 0; i < 9; i++) { |
|
for (int j = i + 1; j < 9; j++) { |
|
if (*(values_2.ptr<float>(i)) > *(values_2.ptr<float>(j))) { |
|
desc[dcount1 / 8] |= (1 << (dcount1 % 8)); |
|
} |
|
dcount1++; |
|
|
|
if (*(values_2.ptr<float>(i)+1) > *(values_2.ptr<float>(j)+1)) { |
|
desc[dcount1 / 8] |= (1 << (dcount1 % 8)); |
|
} |
|
dcount1++; |
|
|
|
if (*(values_2.ptr<float>(i)+2) > *(values_2.ptr<float>(j)+2)) { |
|
desc[dcount1 / 8] |= (1 << (dcount1 % 8)); |
|
} |
|
dcount1++; |
|
} |
|
} |
|
|
|
// Third 4x4 grid |
|
sample_step = pattern_size / 2; |
|
dcount2 = 0; |
|
|
|
for (int i = -pattern_size; i < pattern_size; i += sample_step) { |
|
for (int j = -pattern_size; j < pattern_size; j += sample_step) { |
|
di = dx = dy = 0.0; |
|
nsamples = 0; |
|
|
|
for (int k = i; k < i + sample_step; k++) { |
|
for (int l = j; l < j + sample_step; l++) { |
|
|
|
// Get the coordinates of the sample point |
|
sample_y = yf + l*scale; |
|
sample_x = xf + k*scale; |
|
|
|
y1 = fRound(sample_y); |
|
x1 = fRound(sample_x); |
|
|
|
ri = *(evolution[level].Lt.ptr<float>(y1)+x1); |
|
rx = *(evolution[level].Lx.ptr<float>(y1)+x1); |
|
ry = *(evolution[level].Ly.ptr<float>(y1)+x1); |
|
|
|
di += ri; |
|
dx += rx; |
|
dy += ry; |
|
nsamples++; |
|
} |
|
} |
|
|
|
di /= nsamples; |
|
dx /= nsamples; |
|
dy /= nsamples; |
|
|
|
*(values_3.ptr<float>(dcount2)) = di; |
|
*(values_3.ptr<float>(dcount2)+1) = dx; |
|
*(values_3.ptr<float>(dcount2)+2) = dy; |
|
dcount2++; |
|
} |
|
} |
|
|
|
//Do binary comparison third level |
|
dcount2 = 0; |
|
for (int i = 0; i < 16; i++) { |
|
for (int j = i + 1; j < 16; j++) { |
|
if (*(values_3.ptr<float>(i)) > *(values_3.ptr<float>(j))) { |
|
desc[dcount1 / 8] |= (1 << (dcount1 % 8)); |
|
} |
|
dcount1++; |
|
|
|
if (*(values_3.ptr<float>(i)+1) > *(values_3.ptr<float>(j)+1)) { |
|
desc[dcount1 / 8] |= (1 << (dcount1 % 8)); |
|
} |
|
dcount1++; |
|
|
|
if (*(values_3.ptr<float>(i)+2) > *(values_3.ptr<float>(j)+2)) { |
|
desc[dcount1 / 8] |= (1 << (dcount1 % 8)); |
|
} |
|
dcount1++; |
|
} |
|
} |
|
} |
|
|
|
void MLDB_Full_Descriptor_Invoker::MLDB_Fill_Values(float* values, int sample_step, int level, |
|
float xf, float yf, float co, float si, float scale) const |
|
{ |
|
const std::vector<TEvolution>& evolution = *evolution_; |
|
int pattern_size = options_->descriptor_pattern_size; |
|
int chan = options_->descriptor_channels; |
|
int valpos = 0; |
|
|
|
for (int i = -pattern_size; i < pattern_size; i += sample_step) { |
|
for (int j = -pattern_size; j < pattern_size; j += sample_step) { |
|
float di, dx, dy; |
|
di = dx = dy = 0.0; |
|
int nsamples = 0; |
|
|
|
for (int k = i; k < i + sample_step; k++) { |
|
for (int l = j; l < j + sample_step; l++) { |
|
float sample_y = yf + (l*co * scale + k*si*scale); |
|
float sample_x = xf + (-l*si * scale + k*co*scale); |
|
|
|
int y1 = fRound(sample_y); |
|
int x1 = fRound(sample_x); |
|
|
|
float ri = *(evolution[level].Lt.ptr<float>(y1)+x1); |
|
di += ri; |
|
|
|
if(chan > 1) { |
|
float rx = *(evolution[level].Lx.ptr<float>(y1)+x1); |
|
float ry = *(evolution[level].Ly.ptr<float>(y1)+x1); |
|
if (chan == 2) { |
|
dx += sqrtf(rx*rx + ry*ry); |
|
} |
|
else { |
|
float rry = rx*co + ry*si; |
|
float rrx = -rx*si + ry*co; |
|
dx += rrx; |
|
dy += rry; |
|
} |
|
} |
|
nsamples++; |
|
} |
|
} |
|
di /= nsamples; |
|
dx /= nsamples; |
|
dy /= nsamples; |
|
|
|
values[valpos] = di; |
|
if (chan > 1) { |
|
values[valpos + 1] = dx; |
|
} |
|
if (chan > 2) { |
|
values[valpos + 2] = dy; |
|
} |
|
valpos += chan; |
|
} |
|
} |
|
} |
|
|
|
void MLDB_Full_Descriptor_Invoker::MLDB_Binary_Comparisons(float* values, unsigned char* desc, |
|
int count, int& dpos) const { |
|
int chan = options_->descriptor_channels; |
|
int* ivalues = (int*) values; |
|
for(int i = 0; i < count * chan; i++) { |
|
ivalues[i] = CV_TOGGLE_FLT(ivalues[i]); |
|
} |
|
|
|
for(int pos = 0; pos < chan; pos++) { |
|
for (int i = 0; i < count; i++) { |
|
int ival = ivalues[chan * i + pos]; |
|
for (int j = i + 1; j < count; j++) { |
|
int res = ival > ivalues[chan * j + pos]; |
|
desc[dpos >> 3] |= (res << (dpos & 7)); |
|
dpos++; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This method computes the descriptor of the provided keypoint given the |
|
* main orientation of the keypoint |
|
* @param kpt Input keypoint |
|
* @param desc Descriptor vector |
|
*/ |
|
void MLDB_Full_Descriptor_Invoker::Get_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char *desc) const { |
|
|
|
const int max_channels = 3; |
|
CV_Assert(options_->descriptor_channels <= max_channels); |
|
float values[16*max_channels]; |
|
const double size_mult[3] = {1, 2.0/3.0, 1.0/2.0}; |
|
|
|
float ratio = (float)(1 << kpt.octave); |
|
float scale = (float)fRound(0.5f*kpt.size / ratio); |
|
float xf = kpt.pt.x / ratio; |
|
float yf = kpt.pt.y / ratio; |
|
float co = cos(kpt.angle); |
|
float si = sin(kpt.angle); |
|
int pattern_size = options_->descriptor_pattern_size; |
|
|
|
int dpos = 0; |
|
for(int lvl = 0; lvl < 3; lvl++) { |
|
|
|
int val_count = (lvl + 2) * (lvl + 2); |
|
int sample_step = static_cast<int>(ceil(pattern_size * size_mult[lvl])); |
|
MLDB_Fill_Values(values, sample_step, kpt.class_id, xf, yf, co, si, scale); |
|
MLDB_Binary_Comparisons(values, desc, val_count, dpos); |
|
} |
|
} |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This method computes the M-LDB descriptor of the provided keypoint given the |
|
* main orientation of the keypoint. The descriptor is computed based on a subset of |
|
* the bits of the whole descriptor |
|
* @param kpt Input keypoint |
|
* @param desc Descriptor vector |
|
*/ |
|
void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char *desc) const { |
|
|
|
float di = 0.f, dx = 0.f, dy = 0.f; |
|
float rx = 0.f, ry = 0.f; |
|
float sample_x = 0.f, sample_y = 0.f; |
|
int x1 = 0, y1 = 0; |
|
|
|
const AKAZEOptions & options = *options_; |
|
const std::vector<TEvolution>& evolution = *evolution_; |
|
|
|
// Get the information from the keypoint |
|
float ratio = (float)(1 << kpt.octave); |
|
int scale = fRound(0.5f*kpt.size / ratio); |
|
float angle = kpt.angle; |
|
int level = kpt.class_id; |
|
float yf = kpt.pt.y / ratio; |
|
float xf = kpt.pt.x / ratio; |
|
float co = cos(angle); |
|
float si = sin(angle); |
|
|
|
// Allocate memory for the matrix of values |
|
Mat values = Mat_<float>::zeros((4 + 9 + 16)*options.descriptor_channels, 1); |
|
|
|
// Sample everything, but only do the comparisons |
|
vector<int> steps(3); |
|
steps.at(0) = options.descriptor_pattern_size; |
|
steps.at(1) = (int)ceil(2.f*options.descriptor_pattern_size / 3.f); |
|
steps.at(2) = options.descriptor_pattern_size / 2; |
|
|
|
for (int i = 0; i < descriptorSamples_.rows; i++) { |
|
const int *coords = descriptorSamples_.ptr<int>(i); |
|
int sample_step = steps.at(coords[0]); |
|
di = 0.0f; |
|
dx = 0.0f; |
|
dy = 0.0f; |
|
|
|
for (int k = coords[1]; k < coords[1] + sample_step; k++) { |
|
for (int l = coords[2]; l < coords[2] + sample_step; l++) { |
|
|
|
// Get the coordinates of the sample point |
|
sample_y = yf + (l*scale*co + k*scale*si); |
|
sample_x = xf + (-l*scale*si + k*scale*co); |
|
|
|
y1 = fRound(sample_y); |
|
x1 = fRound(sample_x); |
|
|
|
di += *(evolution[level].Lt.ptr<float>(y1)+x1); |
|
|
|
if (options.descriptor_channels > 1) { |
|
rx = *(evolution[level].Lx.ptr<float>(y1)+x1); |
|
ry = *(evolution[level].Ly.ptr<float>(y1)+x1); |
|
|
|
if (options.descriptor_channels == 2) { |
|
dx += sqrtf(rx*rx + ry*ry); |
|
} |
|
else if (options.descriptor_channels == 3) { |
|
// Get the x and y derivatives on the rotated axis |
|
dx += rx*co + ry*si; |
|
dy += -rx*si + ry*co; |
|
} |
|
} |
|
} |
|
} |
|
|
|
*(values.ptr<float>(options.descriptor_channels*i)) = di; |
|
|
|
if (options.descriptor_channels == 2) { |
|
*(values.ptr<float>(options.descriptor_channels*i + 1)) = dx; |
|
} |
|
else if (options.descriptor_channels == 3) { |
|
*(values.ptr<float>(options.descriptor_channels*i + 1)) = dx; |
|
*(values.ptr<float>(options.descriptor_channels*i + 2)) = dy; |
|
} |
|
} |
|
|
|
// Do the comparisons |
|
const float *vals = values.ptr<float>(0); |
|
const int *comps = descriptorBits_.ptr<int>(0); |
|
|
|
for (int i = 0; i<descriptorBits_.rows; i++) { |
|
if (vals[comps[2 * i]] > vals[comps[2 * i + 1]]) { |
|
desc[i / 8] |= (1 << (i % 8)); |
|
} |
|
} |
|
} |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This method computes the upright (not rotation invariant) M-LDB descriptor |
|
* of the provided keypoint given the main orientation of the keypoint. |
|
* The descriptor is computed based on a subset of the bits of the whole descriptor |
|
* @param kpt Input keypoint |
|
* @param desc Descriptor vector |
|
*/ |
|
void Upright_MLDB_Descriptor_Subset_Invoker::Get_Upright_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char *desc) const { |
|
|
|
float di = 0.0f, dx = 0.0f, dy = 0.0f; |
|
float rx = 0.0f, ry = 0.0f; |
|
float sample_x = 0.0f, sample_y = 0.0f; |
|
int x1 = 0, y1 = 0; |
|
|
|
const AKAZEOptions & options = *options_; |
|
const std::vector<TEvolution>& evolution = *evolution_; |
|
|
|
// Get the information from the keypoint |
|
float ratio = (float)(1 << kpt.octave); |
|
int scale = fRound(0.5f*kpt.size / ratio); |
|
int level = kpt.class_id; |
|
float yf = kpt.pt.y / ratio; |
|
float xf = kpt.pt.x / ratio; |
|
|
|
// Allocate memory for the matrix of values |
|
Mat values = Mat_<float>::zeros((4 + 9 + 16)*options.descriptor_channels, 1); |
|
|
|
vector<int> steps(3); |
|
steps.at(0) = options.descriptor_pattern_size; |
|
steps.at(1) = static_cast<int>(ceil(2.f*options.descriptor_pattern_size / 3.f)); |
|
steps.at(2) = options.descriptor_pattern_size / 2; |
|
|
|
for (int i = 0; i < descriptorSamples_.rows; i++) { |
|
const int *coords = descriptorSamples_.ptr<int>(i); |
|
int sample_step = steps.at(coords[0]); |
|
di = 0.0f, dx = 0.0f, dy = 0.0f; |
|
|
|
for (int k = coords[1]; k < coords[1] + sample_step; k++) { |
|
for (int l = coords[2]; l < coords[2] + sample_step; l++) { |
|
|
|
// Get the coordinates of the sample point |
|
sample_y = yf + l*scale; |
|
sample_x = xf + k*scale; |
|
|
|
y1 = fRound(sample_y); |
|
x1 = fRound(sample_x); |
|
di += *(evolution[level].Lt.ptr<float>(y1)+x1); |
|
|
|
if (options.descriptor_channels > 1) { |
|
rx = *(evolution[level].Lx.ptr<float>(y1)+x1); |
|
ry = *(evolution[level].Ly.ptr<float>(y1)+x1); |
|
|
|
if (options.descriptor_channels == 2) { |
|
dx += sqrtf(rx*rx + ry*ry); |
|
} |
|
else if (options.descriptor_channels == 3) { |
|
dx += rx; |
|
dy += ry; |
|
} |
|
} |
|
} |
|
} |
|
|
|
*(values.ptr<float>(options.descriptor_channels*i)) = di; |
|
|
|
if (options.descriptor_channels == 2) { |
|
*(values.ptr<float>(options.descriptor_channels*i + 1)) = dx; |
|
} |
|
else if (options.descriptor_channels == 3) { |
|
*(values.ptr<float>(options.descriptor_channels*i + 1)) = dx; |
|
*(values.ptr<float>(options.descriptor_channels*i + 2)) = dy; |
|
} |
|
} |
|
|
|
// Do the comparisons |
|
const float *vals = values.ptr<float>(0); |
|
const int *comps = descriptorBits_.ptr<int>(0); |
|
|
|
for (int i = 0; i<descriptorBits_.rows; i++) { |
|
if (vals[comps[2 * i]] > vals[comps[2 * i + 1]]) { |
|
desc[i / 8] |= (1 << (i % 8)); |
|
} |
|
} |
|
} |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This function computes a (quasi-random) list of bits to be taken |
|
* from the full descriptor. To speed the extraction, the function creates |
|
* a list of the samples that are involved in generating at least a bit (sampleList) |
|
* and a list of the comparisons between those samples (comparisons) |
|
* @param sampleList |
|
* @param comparisons The matrix with the binary comparisons |
|
* @param nbits The number of bits of the descriptor |
|
* @param pattern_size The pattern size for the binary descriptor |
|
* @param nchannels Number of channels to consider in the descriptor (1-3) |
|
* @note The function keeps the 18 bits (3-channels by 6 comparisons) of the |
|
* coarser grid, since it provides the most robust estimations |
|
*/ |
|
void generateDescriptorSubsample(Mat& sampleList, Mat& comparisons, int nbits, |
|
int pattern_size, int nchannels) { |
|
|
|
int ssz = 0; |
|
for (int i = 0; i < 3; i++) { |
|
int gz = (i + 2)*(i + 2); |
|
ssz += gz*(gz - 1) / 2; |
|
} |
|
ssz *= nchannels; |
|
|
|
CV_Assert(nbits <= ssz); // Descriptor size can't be bigger than full descriptor |
|
|
|
// Since the full descriptor is usually under 10k elements, we pick |
|
// the selection from the full matrix. We take as many samples per |
|
// pick as the number of channels. For every pick, we |
|
// take the two samples involved and put them in the sampling list |
|
|
|
Mat_<int> fullM(ssz / nchannels, 5); |
|
for (int i = 0, c = 0; i < 3; i++) { |
|
int gdiv = i + 2; //grid divisions, per row |
|
int gsz = gdiv*gdiv; |
|
int psz = (int)ceil(2.f*pattern_size / (float)gdiv); |
|
|
|
for (int j = 0; j < gsz; j++) { |
|
for (int k = j + 1; k < gsz; k++, c++) { |
|
fullM(c, 0) = i; |
|
fullM(c, 1) = psz*(j % gdiv) - pattern_size; |
|
fullM(c, 2) = psz*(j / gdiv) - pattern_size; |
|
fullM(c, 3) = psz*(k % gdiv) - pattern_size; |
|
fullM(c, 4) = psz*(k / gdiv) - pattern_size; |
|
} |
|
} |
|
} |
|
|
|
srand(1024); |
|
Mat_<int> comps = Mat_<int>(nchannels * (int)ceil(nbits / (float)nchannels), 2); |
|
comps = 1000; |
|
|
|
// Select some samples. A sample includes all channels |
|
int count = 0; |
|
int npicks = (int)ceil(nbits / (float)nchannels); |
|
Mat_<int> samples(29, 3); |
|
Mat_<int> fullcopy = fullM.clone(); |
|
samples = -1; |
|
|
|
for (int i = 0; i < npicks; i++) { |
|
int k = rand() % (fullM.rows - i); |
|
if (i < 6) { |
|
// Force use of the coarser grid values and comparisons |
|
k = i; |
|
} |
|
|
|
bool n = true; |
|
|
|
for (int j = 0; j < count; j++) { |
|
if (samples(j, 0) == fullcopy(k, 0) && samples(j, 1) == fullcopy(k, 1) && samples(j, 2) == fullcopy(k, 2)) { |
|
n = false; |
|
comps(i*nchannels, 0) = nchannels*j; |
|
comps(i*nchannels + 1, 0) = nchannels*j + 1; |
|
comps(i*nchannels + 2, 0) = nchannels*j + 2; |
|
break; |
|
} |
|
} |
|
|
|
if (n) { |
|
samples(count, 0) = fullcopy(k, 0); |
|
samples(count, 1) = fullcopy(k, 1); |
|
samples(count, 2) = fullcopy(k, 2); |
|
comps(i*nchannels, 0) = nchannels*count; |
|
comps(i*nchannels + 1, 0) = nchannels*count + 1; |
|
comps(i*nchannels + 2, 0) = nchannels*count + 2; |
|
count++; |
|
} |
|
|
|
n = true; |
|
for (int j = 0; j < count; j++) { |
|
if (samples(j, 0) == fullcopy(k, 0) && samples(j, 1) == fullcopy(k, 3) && samples(j, 2) == fullcopy(k, 4)) { |
|
n = false; |
|
comps(i*nchannels, 1) = nchannels*j; |
|
comps(i*nchannels + 1, 1) = nchannels*j + 1; |
|
comps(i*nchannels + 2, 1) = nchannels*j + 2; |
|
break; |
|
} |
|
} |
|
|
|
if (n) { |
|
samples(count, 0) = fullcopy(k, 0); |
|
samples(count, 1) = fullcopy(k, 3); |
|
samples(count, 2) = fullcopy(k, 4); |
|
comps(i*nchannels, 1) = nchannels*count; |
|
comps(i*nchannels + 1, 1) = nchannels*count + 1; |
|
comps(i*nchannels + 2, 1) = nchannels*count + 2; |
|
count++; |
|
} |
|
|
|
Mat tmp = fullcopy.row(k); |
|
fullcopy.row(fullcopy.rows - i - 1).copyTo(tmp); |
|
} |
|
|
|
sampleList = samples.rowRange(0, count).clone(); |
|
comparisons = comps.rowRange(0, nbits).clone(); |
|
} |
|
|
|
}
|
|
|